5. Schließende Statistik Einführung
|
|
- Viktor Steinmann
- vor 2 Jahren
- Abrufe
Transkript
1 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen. Hauptrichtungen: Beschreibung von Daten (Deskription) Generierung von Hypothesen (Exploration) Schluss von den Daten (Stichprobe) auf die Grundgesamtheit stochastisches Modell (für die Verhältnisse in der Grundgesamtheit) } } beschreibende Statistik schließende Statistik Aufgaben der schließenden Statistik: möglichst gute Anpassung eines Modells an die Daten ( die Realität ) durch Schätzung Überprüfung von Modellannahmen (Hypothesen) z.b. über die Verteilungen der Merkmalsausprägungen interessierender Merkmale durch Anwendung von Entscheidungsregeln (z.b. Signifikanztests) auf vorliegende Hypothesen und Daten 1
2 Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) Hauptrichtungen: Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Grundgesamtheit), Erwartungswerte (Durchschnittswerte in der Grundheit) bzw. allg. von Verteilungen interessierender Merkmale in der Grundgesamtheit Testen von Hypothesen über diese Parameter bzw. Verteilungen, d.h. über die Angepasstheit eines Modells und damit schließlich über die interessierenden Verhältnisse in der Grundgesamtheit (Population) Jeder Schluss von einer Teilerhebung (Stichprobe) auf die Grundgesamtheit ist mit Unsicherheiten verbunden. Die wahrscheinlichkeitstheoretischen Modelle ermöglichen es, diese Unsicherheiten zu quantifizieren. Beispiel: GSTAT (Fred Böker, Statistik lernen am PC, Vandenhoeck & Ruprecht 1989) enthält (u.a.) für das Jahr 1974 die Altersverteilung aller Personen, die in diesem Jahr in der BRD gemeldet waren, sowie die Möglichkeit, das Ziehen einer Stichprobe zu simulieren und deren Verteilung mit der tatsächlichen (über Histogramme und Mittelwerte) zu vergleichen. 2
3 5.2. Statistische Grundbegriffe Die Grundgesamtheit (Population) ist die Gesamtmenge von Merkmalsträgern (Objekten) über die man z.b. in den Sozialwissenschaften Aussagen machen möchte. Beispiele: Gesamtbevölkerung der Bundesrepublik, Wähler einer Partei, Studenten einer Fachrichtung,... Interessiert ist man an gewissen Merkmalen, die die Merkmalsträger aufweisen. Beispiele: Geschlecht, Höhe des Einkommens, Zufriedenheit mit der Statistikausbildung Kann die Grundgesamtheit nicht vollständig - durch Einbeziehung aller Merkmalsträger (Totalerhebung) - hinsichtlich der interessierenden Merkmale untersucht werden, so versucht man eine möglichst repräsentative Teilerhebung zu verwenden. Liegen keine gesicherten Kenntnisse über die Struktur der Grundgesamtheit hinsichtlich der interessierenden Merkmale vor, so sichert nur das Zufallsprinzip repräsentative Teilerhebungen. Die einbezogenen n Merkmalsträger werden rein zufällig und unabhängig voneinander ausgewählt ( gezogen ). Dabei hat jeder Merkmalsträger bei jeder Ziehung die gleiche konstante Chance ausgewählt zu werden ( Ziehen mit Zurücklegen ). Die Ziehungsergebnisse beinflussen sich dabei auch nicht gegenseitig. 3
4 Betrachte für ein interessierendes Merkmal die Zufallsgröße X, die die Merkmalsausprägungen - kodiert durch Zahlen - bei einer rein zufälligen Auswahl eines Merkmalsträgers aus der Grundgesamtheit beschreibt, so besitzt sie die i.a. unbekannte Verteilungsfunktion F X der Merkmalsausprägungen dieses Merkmals in der Grundgesamtheit ( zufälliger Bürger ). Das mathematische Modell für das Ziehen einer reinen Zufallsstichprobe ist die mathematische Stichpobe (X 1, X 2,..., X n ) vom Umfang n. X i beschreibt dabei die zufällige Merkmalsausprägung des i-ten ausgewählten Probanden. Nach der Ziehungsvorschrift besitzen alle X i die gleiche Verteilung F X des interessierenden Merkmals in der Grundgesamtheit. Diese Modellvorstellung wird dann zur Berechnung der Unsicherheiten beim Schluß von der Stichprobe auf die Grundgesamtheit verwendet. Das Resultat einer Datenerhebung ist die konkrete Stichprobe (x 1, x 2,..., x n ). x i steht dabei für die registrierte Merkmalsausprägung des i-ten ausgewählten Probanden. Gemäß der Modellvorstellung sind die Daten eine Realisierung einer mathematischen Stichprobe. Beschreibt man also den Ziehungsprozeß einer mathematischen Stichprobe, so verwendet man Zufallsgrößen X, X i, T (große Buchstaben; der Ziehungsprozeß wird unendlich oft wiederholt ) und beschreibt man die Realisierung einer Ziehung, so schreibt man entsprechend x, x i, t (kleine Buchstaben; Ergebnis einer Ziehung ). 4
5 Übliche Sprechweise für Modellannahmen: Die Stichprobe (x 1,..., x n ) entstamme einer nach F X verteilten Grundgesamtheit. Praktisch hat man es stets mit der konkreten Stichprobe (x 1,..., x n ) zu tun, mit deren Hilfe man Informationen über die Population gewinnen will. Die mathematische Stichprobe dient zur wahrscheinlichkeitstheoretischen Begründung der Schlussweisen. Werden mehrere Merkmale registriert oder besteht das Anliegen im Vergleich verschiedener Merkmale bzw. verschiedener Populationen, werden entsprechend bei der Modellbildung verschiedene Zufallsvariablen (X, Y,... ) eingeführt und z.b. bivariat (X, Y ) betrachtet. 5
6 5.3. Stichprobenfunktionen Die Anliegen der schließenden Statistik werden mit Stichprobenfunktionen realisiert. Stichprobenfunktion T, eine Funktion von n Veränderlichen (X 1, X 2,..., X n ) T = T (X 1, X 2,..., X n ) math. Stichpr. Zufallsgröße (x 1, x 2,..., x n ) t = T (x 1, x 2,..., x n ) konkrete Stichpr. Zahl Bemerkungen T bzw. t sind allgemein übliche Bezeichnungen, für spezielle Stichprobenfunktionen sind aber auch andere Bezeichnungen üblich. Beispiel: X = 1 n X i x = 1 n x i n n i=1 Stichprobenfunktionen begegnen uns also als Formeln: Setzen wir die Werte der konkreten Stichprobe ein, kommt eine Zahl t heraus. Setzen wir die Zufallsgrößen der mathematischen Stichprobe ein, kommt eine Zufallsgröße T heraus. t kann als Realisierung der Zufallsvariable T verstanden werden. 6 i=1
7 Schätzungen Betrachtung zweier Beispiele: Schätzung des Durchschnitts (Bsp. 4) bzw. eines Anteils (Bsp. 3) in der Grundgesamtheit Gesucht: Durchschnittsgröße µ der Kinder in der Grundgesamtheit (siehe Bsp. 4): Gegeben: Konkrete Stichprobe.: (x 1,..., x n ) Plausibel: x = 1 n als Schätzung für den Durchschnitt µ in der Grundgesamtheit Wie gut ist diese Schätzung? Dazu: Math. Modell: Zufallsgröße X - Körpergröße eines rein zufällig ausgew. Kindes - also mit der unbekannten Größenverteilung F X mit Durchschnittswert µ (X 1,..., X n ) mathematische Stichprobe (alle X i wie X verteilt) vom Umfang n Die Stichprobenfunktion X = 1 n heißt Punktschätzung für µ, n i=1 n i=1 x i X i x : konkrete Punktschätzung 7
8 Wir wissen: Zentraler Grenzwertsatz: X ist für große n näherungsweise normalverteilt. Also: Weitergehende Untersuchung der Genauigkeit der Schätzung möglich. Z.B. kann die Wahrscheinlichkeit von Abweichungen der Schätzung vom zu schätzenden Durchschnittswert berechnet werden Bemerkung: Allgemein gilt: Sei γ der interessierende Parameter. Berechnet man mit einer Stichprobenfunktion T aus den Werten der konkreten Stichprobe einen Wert für den Parameter γ, so wird dieser Wert ˆγ = t = T (x 1,..., x n ) eine konkrete Punktschätzung und die Zufallsgröße T = T (X 1,..., X n ) eine Punktschätzung für diesen Parameter genannt. Weitere Punktschätzungen, ihre Eigenschaften und Methoden zu ihrer Konstruktion siehe Literatur. Klar ist, dass ein aus einer konkreten Stichprobe berechneter Mittelwert x den zu schätzenden Durchschnittswert µ in der Grundgesamtheit nur sehr selten oder fast nie genau trifft (i.a. ist also x µ). 8
9 Ausweg: Man betrachtet neben Punktschätzungen auch sogenannte Intervallschätzungen (Konfidenzschätzungen, Konfidenzintervalle). Dabei verwendet man das folgende Konstruktionsprinzip: Für eine mathematische Stichprobe ist ein zufälliges Intervall anzugeben, dass den zu schätzenden Parameter - hier den Durchschnittswert µ - mit einer vorgegeben Wahrscheinlichkeit = Konfidenzniveau (1 α) enthält ( überdeckt ). Ist die Verteilung der verwendeten Stichprobenfunktion - hier der arithmetische Mittelwert - bekannt, so lassen sich die Grenzen von Konfidenzintervallen berechnen. Aus der t-verteilung der standardisierten Zufallsgröße X µ S n erhält man z.b. für eine Überdeckungswahrscheinlichkeit von 0.95 = 1 α (α = 0.5 für Nichtüberdeckung ) folgende Vorschrift zur Berechnung eines konkreten Konfidenzintervalles für den unbekannten Durchschnittswert µ der Körpergröße in der Grundgesamtheit: [ x t n 1,1 α 2 s n, x + t n 1,1 α 2 ] s n Dabei ist t n 1,1 α 2 das Quantil der t-verteilung mit n 1 Freiheitsgraden und Quantilsanteil (1 α/2). Für eine Überdeckungswahrscheinlichkeit von 95% und einen Stichprobenumfang n = 200 ergibt sich t 199,0.975 = 1.96 und also in Bsp. 4 mit x = und s = das konkrete Konfidenzintervall [ , ] = [142.7; 144.7]
10 Gesucht: Anteil p der PKW-Benutzer in der Grundgesamtheit (siehe Bsp. 3) Gegeben: Konkrete Stichprobe.: (x 1,..., x n ) Plausibel: Die relative Häufigkeit für das interessierende Ereignis (hier PKW ) f = h n als Schätzung für den Anteil (die Wahrscheinlichkeit) p in der Grundgesamtheit Wie gut ist diese Schätzung? Dazu: Math. Modell: Zufallsgröße X - hat Wert 1 falls PKW genannt wird und ist sonst 0 - also mit der unbekannten Verteilung mit P (X = 1) = p und P (X = 0) = (1 p) (X 1,..., X n ) mathematische Stichprobe (alle X i wie X verteilt) vom Umfang n Die Stichprobenfunktion H n = n i=1 X i n heißt Punktschätzung für p, h/n : konkrete Punktschätzung (! n i=1 x i liefert also die absolute Häufigkeit h) Wir wissen: H = n i=1 X i ist binomialverteilt und nach dem Zentralen Grenzwertsatz für große n näherungsweise normalverteilt. 10
11 Also: Weitergehende Untersuchung der Genauigkeit der Schätzung möglich. Z.B. kann die Wahrscheinlichkeit von Abweichungen der Schätzung vom zu schätzenden Anteilswertwert berechnet werden Klar ist, dass ein aus einer konkreten Stichprobe berechneter Anteilswert h/n den zu schätzenden Anteilswert p in der Grundgesamtheit nur sehr selten oder fast nie genau trifft. (i.a. ist also h/n p). Wieder Ausweg: Man betrachtet neben Punktschätzungen auch Intervallschätzungen Gleiches Konstruktionsprinzip: Für eine mathematische Stichprobe ist ein zufälliges Intervall anzugeben, dass den zu schätzenden Parameter - hier den Anteilswert p - mit einer vorgegeben Wahrscheinlichkeit = Konfidenzniveau (1 α) enthält ( überdeckt ). Ist die Verteilung der verwendeten Stichprobenfunktion - hier der absoluten Häufigkeit - bekannt, so lassen sich die Grenzen von Konfidenzintervallen berechnen. Für größere Stichproben (n > 30) erhält man aus der Normalverteilung z.b. für eine Überdeckungswahrscheinlichkeit von 0.95 = (1 α) (α = 0.5 für Nichtüberdeckung ) folgende Vorschrift zur Berechnung eines konkreten Konfidenzintervalles für den unbekannten Anteilswert p der PKW- Benutzer in der Grundgesamtheit: h n z 1 α 2 h n (1 h n ) n, h n + z 1 α 2 h n (1 h n ) n 11
12 Dabei ist z 1 α 2 das Quantil der standardisierten Normalverteilung mit Quantilsanteil (1 α/2). Für eine Überdeckungswahrscheinlichkeit von 95% und einen Stichprobenumfang n = 100 ergibt sich z = 1.96 und also in Bsp. 3 mit h/n = 53/100 = 0.53 das konkrete Konfidenzintervall [ ] 0.53(1 0.53) 0.53(1 0.53) , = [43.6%; 62.4%] Hinweis: Für die Interpretation von Konfidenzintervallen gilt: Ein konkretes Konfidenzintervall enthält den zu schätzenden Parameter oder es enthält ihn nicht. Die Konstruktion des Konfidenzintervalles sichert aber, dass bei häufiger Wiederholung des Ziehungsvorganges die berechneten Konfidenzintervalle den zu schätzenden Parameter in ca. (1 α)% der Fälle enthalten! 12
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)
9. Schätzen und Testen bei unbekannter Varianz
9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,
Statistik II für Betriebswirte Vorlesung 2
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Statistik im Bachelor-Studium der BWL und VWL
Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,
Business Value Launch 2006
Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung
Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung
Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)
Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!
Statistik im Versicherungs- und Finanzwesen
Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel
Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment
Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten
Teil I Beschreibende Statistik 29
Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................
2. Korrelation, lineare Regression und multiple Regression
multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig
9. StatistischeTests. 9.1 Konzeption
9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen
Stichprobenauslegung. für stetige und binäre Datentypen
Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
$ % + 0 sonst. " p für X =1 $
31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1
1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen
Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau
1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik
Statistik I für Betriebswirte Vorlesung 5
Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition
Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10
Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/
12. Vergleich mehrerer Stichproben
12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich
Statistik II für Betriebswirte Vorlesung 3
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,
1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:
. Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial
90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft
Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich
Grundlagen der Inferenzstatistik
Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,
Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und
Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de
Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:
Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...
q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678
Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten
Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede
3. Der t-test. Der t-test
Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene
Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500
Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
13.5 Der zentrale Grenzwertsatz
13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle
E ektgrößen Metaanalysen. Zusammenhänge und Unterschiede quantifizieren E ektgrößen
DAS THEMA: EFFEKTGRÖßEN UND METAANALYSE E ektgrößen Metaanalysen Zusammenhänge und Unterschiede quantifizieren E ektgrößen Was ist ein E ekt? Was sind E ektgrößen? Berechnung von E ektgrößen Interpretation
Statistische Auswertung der Daten von Blatt 13
Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung
Ein möglicher Unterrichtsgang
Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige
Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):
Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung
Konfidenzintervalle so einfach wie möglich erklärt
Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, Philosophische Fakultät, Seminar für Sozialwissenschaften Vorbemerkung: Es handelt sich um die Anfang
Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme
TU DRESDEN Institut für Verfahrenstechnik & Umwelttechnik Professur für Verfahrensautomatisierung Prof. Dr.-Ing. habil. Klöden Arbeitsblätter zum Fach Sicherheitstechnik Abschnitt: Zuverlässigkeit technischer
1 Statistische Grundlagen
Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.
RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG
Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie
Einführung in Statistik und Messwertanalyse für Physiker
Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1
Inhaltsverzeichnis. Teil I Beschreibende Statistik 17
Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
Die Binomialverteilung
Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel
Stochastische Eingangsprüfung, 17.05.2008
Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)
Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min
Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe
Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik
Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche
Einfache statistische Testverfahren
Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B
Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben
Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE
Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18
Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.
XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------
Varianzanalyse ANOVA
Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für
Monte-Carlo Simulation
Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung
DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007
Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer
Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse
Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung
1. Einfuhrung zur Statistik
Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Weiterbildungskurs Stochastik
Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen
Einführung in die Geostatistik (2) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.
Einführung in die Geostatistik () Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de Gliederung Allgemeine Statistik. Deskriptive Statistik. Wahrscheinlichkeitstheorie.3
1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) :
Prof. Dr. E. Mammen SEMINAR FÜR STATISTIK Prof. Dr. H. Stenger UNIVERSITÄT MANNHEIM Vierstündige Klausur in statistischer Methodenlehre 9. Juli 003; 8:30 - :30 Zulässige Hilfsmittel: keine, insbesondere
Wolfgang Trutschnig. Salzburg, 2014-05-08. FB Mathematik Universität Salzburg www.trutschnig.net
Auffrischungskurs Angewandte Statistik/Datenanalyse (Interne Weiterbildung FOR SS14-08) Block 1: Deskriptive Statistik, Wiederholung grundlegender Konzepte, R FB Mathematik Universität Salzburg www.trutschnig.net
6 Mehrstufige zufällige Vorgänge Lösungshinweise
6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.
Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.
1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
Studiendesign/ Evaluierungsdesign
Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung
Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.
Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging
Einführung in die Methoden der empirischen Sozialforschung
Einführung in die Methoden der empirischen Sozialforschung Überblick Population - nauswahl Definition der Begriffe Quantitative Studien: Ziehen von n (= Sampling) Qualitative Studien: Ziehen von n (= Sampling)
Klausur: Einführung in die Statistik
1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression
Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen
Einführung in die Statistik mit EXCEL und SPSS
Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen
Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall
Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer
Fotios Filis. Monte-Carlo-Simulation
Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse
Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8
1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen
Stochastik Abitur 2009 Stochastik
Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare
Florian Frötscher und Demet Özçetin
Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60
Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller
Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell
Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?
Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv
Zufallsstichproben. Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/21
Zufallsstichproben Zufallsstichprobe Varianz der Grundgesamtheit Streuung des Mittelwertes Stichprobengröße Konfidenzintervall Ziehen einer einfachen Zufallsstichprobe Geschichtete Zufallsstichproben Klumpenstichprobe
Nachholklausur STATISTIK II
Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine
27. Statistische Tests für Parameter. Was ist ein statistischer Test?
27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben
- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch
1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt
Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)
2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines
P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)
Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.
Statistiktraining im Qualitätsmanagement
Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel
Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er
Grundlagen Wahrscheinlichkeitsrechnung, Statistik
Grundlagen Wahrscheinlichkeitsrechnung, Statistik Was ist Statistik? Wahrscheinlichkeit Grundgesamtheit und Verteilung Verteilung von Stichprobenparametern und Intervallschätzung Werkzeug Varianzanalyse
Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten
Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M
Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests
Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?
Teil II: Einführung in die Statistik
Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu