Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment"

Transkript

1 Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten getroffen. Wir können somit Daten ganz allgemein als ein Material verstehen, auf dessen Grundlage Informationen gewonnen und Schlußfolgerungen gezogen werden. Wie kommt man zu Daten? 1. Sie sind bereits da aufgezeichnet in administrativen Registern, gespeichert auf Bändern und anderen Datenträgern; Vorliegen von Krankengeschichten, Krankheitsregistern etc. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment Doch reicht es nicht aus, schlechthin Daten über einen Gegenstand zu sammeln, sondern man muss objektiv beurteilen können, welche Schlüsse auf Basis der vorliegenden Daten überhaupt gerechtfertigt sind STATISTIK Die Aufgabe der Statistik besteht darin die relevanten Informationen aus der Fülle von Daten zu extrahieren. Proportional zum Wachstum der Datenmengen hat auch die Anwendung statistischer Methoden in letzter Zeit enorm zugenommen. Egal ob ein Manager Erfolgsergebnisse seiner Firma präsentiert oder ein Wissenschaftler Arbeitshypothesen verifiziert in beiden Fällen werden statistische Methoden zu Hilfe genommen. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 1

2 Statistik Statistik ist eine Zusammenfassung von Methoden, die uns erlauben, im Fall von Ungewissheit vernünftige und optimale Entscheidungen zu treffen, (Abraham Wald ) Statistik ist eine Sammlung von Methoden zur Erhebung und Analyse von Daten. Statistische Methoden werden beim - Sammeln - Beschreiben - Organisieren - Analysieren und beim - Interpretieren verwendet. Voraussetzung für das Erarbeiten von Problemlösungen ist die Beachtung bestimmter Kriterien bei der Planung, Gewinnung, Verarbeitung, Analyse und Interpretation der Daten. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 2

3 Biostatistik Unter dem Begriff Biostatistik werden die vielfältigen Anwendungen der mathematischen Statistik in den biologischen und ihnen verwandten Wissenschaften zusammengefaßt Man spricht auch von med. Statistik oder Biometrie. Beobachtungen an lebenden Objekten liefern so gut wie nie die gleichen Ergebnisse, wenn man sie wiederholt d.h. jedes Resultat ist mit einer Variabilität verbunden. Man spricht von statistischer oder stochastischer Schwankung, Variabilität und Streuung. - biologische Variabilität - Messungenauigkeit (technisch, ablesebedingt) Beispiele: Blutdruck bei einer Person, Personen; Rauchen - Lungenkrebs Damit sind Voraussagen oder allgemein Entscheidungen niemals mit Gewißheit zu treffen, sondern stets mit einem gewissen Risiko behaftet - Wahrscheinlichkeitsaussagen. Die Anwendung statistischer Methoden erlaubt aber trotz dieser "Unsicherheit" optimale und vernünftige Entscheidungen zu treffen. Aufgabe ist es, stets vorhandene zufällige Einflüsse von systematischen Effekten zu trennen - Herausfinden von Regelmäßigkeiten oder Gesetzmäßigkeiten in Daten, die vom Zufall beeinflusst werden. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 3

4 Projektdurchführung 1. Systemanalyse -Formulierung des Problems - Ziel der Studie festlegen, - relevante Variablen und Einflußgrößen bestimmen - Istzustand erheben (Literaturrecherche) - Lösungsvariante 2. Untersuchungsplanung - Analyse und Abstraktion - (statistische) Modellbildung - Versuchs- und Erhebungsplanung - Pilotstudie 3. Durchführung - Fragenkatalog, Protokoll - Randbedingungen, Aufwand - Daten sammeln und überprüfen 4. Datenanalyse - grafische Darstellungen und Maßzahlen - statistische Auswertungen (Regression etc.) - Präsentation der Ergebnisse 5. Entscheidungen und Schlußfolgerungen - Diskussion der neuen Informationen - Validität der Entscheidungen - neue Fragen Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 4

