n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:"

Transkript

1 Grudlage der mathematische Statistik Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl vo Eizelerscheiuge oder Idividue zu tu. Diese Zahl ka edlich oder uedlich sei. Die Mege aller Eizelerscheiuge ee wir die Grudgesamtheit der Utersuchug. Dabei zeigt es sich, dass diese Masseerscheiuge häufig Gesetzmäßigkeite aufweise, die sich icht auf ihre eizele Messuge oder idividuelle Beobachtuge übertrage lasse. Wir spreche deshalb vo der zufällige Uregelmäßigkeit der Eizelerscheiug ud der statistische Regelmäßigkeit oder Gesetzmäßigkeit der Masseerscheiug. Häufig ist die Azahl der Elemete zu groß, um alle Elemete der Grudgesamtheit messe oder beobachte zu köe. Um trotzdem Iformatioe über mögliche Gesetzmäßigkeite der Grudgesamtheit zu erhalte, etehme wir eie zuverlässig große Azahl vo Elemete aus der Gesamtheit ud ee diese Teilmege eie Stichprobe vom Umfag. Die Etahme dieser Elemete muss zufällig erfolge, d.h. jedes Elemet der Grudgesamtheit muss die gleiche Chace habe, i die Stichprobe eibezoge zu werde. Wir setze voraus, dass usere Ergebisse stets eie reelle Zahl darstelle oder sich durch eie reelle Zahl iterpretiere lasse. Da köe wir die Merkmalswerte der Stichprobe durch die Zufallsvariable X kezeiche. Für eie Stichprobe vom Umfag erhalte wir k verschiedee Werte der Zufallsvariable X: x 1,x 2,x 3,...x k. Jeder dieser Werte wird mit der absolute Häufigkeit 1, 2, 3,..., k i der Stichprobe auftrete. Für die absolute Häufigkeit köe wir auch die relative Häufigkeit eisetze: h 1,h 2,h 3,...,h k, mit h 1 +h 2 +h h k =1. Wir uterscheide die diskrete Stichprobewerte ud die stetige Stichprobewerte. Bei Utersuchuge, bei dee ma misst, d.h. eie kotiuierlich veräderliche Variable beobachtet, trete prizipiell stetige Ergebisse auf. Bei Ergebisse, bei dee ma zählt, trete diskrete Ergebisse auf. Die Erfassug ud Beschreibug der beobachtete Merkmalswerte der "Zufalls"Stichprobe ud ihre Beschreibug durch die Maßzahle Mittelwert ud Variaz ist der Gegestad dieses Kapitels. Offesichtlich bestehe zwische der Wahrscheilichkeitsrechug ud der mathematische Statistik große Gemeisamkeite i der Begriffsbildug Häufigkeit ud Summehäufigkeit eier Stichprobe Gemäß userer Eileitug beschreibe wir eie Stichprobe zuächst durch folgede Begriffe: De Stichprobeumfag, die absolute Häufigkeit H(x i ) eies Stichprobewertes x i ud die relative Häufigkeit h(x i ) eies Stichprobewertes x i, wobei wir die relative Häufigkeit bekatlich so defiiere. Defiitio Relative Häufigkeit eier Stichprobe:

2 62 h(x i ) = Absolute Häufigkeit H(x i) für das Ereigis x i Stichprobeumfag Natürlich folgt stets, dass die relative Häufigkeit eies Stichprobewertes x i kleier oder gleich 1 ist ud dass die Summierug der relative Häufigkeite immer 1 ergibt: 0 h(x i ) 1 ud m " h(x i ) = " h i =1. m Dari stelle die Größe x i, 1 i m, die Gesamtheit aller uterscheidbare Ereigisse i der Stichprobe vom Umfag dar. Machmal ist es zweckmäßig, aus de m diskret - zahlemäßig verschiedee Stichprobewerte x 1, x 2, x 3,..., x m ud ihre m relative Häufigkeite h i =h(x i ), die ustetige Häufigkeitsfuktio f(x) zu kostruiere: " h i für x = x i f(x) = #. % 0 sost Die Häufigkeitsfuktio bestimmt die Häufigkeitsverteilug der Stichprobe. Natürlich gilt auch hier: 0 f(x) 1 ud m " f(x i ) =1, Diese Begriffe habe wir aalog scho i der Wahrscheilichkeitsrechug keegelert. Nebe der Häufigkeitsfuktio f(x) besitzt die Summehäufigkeitsfuktio oder Verteilugsfuktio F(x) der Stichprobe eie besodere Bedeutug. Wir defiiere: Defiitio Verteilugsfuktio eier Stichprobe. F(x)=Summe der relative Häufigkeite aller Stichprobewerte x i, die kleier oder gleich x sid. Beispiel Eie Utersuchug der Körpergröße vo 100 zufällig ausgewählte, achtzehjährige Mädche ergab das folgede Ergebis. Dari sid die ursprüglich stetige Messergebisse durch das Auf- oder Abrude auf gaze Eiheite diskretisiert. Körpergröße [cm] Absolute Häufigkeit Relative Häufigkeit 0,01 0,01 0,02 0,03 0,03 0,05 0,06 0,04 0,05 0,07 0,05 0,05 0,06 Absolute Summehäufigkeit Relative Summehäufigkeit 0,01 0,02 0,04 0,07 0,1 0,15 0,21 0,25 0,3 0,37 0,42 0,47 0,53 Körpergröße [cm] Absolute Häufigkeit Relative Häufigkeit 0,07 0,05 0,04 0,05 0,05 0,06 0,04 0,03 0,02 0,03 0,01 0,01 0,01 Absolute Summehäufigkeit Relative Summehäufigkeit 0,6 0,65 0,69 0,74 0,79 0,85 0,89 0,92 0,94 0,97 0,98 0,99 1

3 Klasseeiteilug eier Stichprobe Häufig tritt die Situatio ei, dass umfagreiche Stichprobe vorliege mit viele uterschiedliche Stichprobewerte. Die tabellarische ud auch grafische Auswertug zeigt da das weig aschauliche Bild vo viele verschiedee x i -Stichprobewerte mit kleie Werte der absolute bzw. relative Häufigkeite. Eie Messug ist ei solcher Extremfall, weil bei hireiched hoher Geauigkeit alle Stichprobewerte verschiede sei werde. I solche Fälle köe wir die Darstellug verbesser, idem wir beieiader liegede Stichprobewerte zu Klasse zusammefasse ud aschließed die Azahl der Elemete pro Klasse tabellarisch oder grafisch darstelle. Für eie solche Gruppierug der Stichprobewerte i Klasse beachte wir folgede Merkregel.

4 64 1 Wir wähle für alle Klasse die gleiche Breite Δx. 2 Wir charakterisiere die Klasse durch ihre Klassemitte x i ud sorge dafür, dass die Klassemitte x i möglichst eifache Zahle ergebe. 3 Fällt ei Stichprobewert auf de Rad, so zähle wir ih zur Hälfte für jede der beide agrezede Klasse. 4 Bei der Festlegug der Azahl k der Klasse verwede wir die Faustregel: k ", wori de Stichprobeumfag darstellt. 5 Die absolute Häufigkeit H(x i ) eier Klasse ist durch die Azahl der Stichprobewerte defiiert, die i dieser Klasse liege. 6 Die relative Häufigkeit h(x i ) eier Klasse erreche wir, idem wir ihre absolute Häufigkeit durch de Stichprobeumfag teile: h(x i ) = H(x i ). 7 Die Häufigkeitsfuktio f(x) eier gruppierte Stichprobe ist so defiiert: " h(x i ) für x = x i,worix i die Klassemitte darstellt f(x) = # % 0 sost 8 Die Verteilugsfuktio F(x) ermittel wir aus der Summe der relative Klassehäufigkeite aller Klasse, dere Mitte x i kleier oder gleich x sid: F(x) = # f(x i ), wori x i die Klassemitte darstellt. x i "x Beispiel 1 Für die Druckfestigkeit vo Betowürfel wurde 85 Messuge durchgeführt. Bei diese Messuge wurde eie Geauigkeit vo 1 kg/cm 2 gefordert. Die Messwerte variierte zwische 209 ud 489 kg/cm 2. Druckfestigkeit kg/cm2 Druckfestigkeit kg/cm2 Druckfestigkeit

5 65 Wir bilde k=10 Klasseitervalle ( k " eizele Klasse(i [kg/cm 2 ]: 85 ) ud zähle die Häufigkeite der Date i de Klasseitervalle x i Absolute Häufigkeit H x i ( ) Die Klasse x 1 ethält alle Ergebisse vo [kg/cm 2 ] bis [kg/cm 2 ], die Klasse x 2 alle Werte zwische [kg/cm 2 ] ud [kg/cm 2 ], u.s.w. Beispiel 2 Ei Zufallsgeerator liefert 5000 Zufallswerte zwische x -10 ud x 10. Es hadelt sich wie im vorige Beispiel prizipiell um eie stetige Zufallsvariable. Offesichtlich köe wir stetige Verteiluge zwar theoretisch formuliere, aber weil usere edliche Darstellug der uterschiedliche Dezimalzahle ur edlich viele Uterscheiduge zuläßt, erhalte wir deoch eie (ubeabsichtigte) Diskretisierug des Zahleitervalles für usere Zufallsvariable. I userem Beispiel zerlege wir das stetige Gruditervall vo -10 bis +10, durch die Darstellug der stetige Zufallsvariable mit drei Dezimalzahle ach dem Komma geau, auf isgesamt uterscheidbare Stichprobewerte.

6 Mittelwert, Media, Streuug ud Streuugsquadrat Nachdem wir die drei Stichprobe i de Eiführugsbeispiele tabellarisch ud grafisch i de Details aufgearbeitet habe, führe wir für jede Stichprobe (Messug, Beobachtug, Zufallsexperimet) zusätzliche Maßzahle ei, mit dee wir sie gesamtheitlich beschreibe. Diese Zahle heiße Mittelwert, Media ud Streuug ud Streuugsquadrat der Stichprobe. Wir defiiere diese Maßzahle wie folgt. Der Mittelwert eier Stichprobe x 1, x 2,..., x ist das arithmetische Mittel der Stichprobewerte ud wird mit x bezeichet: x = 1 x i = x 1 + x x ". Demgegeüber ist der Media derjeige Stichprobewert der i der Mitte liegt. Dieser existiert stets für eie ugerade Azahl vo Werte. Ist die Azahl der Werte gerade, so defiiere als Media de Mittelwert der beide i der Mitte liegede Werte. Beispiele: 1 Der Media der Stichprobewerte 1,2,5,100,1000 ist 5. 2 Der Media der Stichprobewerte 1,2,5,100 ist 3.5. Für usere drei Eiführugsbeispiele bereche wir für das arithmetische Mittel ud de Media folgede Werte. 3 Als Mittelwert für die Körpergröße der Mädche erreche wir Der Media ist Die mittlere Druckfestigkeit der Betowürfel beträgt [kg/cm 2 ]. Der Media ist 328 [kg/cm 2 ]. 5 Der Mittelwert der Zufallszahle heißt Der Media ist Wir wolle jetzt och eie Maßzahl eiführe, die beschreibt, wie stark die Stichprobewerte x 1, x 2, x 3,..., x um de Mittelwert streue. Schließlich ist es ei Uterschied, ob usere Stichprobe die Werte 1, 5, 9, 2, 8 aimmt, oder die Werte 4.5, 4.9, 5.1, 5, 5.5. Beide Stichprobe habe de gleiche Mittelwert 5; offesichtlich streue die Werte der erste Stichprobe aber wesetlich stärker. Diese Streuug der Stichprobewerte um de Mittelwert beschreibe wir durch das Streuugsquadrat oder auch Variaz. Als Variaz eier Stichprobe defiiere wir de folgede Ausdruck: s 2 = 1 #(x i " x ) 2 Variaz. "1 Die ichtegative Quadratwurzel s der Variaz heißt die Stadardabweichug.

7 67 Wir wede de eue Begriff der Variaz auf usere 4 Beispiele a. Beispiel 1 (Mädchegröße) Die Variaz zur Stichprobe vom Umfag =100 zur Messug der Körpergröße eier Mädcheklasse beträgt 34. Damit liege die Stadardabweichuge vom Mittelwert der Körpergröße bei ca. 5.8 cm. Beispiel 2 (Druckfestigkeit) Die Variaz zur Messug der Druckfestigkeite beträgt Damit liege die Stadardabweichuge vom Mittelwert der Druckfstigkeit bei ca Beispiel 3 (Zufallszahle) Die Variaz zu userem Experimet mit dem Geerator für Zufallszahle beträgt Die Stadardabweichug eier Zufallszahl vom Mittelwert liegt also bei 5.5. Amerkuge 1 Die Variaz ist eie Größe, die sich aus de absolute Werte eier Stichprobe errechet ud hägt demzufolge i ihrer Größe icht ur vo ihrer Streuug um de Mittelwert, soder auch vo de absolute Zahlegröße i der Stichprobe ab. Aus der Größe der Variaz alleie köe wir deshalb ichts über die Streuug der Stichprobewerte sage. 1 2 Es überrascht zuächst, dass i der Formel für die Variaz der Ausdruck "1 statt 1 steht. Dies lässt sich dadurch begrüde, dass wir die Summe der Quadrate stets auf eie Summe vo ( -1) Quadrate reduziere lässt. Ma bezeichet (-1) als die Azahl der Freiheitsgrade der Quadratsumme. Gegestad der bisherige Utersuchuge, war die Überlegug, wie ma statistische Date i eie übersichtliche tabellarische oder grafische Form brigt. Außerdem habe wir die Begriffe Mittelwert ud Variaz defiiert, um die Stichprobeergebisse durch gewisse "summarische" Maßzahle zu kezeiche. Wollte wir ur die Empirie beschreibe, so wäre wir fertig. Das Zufallsexperimet "Zufallszahle" ist gut geeiget eiige Weseszüge der Wahrscheilichkeitsrechug ud der mathematische Statistik zu vergleiche. I der Wahrscheilichkeitsrechug köe wir für dieses stetige Experimet exakt die Wahrscheilichkeitsdichte f(x) = 1 20 ud die Verteilug % 0 für x " #10 ' x +10 F(x) = & für #10 " x "10 ' 20 ( 1 für x +10 bereche ud mit userer Stichprobe vergleiche. Die Stichprobewerte (weiße Symbole) streue um die exakte aalytische Werte (schwarze Symbole). Bei diesem Vergleich dürfe wir da folgedes erwarte: Mit zuehmedem Stichprobeumfag werde die Abweichuge geriger.

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment 103 66 Grudzüge der Fehler- ud Ausgleichsrechug 661 Fehlerarte- Aufgabe der Fehler- ud Ausgleichsrechug Jedes physikalisch-techische Experimet liefert gewisse gemessee Werte x Bei dem Messvorgag verwede

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Kapitel 9: Schätzungen

Kapitel 9: Schätzungen - 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht STATISTIK Eiführug Statistik kommt vom italieische Wort statistica, was so viel wie Staatsma bedeutet. Früher verwedete ma de Begriff ur für eie Auswertug vo Date (Klima, Bevölkerug, Bräuche,...) eies

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

"Ich glaube nur die Statistik, die ich selbst gefälscht habe."

Ich glaube nur die Statistik, die ich selbst gefälscht habe. THEORETISCHE GRUNDLAGEN I der Biophysik versuche wir biologische Vorgäge mit physikalische Methode zu utersuche ud zu verstehe. Wir setze dabei voraus, dass biologische Größe quatitativ gemesse ud mit

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Uabhägigkeit, bedigte Wahrscheilichkeite 2.1 Stochastische Uabhägigkeit vo Ereigisse Im Folgede gehe wir vo eiem W-Raum (Ω, A, P aus. Der Begriff der stochastische Uabhägigkeit

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8 1 Lösuge ausgewählter Übugsaufgabe zum Buch Elemetare Stochastik (Spriger Spektrum, 2012) Teil 4: Aufgabe zu de Kapitel 7 ud 8 Aufgabe zu Kapitel 7 Zu Abschitt 7.1 Ü7.1.1 Ω sei höchstes abzählbar, ud X,

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I W-EX2003S Autor: Christia Müster Ihaltliches Lektorat: Peter Wies Überarbeitete Ausgabe vom 23. Mai 2007 by HERDT-Verlag für Bildugsmedie GmbH, Bodeheim Microsoft Office Excel 2003 für Widows Theme-Special:

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

5.3 Ergebnis- und Ereigniswahrscheinlichkeiten

5.3 Ergebnis- und Ereigniswahrscheinlichkeiten 5 Grudbegriffe der Wahrscheilichkeitstheorie 43 5.3 Ergebis- ud Ereigiswahrscheilichkeite Bisheriger Aufbau Wir habe die Wahrscheilichkeitstheorie aufgebaut, idem wir mit der Defiitio vo Ergebiswahrscheilichkeite

Mehr

Vorlesung 3. Tilman Bauer. 11. September 2007

Vorlesung 3. Tilman Bauer. 11. September 2007 Vorurs Mathemati 2007 Tilma Bauer Vorurs Mathemati 2007 Vorlesug 3 Tilma Bauer Mege ud Abbilduge Wiederholug ud Vollstädige Idutio Das Prizip Idex-Schreibweise! ud Aufgabe Uiversität Müster 11. September

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Grundlagen der Mathematik (LPSI/LS-M1)

Grundlagen der Mathematik (LPSI/LS-M1) Fachbereich Mathematik Algebra ud Zahletheorie Christia Curilla Grudlage der Mathematik (LPSI/LS-M1) Übugsklausur WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegehage Liebe Studierede, im Folgede fide Sie eiige

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert

Der Vergleich eines Stichprobenmittelwertes mit einem Populationsmittelwert Der Vergleich eies Stichprobemittelwertes mit eiem Populatiosmittelwert Am Beispiel des Falschspielers habe wir - uterstützt durch Ketisse über die Eigeschafte der Biomialverteilug - erstmals gesehe, welche

Mehr