5 Statistische Datenanalyse In diesem Punkt läßt sich die Statistik sowohl bezüglich Zielsetzung als auch Methodik in 3 Bereiche gliedern: Deskriptive Statistik Um aus einer großen Menge von Daten etwas herauslesen zu können, bedarf es einer zusammenfassenden, übersichtlichen Darstellung und Präsentation derselben in Form weniger und einfacher Angaben, die man mit einem Blick oder in wenigen Schritten erfassen kann. Das Ergebnis ist eine Statistik. Aufgabe der deskriptiven (beschreibenden) Statistik ist es, Methoden zur Aufbereitung und Darstellung von Daten zur Verfügung zu stellen. Inferenz-Statistik (analytische, schließende Statistik) Selten hat die Gewinnung und Verarbeitung von Daten nur zum Ziel, einen Istzustand, d.h. einen abgeschlossenen Sachverhalt wiederzugeben. Die analytische Statistik schließt anhand geeigneter Beobachtungsdaten (=Zufallsstichproben) auf allgemeine Gesetzmäßigkeiten (welche Aussagen lassen zufallsbehaftete Stichproben über zugrunde liegende Grundgesamtheiten oder Populationen zu?) - Wahrscheinlichkeitstheorie. Wichtige Aufgaben sind u.a.: - Einflussgrößenermittlung - Zusammenhangsanalysen - Testen von Hypothesen Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 5

6 Explorative Statistik Die explorative Statistik unterwirft Daten, über deren Gesetzmäßigkeiten noch wenig bekannt ist, verschiedenen Verfahren, um Zusammenhänge und Strukturen zu finden - die vom betreffenden Fachgebiet her verstehbar, erklärbar, plausibel sein könnten - und so eventuell zur Vermutung oder Entdeckung allgemeiner Gesetzmäßigkeiten führen. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 6

7 Grundbegriffe Merkmal: Gegenstand einer statistischen Analyse sind Beobachtungseinheiten, die durch Merkmale oder Variable charakterisiert sind. Eine statistische Untersuchung ist nicht in der Lage, die untersuchten Personen oder Objekte in ihrer "Gesamtheit" zu erfassen, sondern beschränkt sich auf einzelne Merkmale wie beispielsweise Symptome und Laborwerte eines Patienten. (1) Ermittlung jener Merkmale, von denen man annimmt, dass sie zur Lösung der Problemstellung beitragen (2) Geforderte Merkmalseigenschaften: Objektivität Zuverlässigkeit Gültigkeit Objektivität: Das Merkmal muss unabhängig von der messenden/beurteilenden Person sein. Zuverlässigkeit (reliability): Die Erfassungsmethode der Daten soll zuverlässig sein, dass unter gleichen Randbedingungen jeweils das gleiche erfaßt wird. Gültigkeit (validity): Ein Beobachtungswert ist dann gültig, wenn er den interessierenden Sachverhalt auch wirklich erfaßt. Beobachtungseinheit - Merkmalsträger Das Objekt der Untersuchung wird als Beobachtungseinheit bezeichnet (Patienten, Probanden, Tiere, biologisches Material: z.b. Urin, Blut). Merkmalsausprägungen: Werte, die ein Merkmal annehmen kann, heißen Ausprägungen des Merkmals. Unter Merkmalsausprägungen versteht man die beobachteten Werte wie z.b. Art der Operation, Name und Dosierung der Medikamente, die Höhe der Laborwerte usw. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 7

8 Merkmalstypen - Datenskalen: Die Unterscheidung von Merkmalstypen (Messniveaus) ist bedeutsam, da die Anwendbarkeit bestimmter biometrischer Verfahren vom Typ des untersuchten Merkmals abhängt. (1) Nominalskala Zwischen den einzelnen Merkmalsausprägungen sind weder eine Rangfolge noch ein Abstand definiert. Die Ausprägungen zweier Untersuchungseinheiten werden entweder als identisch oder als nicht identisch eingestuft bzw. klassifiziert (qualitative Merkmale). Beispiele: Farbe, Blutgruppe, Autonummern, Geschlecht, Operationsart (2) Ordinalskala Zwischen den Merkmalsausprägungen besteht eine Rangordnung, die durch die Relationen "<, =, >" zum Ausdruck gebracht wird. Es ist jedoch kein Abstand zwischen jeweils zwei Ausprägungen des Merkmals definiert. Beispiele: Noten, Nebenwirkungen eines Medikaments, Karnofsky-Index (3) metrische Skalen Es sind sowohl Rangfolge als auch Abstand zwischen den Merkmalsausprägungen definiert. Bei den metrischen Skalen unterscheidet man noch zwischen Intervallskala: freie Wahl der Maßeinheit und des Nullpunktes. Beispiele: Temperaturskala, Dioptrien Verhältnisskala: absoluter Nullpunkt Beispiele: Gewicht, Länge, Alter Zu trennen ist bei metrischskalierten Merkmalen noch zwischen diskreten (Zählungen) und stetigen Größen (Messungen). Im letzteren Fall kann eine Ausprägung jeden beliebigen Wert, möglicherweise beschränkt auf ein vorgegebenes Intervall annehmen, während im ersten Fall nur eine fest vorgegebene Zahl von Werten möglich ist. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 8

9 Grundgesamtheit - Stichprobe Der Begriff der Population ist eng mit der Definition des Merkmalsbegriffs verbunden. Die Gesamtheit aller gleichartigen statistischen Objekte, die hinsichtlich eines Merkmals untersucht werden, fasst man in einer Menge zusammen, die als Grundgesamtheit bzw. Population bezeichnet wird. Mit der Durchführung einer Untersuchung möchte man Aufschlüsse über diese Population gewinnen. Nur in seltenen Fällen wie z.b. bei einer Volkszählung wird die interessierende Grundgesamtheit vollständig erfasst. Man spricht von Voll- oder Totalerhebung. In der Regel werden die Daten anhand von Stichproben erhoben. Das Ziel dieser Teilerhebung ist es aber weiterhin, Aufschlüsse über die gesamte Population zu erhalten. Die Auswahl der Stichprobe muss daher repräsentativ erfolgen, d.h. die Stichprobe muss die Verteilung der Untersuchungsmerkmale in der Grundgesamtheit getreu widerspiegeln. Die Zufalls- oder Random- Verfahren basieren auf dem Gleichheitsprinzip, d.h. für jedes Element besteht die gleiche Chance, gezogen zu werden. Wiss. Grundlagen und allgem. Fähigkeiten I Univ.-Prof. DI Dr. Andrea Berghold 9

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Untersuchungsdesign: 23.11.05

Untersuchungsdesign: 23.11.05 Untersuchungsdesign: 23.11.05 Seite 1! Ablauf Untersuchungsdesign! Beispiel! Kleine Übung! Diskussion zur Vorbereitung von Übung 2 Während Sie das Untersuchungsdesign festlegen, planen und bestimmen Sie:

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Sozialwissenschaftliche Methoden I

Sozialwissenschaftliche Methoden I Sozialwissenschaftliche Methoden I 4. Grundlagen der empirischen Sozialforschung Wintersemester 2008/09 Jr.-Prof. Dr. Thomas Behrends Internationales Institut für Management ABWL, insb. Personal und Organisation

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

6. Sitzung. Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden

6. Sitzung. Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden 6. Sitzung Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden Inhalt der heutigen Veranstaltung 1. Metatheorien/Paradigmen 2. Die so genannte Drei-Schulen

Mehr

Roland Bässler. Research & Consultinq

Roland Bässler. Research & Consultinq J 3 z = Roland Bässler Research & Consultinq Roland Bässler QUANTITATIVE FORSCHUNGSMETHODEN Ein Leitfaden zur Planung und Durchführung quantitativer empirischer Forschungsarbeiten (2. überarb. Auflage)

Mehr

Datenerfassung und Datenmanagement

Datenerfassung und Datenmanagement Datenerfassung und Datenmanagement Statistische Auswertungssysteme sind heute eine aus der angewandten Statistik nicht mehr wegzudenkende Hilfe. Dies gilt insbesondere für folgende Aufgabenbereiche: -

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Inhaltsverzeichnis Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung:

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009 Tipps und Tricks bei Gästebefragungen Dr. Tobias Luthe Projektleiter ITF und Dozent für Nachhaltigkeit und Tourismus Tourismus Trend Forum Graubünden 2009 Seite 1 Struktur der Präsentation Bedeutung der

Mehr

Empirische Methoden PM-EMP-P12-040828

Empirische Methoden PM-EMP-P12-040828 Studiengang Pflegemanagement Fach Empirische Methoden Art der Leistung Prüfungsleistung Klausur-Knz. Datum 28.08.2004 Die Klausur besteht aus 5 Aufgaben, von denen alle zu lösen sind. Ihnen stehen 90 Minuten

Mehr

Wissenschaftliche Grundlagen und allgemeine Fähigkeiten I

Wissenschaftliche Grundlagen und allgemeine Fähigkeiten I Wissenschaftliche Grundlagen und allgemeine Fähigkeiten I Statistische Datenanalyse am PC Univ.-Prof. DI Dr. Andrea Berghold Institut für medizinische Informatik, Statistik und Dokumentation andrea.berghold@medunigraz.at

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung. Prof. Dr. W. Laufner. Beschreibende Statistik. Wozu statistische Methoden

Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung. Prof. Dr. W. Laufner. Beschreibende Statistik. Wozu statistische Methoden Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung 1 Modul 02: unübersichtliche, unstrukturierte große Datenmenge Wozu statistische Methoden Informationen, Erkenntnisse DV-gestützte Datenanalyse

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Inhaltsanalyse. Blockseminar: Methoden quantitativer Sozialforschung. Fachhochschule Fulda University of Applied Sciences. Dipl.-Päd.

Inhaltsanalyse. Blockseminar: Methoden quantitativer Sozialforschung. Fachhochschule Fulda University of Applied Sciences. Dipl.-Päd. Inhaltsanalyse Blockseminar: Methoden quantitativer Inhaltsanalyse Das Ziel der Inhaltsanalyse ist die systematische Erhebung und Auswertung von Texten, Bildern und Filmen, d.h. es handelt sich nicht ausschließlich

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Inhaltsverzeichnis Einfaktorielle Rangvarianzanalyse mit Messwiederholungen... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-3)... 3 Teil 1 -

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

BKK Bevölkerungsumfrage. BKK Bevölkerungsumfrage

BKK Bevölkerungsumfrage. BKK Bevölkerungsumfrage BKK Bevölkerungsumfrage Durchführung und Methodik In der Zeit vom 11. bis zum 1. November 009 wurde von KantarHealth im Auftrag des BKK Bundesverbandes eine repräsentative Untersuchung zu unterschiedlichen

Mehr

Empirische Sozialforschung

Empirische Sozialforschung Andreas Diekmann Empirische Sozialforschung Grundlagen, Methoden, Anwendungen ro ro ro rowohlts enzyklopädie Inhalt Vorwort 11 i. Grundlagen 17 I. Einführung: Ziele und Anwendungen 17 1. Methoden Vielfalt

Mehr

Schneeballverfahren 25.02.2005 Autor: Daniel Dupart

Schneeballverfahren 25.02.2005 Autor: Daniel Dupart Inhaltsverzeichnis Schneeballverfahren 25.02.2005 Autor: Daniel Dupart Inhaltsverzeichnis... - 1 - Was ist das Schneeballverfahren... - 1 - Auswahlverfahren... - 1 - Befragung... - 2 - Quotenverfahren...

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik 1 Überblick Das Gesamtbild (Ineichen & Stocker, 1996) 1. Ziehen einer Stichprobe Grundgesamtheit 2. Aufbereiten der Stichprobe (deskriptive Statistik) 3. Rückschluss

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

8. Grundlagen der empirischen Sozialforschung

8. Grundlagen der empirischen Sozialforschung Einführung in das Studium der Management- und Wirtschaftswissenschaften WS 2013/14 8. Grundlagen der empirischen Sozialforschung Internationales Institut für Management und ökonomische Bildung Professur

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

28 Fragen zur medizinischen Dokumentation

28 Fragen zur medizinischen Dokumentation 01. Wie nennt man die Dokumentationsart, welche der systematischen, patientenübergreifenden Auswertung von Krankheitsverläufen dient und in der Regel zur Beantwortung einer klinisch-wissenschaftlichen

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

5. Wie wird im Experiment die interessierende, vom Versuchsleiter gemessene Variable bezeichnet?

5. Wie wird im Experiment die interessierende, vom Versuchsleiter gemessene Variable bezeichnet? Bei jeder Frage ist mindestens eine Antwort anzukreuzen. Es können mehrere Antwortalternativen richtig sein. Die Frage gilt nur dann als richtig beantwortet, wenn alle richtigen Alternativen angekreuzt

Mehr

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati René Descartes Meditationen Erste Untersuchung INHALTSVERZEICHNIS 1 EINLEITUNG 3 1.1 PROBLEMSTELLUNG 3 1.2 ZIELSETZUNG

Mehr

Statistik. Herzlich willkommen zur Vorlesung. Grundlagen Häufigkeiten Lagemaße Streuung Inferenzstatistik Kreuztabellen Gruppenunterschiede

Statistik. Herzlich willkommen zur Vorlesung. Grundlagen Häufigkeiten Lagemaße Streuung Inferenzstatistik Kreuztabellen Gruppenunterschiede FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 2 Vorlesung Statistik für wen? BA Social Science/BA Sozialwissenschaften (Pflicht)

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II)

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II) Prinzipien der Fragebogenkonstruktion Seminar: Patricia Lugert, Marcel Götze 17.04.2012 Medien-Bildung-Räume Inhalt Fragebogenerstellung Grundlagen Arten von Fragen Grundlegende Begriffe: Merkmal, Variable,

Mehr

Umfrage 2015. BKK Umfrage 2015. Themen: Chronisch Kranke Krankenhausversorgung. Erhebungszeitraum: Juli 2015

Umfrage 2015. BKK Umfrage 2015. Themen: Chronisch Kranke Krankenhausversorgung. Erhebungszeitraum: Juli 2015 BKK Umfrage 2015 Themen: nhausversorgung Erhebungszeitraum: Juli 2015 Durchführung und Methodik Am 30.06. und 01.07.2015 wurde von Kantar Health im Auftrag des BKK Dachverbandes eine repräsentative Untersuchung

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

CAPTain wird Ihnen präsentiert von

CAPTain wird Ihnen präsentiert von CAPTain wird Ihnen präsentiert von Gesellschaften für Personalund Organisationsentwicklung Hamburg München Wien Moskau CAPTain Softwarebasierte Potenzialanalyse für Personalauswahl und -entwicklung Wozu

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern gefördert durch die Indikatoren von Datenqualität Michael Nonnemacher

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler Zusatzmaterialien zum UTB-Band Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler bereitgestellt über www.utb-shop.de/9783825238612 Das Buch vermittelt

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

Software-Engineering

Software-Engineering FH Wedel Prof. Dr. Sebastian Iwanowski SWE3 Folie 1 Software-Engineering Sebastian Iwanowski FH Wedel Kapitel 3: Softwareplanung FH Wedel Prof. Dr. Sebastian Iwanowski SWE3 Folie 2 Problem und Lösung Aufnehmen

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Marketing. Kapitel 3. Marketinginformationen

Marketing. Kapitel 3. Marketinginformationen Fakultät Informatik, Professur Wirtschaftsinformatik, insb. Multimedia Marketing Marketing Kapitel 3 Marketinginformationen Inhalte Kapitel 3 3 Marketinginformationen 3.2 Absatzprognosen Lernziele: Aufgaben

Mehr

Formulierungshilfen für das wissenschaftliche Schreiben

Formulierungshilfen für das wissenschaftliche Schreiben Formulierungshilfen für das wissenschaftliche Schreiben 1. Einleitendes Kapitel 1.1.1 Einen Text einleiten und zum Thema hinführen In der vorliegenden Arbeit geht es um... Schwerpunkt dieser Arbeit ist...

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Datenqualität und Datensicherheit

Datenqualität und Datensicherheit Datenqualität und Datensicherheit Thomas Wrba Medizinischen Universität Wien Zentrum für Medizinische Statistik, Informatik und Intelligente Systeme (CeMSIIS) 05.05.2014 1 Einleitung (1) Medizinischer

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

5. Untersuchungsdesigns

5. Untersuchungsdesigns Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 5. Untersuchungsdesigns Experimente als Instrument zur Prüfung von Kausalität Kohortenstudien, Fall-Kontroll-Studien,

Mehr

Variablen und Skalenniveaus

Variablen und Skalenniveaus Analytics Grundlagen Variablen und Skalenniveaus : Photo Credit: Unsplash, Roman Mager Statistik Was ist eigentlich eine Variable? Variable In der Datenanalyse wird häufig die Bezeichnung Variable verwendet.

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr