Hochschule Rhein-Main. Sommersemester 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hochschule Rhein-Main. Sommersemester 2015"

Transkript

1 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015

2 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten Preis (dem Strike) K zu kaufen oder zu verkaufen. Optionen gibt es in zwei Richtungen : Call Option: Die Option, das Produkt zu kaufen Put Option: Die Option, das Produkt zu verkaufen Es gibt drei Grtypen einfachen Optionen: Europäisch: Kann nur an einem zukünftigen Datum ausgeübt werden; Amerikanisch: Kann zu jedem Zeitpunkt zwischen Vertragsabschluss Verfallstag ausgeübt werden; Bermudan: Kann zu bestimmten vertraglich festgelegten Terminen ausgeübt werden. Die Auszahlung des Halters einer Kaufoption ist: max(s(t ) K, 0). Die Auszahlung des Halters einer Verkaufsoption ist: max(k S(T ), 0).

3 Einfaches Beispiel n Gegeben sei eine Aktie, die heute den Kurs 10 Euro hat. Angenommen, wir wüssten, dass der Aktienpreis in einem Jahr nur den Wert 8 Euro oder 12,50 Euro annehmen kann. Eine Händlerin möchte heute die Option verkaufen, die Aktie in einem Jahr für 9 Euro zu kaufen. Was muss sie wissen, um den fairen Wert V der Option zu bestimmen? Bei einem Aktienkurs 12,50 Euro muss die Händlerin 3,50 Euro auszahlen. Bei einem Kurs 8 Euro verfällt die Option wertlos. Der Erwartungswert der Auszahlung der Option in einem Jahr ist also E = p 3,5 + (1 p) 0, wobei p die Wahrscheinlichkeit für einen Anstieg auf 12,50 Euro ist. Was ist p?!

4 Binomialbaum n S 0 = 10 V =? S1 u = 12,5 P1 u = 3,5 S1 d = 8 P d 1 = 0

5 Einfaches Beispiel, Fortsetzung n Idee: Die Händlerin kauft heute so viele Aktien, dass das Portfolio aus Aktien verkaufter Option in einem Jahr immer denselben Wert hat. Der Wert des Portfolios heute ist also eindeutig bestimmt. Da wir den heutigen Wert der Aktie kennen, kennen wir dann auch den Wert der Option. Angenommen, die Händlerin kauft heute Aktien verkauft die Option. Bestimme : 12,5 3,5 = 8 = 7 9.

6 Einfaches Beispiel, Fortsetzung n Das Portfolio hat in einem Jahr also sicher den Wert 8 7/9 = 56/9. Eine einjährige sichere Geldanlage 1 Euro erwirtschaftet den risikolosen Zinssatz r, zahlt also 1 + r zurück. Umgekehrt ist ein sicherer Euro in einem Jahr heute 1/(1 + r) Euro wert. Der Portfoliowert heute ist also 56/(9 (1 + r)). Ist etwa r = 1%, so ist der heutige Portfoliowert 56/(9 1, 01) = 6,16 Euro. Der Wert der Option alleine ist also gegeben durch 7/9 10 6,16 = 1,62 Euro. Wo ist die Wahrscheinlichkeit p abgeblieben?!

7 Voraussetzungen n Aktien andere lassen sich in beliebigen Stückzahlen (auch in Bruchteilen) zum selben Preis kaufen verkaufen Es gibt einen risikolosen Zinssatz r, zu dem alle Marktteilnehmer Geld aus- verleihen können Der Handel findet nur zu zwei Terminen statt, in t = 0 t = 1 Der zukünftige Aktienkurs kann nur zwei Werte annehmen Es gibt keine Arbitragemöglichkeiten

8 n In t = 0 sei der Aktienkurs durch S 0 gegeben. In t = 1 kann der Aktienkurs S u 1 = us 0 oder S d 1 = ds 0 sein, d < 1 + r < u. Sei P u bzw. P d die Auszahlung der Option in t = 1. Gesucht wird der Wert V der Option. Bestimme so, dass S u 1 P u = S d 1 P d, also Für den Wert des Portfolios heute gilt da = P u P d S 0 (u d). (1) ds 0 P d = S 0 V. 1 + r Satz. Der heutige Wert der Option für den Inhaber der Option ist gegeben durch ( V = S 0 1 d ) + P d ( 1 + r 1 + r = S 0 1 u ) + P u 1 + r 1 + r. (2)

9 Beobachtung I n Setzen wir Gleichung (1) in Gleichung (2) ein (s. nächste Folie), so erhalten wir durch Umstellen: V = pp u + (1 p)p d, 1 + r (3) p = 1 + r d u d. (4) Wegen der geforderten Voraussetzungen an u d gilt 0 < p < 1. So lässt p sich als Wahrscheinlichkeit interpretieren. Mit dieser Interpretation ist V dann tatsächlich der abdiskontierte Erwartungswert der Auszahlung der Option. Das zu p gehörige Wahrscheinlichkeitsmaß heißt risikoneutrales Maß. Der Wert der Option hängt nur der Schwankungsbreite (ausgedrückt durch u d) dem risikolosen Zinssatz ab.

10 Zwischenrechnung n Setzen wir (1) in (2) ein, so erhalten wir V = P u P d ( S 0 (u d) S 0 1 d ) + P d 1 + r 1 + r = P u P d 1 + r d + u d 1 + r = 1 ( 1 + r d 1 + r u d = r p = (1 + r d)/(u d). ( pp u + (1 p)p d), (u d)p d (1 + r)(u d) P u + u d + d 1 r u d P d )

11 Beobachtung II n Interpretiert man u 1 d 1 als mögliche Renditen des Aktienportfolios, so ergibt sich als erwartete Rendite unter dem risikoneutralen Maß Q ( ) R = E Q S1 S 0 S 0 = p(u 1) + (1 p)(d 1) = 1 + r d u d (u 1) + u 1 r u d (d 1) = 1 + r u(d 1) d(u 1) (u d) + u d u d ud u du + d = 1 + r + u d = r. Das risikoneutrale Maß lässt sich also als das Maß charakterisieren, unter dem die erwartete Rendite des Aktienportfolios der risikolosen Rendite entspricht (daher auch der Name).

12 Die Rolle der Voraussetzungen n Angenommen, die Händlerin in unserem Beispiel findet für die Aktienoption einen Käufer für 1,65 Euro. Sie verkauft eine Million Optionen für 1,65 Mio Euro Sie leiht sich 6,13 Mio Euro (zu 1%), um sich ( der Prämie) ,78 Aktien zu 10 Euro zu kaufen In einem Jahr hat ihr Portfolio garantiert den Wert 6,22 Mio Euro Sie muss aber nur 6,19 Mio zurückzahlen, hat also Euro risikolosen Gewinn. Analog wird sie massiv Optionen kaufen Aktien leer verkaufen, wenn sie einen Verkäufer findet, der die Option unter 1,62 Euro verkauft.

13 n n Handel der Aktie ist nun an Terminen möglich: t i = t 0 + i δ, i = 0,..., n, n 1. In t i hat die Aktie den Kurs S i, der pro Zeitschritt um die Faktoren u bzw. d steigen bzw. sinken kann, 0 < d < 1 + r, u = 1/d (da wird der Baum rekombinierend). Die Zinsrate r ist dieselbe für alle n. Wir schreiben S k,l i = u k d l S 0 = u k l S 0 k = Anzahl der Schritte nach oben, l = Anzahl der Schritte nach unten, k + l = i. Jede Verzweigung wird so behandelt wie im Einperiodenfall.

14 im n-nmodell n Satz. Gegeben sei ein Derivat auf eine Aktie, das nach n n in t n das Auszahlungsprofil Pn k,l habe, wobei k bzw. l die Anzahl der Schritte nach oben bzw. unten beschreibt, k + l = n. Definiere p wie in (4), also p = 1 + r d u d. Dann gilt unter den obigen Voraussetzungen für den Wert V des Derivates in t 0 = 0: V = 1 (1 + r) n n j=0 ( n j ) p j (1 p) n j P j,n j n. Beweis durch vollständige Induktion. Für n = 1 ist der Satz bereits bewiesen.

15 n im n-nmodell, Fortsetzung Sei n > 1, die Aussage richtig für n 1. Definiere für k + l = n 1, k = 0,..., n 1 das Auszahlungsprofil P k,l n 1 := r k+1,l (ppn + (1 p)pn k,l+1 ). Ein Derivat Laufzeit t n 1 Auszahlungsprofil P k,l n 1 hat per Induktion den Wert V n 1 = = = = = 1 (1 + r) n 1 1 (1 + r) n 1 (1 + r) n 1 (1 + r) n 1 (1 + r) n n 1 ( n 1 ) p j (1 p) n 1 j P j,n j 1 n 1 j j=0 n 1 ( n 1 ) p j (1 p) n 1 j ( ppn j+1,n 1 j j j=0 n ( n 1 ) n 1 ( n 1 ) p j (1 p) n j Pn j,n j + j 1 j j=1 j=0 n 1 ( n ) P n n,0 + p j (1 p) n j Pn j,n j + (1 p) n P 0,n n j j=1 n ( n ) p j (1 p) n j Pn j,n j. j j=0 + (1 p)pn j,n j ) p j (1 p) n j P j,n j n

16 Schwächen des s n Die Kauf- Verkaufpreise n sind unterschiedlich. Je illiquider ein Instrument, desto höher ist diese sogenannte Geld-Brief-Spanne (Bid/Ask Spread). Je kleiner die Kapitalisierung einer Firma, desto stärker bewegt man durch einen Kauf oder Verkauf selbst den Marktpreis. Leerverkäufe sind für viele Aktien in der Praxis nicht möglich, in einigen Jurisdiktionen sogar verboten. Die Zinssätze für das Aus- Verleihen Geld unterscheiden sich erheblich; außerdem sind sie für jeden Marktteilnehmer seiner Kreditqualität abhängig. Die Annahme diskreter Handelszeitpunkte bekannter Kursstände ist eine grobe Vereinfachung. Das Portfolio, das zur Herleitung des Optionswertes gebildet wird, ist gar nicht risikolos, da der Verkäufer der Option seiner Zahlungsverpflichtung evtl. nicht nachkommt. Seit der Finanzkrise unterscheidet sich die Derivaten Krediten erheblich.

17 Verbesserungsmöglichkeiten n Für sehr große Unternehmen ist die Liquidität praktisch unbegrenzt, einzelne Teilnehmer können den Markt kaum bewegen, die Spreads sind klein können für solche Aktien ignoriert werden. Durch Schrumpfung der Zeitschritte auf infinitesimale Größe geht das in das über, das die Bewegung des Aktienkurses als einen stetigen stochastischen Prozess modelliert. Allerdings macht das BS- die unrealistische Annahme, dass die relativen Kursveränderungen normalverteilt sind. Dies lässt sich jedoch durch komplexere e beheben (stochastische Volatilität, lokale Volatilität, etc.). Das Problem des möglichen Ausfalls des Optionsverkäufers lässt sich in die BS-Formel einarbeiten (Credit Value Adjustment, CVA). Die Unterscheidung in der Derivaten Krediten lässt sich ebenfalls berücksichtigen (Basis-Spreads).

18 Wert eines Tagesgeldkontos n Gegeben ist ein Tagesgeldkonto, auf dem wir B 0 Euro anlegen. Der Zinssatz r sei für eine längere Laufzeit konstant festgelegt. Dann gilt für die Wertveränderung des Kontos über einen kleinen Zeitschritt t (z.b. ein Tag): B t = B t+ t B t = r B t t. Gehen wir zu infinitesimalen Zeitänderungen über, so erhalten wir die Differentialgleichung db t = r t B t dt dbt dt = r B t d ln(bt) dt = r. Durch Integration erhalten wir die eindeutige Lösung t ( t ) ln(b t) = r ds + c 0, also B t = B 0 exp r ds = B 0 e rt. 0 0 Anmerkung: B t ist eine stochastische Größe, was man ihr in der obigen Gleichung nicht ansieht. Wir haben die zufälligen Störungen in r versteckt. Wenn man r selbst als stochastische Variable modelliert, kommen sie zum Vorschein.

19 Aktienkurse n Bei konstantem r ist der Zuwachs B in logarithmischer Schreibweise also ln(b t) = ln(b 0 ) + rt. Ein Investor wird eine Aktie, die keine Dividende zahlt, nur kaufen, wenn er mindestens genauso große Zuwächse erwartet. Ist S t der Aktienpreis zum Zeitpunkt t, so rechnet der Investor also E(ln(S t)) = ln(s 0 ) + µt, µ r. Allerdings unterliegt der Aktienkurs zufälligen Störungen, die durch Nachrichten das Verhalten anderer Anleger verursacht werden. Wir würden erwarten, dass diese Störungen sich zu 0 teln, d.h. Erwartungswert 0 haben, vom Zeitraum abhängen, in dem sie auftreten. Gehen wir vielen kleinen, unabhängigen Störungen aus, so können wir nach dem zentralen Grenzwertsatz vermuten, dass im Zeitraum [t, t + t] eine Störung Z t auftritt, die N (0, σ 2 t)-verteilt ist. Störungen, die in zwei disjunkten Zeitintervallen stattfinden, nehmen wir ferner als unabhängig einander an: Für t 1 < t 2 t 3 < t 4 sind Z t2 Z t1 Z t4 Z t3 unabhängige Zufallsgrößen.

20 Aktienkurse n Wir modellieren also: ln(s t) = ln(s 0 ) + µt + Z t. In Analogie zum Wert des Tagesgeldkontos schreiben wir ds t S t = µ dt + dz t, ohne dz t schon genau zu definieren. Wir nehmen an, dass für die kleine Störung gilt: dz t N (0, σ 2 dt), d.h. die Varianz dz t ist proportional zur ablaufenden Zeit dt. Anmerkung: Die Annahme, dass die Störungen normalverteilt sind, ist umso unrealistischer, je kürzer die betrachteten Zeiträume werden. Der zentrale Grenzwertsatz wirkt also erst auf größeren Skalen. Deswegen muss das des Aktienkurses später angepasst werden. Der Kandidat fr die Störungsgröße Z ist die Brownsche Bewegung.

21 Die Brownsche Bewegung n Sei (Ω, P) ein Wahrscheinlichkeitsraum. Ein stochastischer Prozess ist eine Abbildung P : Ω [0, ) R. Wir können P interpretieren als Schar Zufallsvariablen t (P t : Ω R) oder als funktionenwertige Zufallsvariable ω (P (ω) : [0, ) R). Ein stochastischer Prozess W heißt Brownsche Bewegung oder Wiener-Prozess, falls gilt: 1 W 0 = 0 fast sicher (d.h. P({ω Ω : W 0 (ω) = 0}) = 1); 2 W hat stationäre Zuwächse: Für 0 s < t gilt W t W s N (0, t s); 3 W hat unabhängige Zuwächse: Für t 1 < t 2 t 3 < t 4 sind W t2 W t1 W t4 W t3 unabhängig; 4 W (ω) ist stetig.

22 n Im nehmen wir an, dass der Aktienkurs S(t) sich gemäß der stochastischen Differentialgleichung ds(t) = r S(t) dt + σ dw (t), S(0) = S 0 etnwickelt. Dabei ist r der risikolose Zins σ die Volatilität des Aktienkurses. Für den Preis einer Call- bzw. Put-Option gilt die Formel: C = S 0 Φ(d + ) K e rt Φ(d ) (5) P = S 0 Φ( d + ) + K e rt Φ( d ) (6) d ± = ln(s 0/K) + rt ± σ 2 t/2 σ. t

23 Abgleich Binomial- n Im ist die Varianz der Log-Returns ln(s(t)/s 0 ): V BS = σ 2 t. Im ist die Varianz der relativen Returns (S(t) S 0 )/S 0 (Aufgabe): V BN = (u (1 + r)) (1 + r d). Für kleine Zeitschritte t gilt ( ) ( ) ( S(t) S0 + (S(t) S 0 ) ln = ln = ln 1 + S(t) S ) 0 S(t) S 0. S 0 S 0 S 0 S 0 Unter der Annahme d = 1/u erhalten wir durch Gleichsetzen V BS = V BN (Aufgabe): u = q + q 2 1, q = 1 + r2 + σ 2 t 2(1 + r). (7)

24 n Die Annahmen, die dem zugre liegen, sind bekanntermaßen falsch. Die Störungen des Aktienpreisprozesses sind keineswegs log-normal verteilt (besonders für kurze Laufzeiten), s. nächste Folie. Dennoch wird die Formel als Quotierungsmechanismus benutzt: Zu gegebener Laufzeit T Strike K wird die Volatilität σ = σ(t, K) in den Markt gestellt. Mit der Formel (5) bzw. (6) lässt sich daraus der zu zahlende Marktpreis errechnen. Wäre das BS- korrekt, so müsste die Volatilität in Zeit Strike konstant sein. Die Tatsache, dass das nicht der Fall ist, zeigt, dass der Markt sich der Probleme diesen Annahmen bewusst ist.

25 n Abbildung : Verschiedene Verteilung des Logarithmus des Aktienkurses unter verschiedenen en.

26 Aufgaben n 1 Zeigen Sie: Die Varianz des Aktienkurses im ist 2 Beweisen Sie Gleichung (7). V = (u (1 + r)) (1 + r d). 3 Zeigen Sie, dass für das das die Put-Call-Parity erfüllt ist. 4 Zeigen Sie für eine normalverteilte Zufallsvariable X Erwartungswert E(X) Varianz V(X): E(e X ) = e E(X)+ 1 2 V(X).

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Optionspreistheorie Seminar Stochastische Unternehmensmodelle

Optionspreistheorie Seminar Stochastische Unternehmensmodelle Seminar Stochastische Unternehmensmodelle Lukasz Galecki Mathematisches Institut Universität zu Köln 1. Juni 2015 1 / 30 Inhaltsverzeichnis 1 Was ist eine Option? Definition einer Option Übersicht über

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Praktische Fragestellungen

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr.

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Optionen, Futures und andere Derivate 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner 11 Eigenschaften von Aktienoptionen

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN von HANS-JüRG BüTTLER In der vorliegenden Notiz werden zuerst Kennziffern des Wechselkurses, die für die lognormale Verteilung

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 von Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 4. Mai 2015 von Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14):

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): a. Bruttogewinn 760.000,- $ - Zinszahlungen 100.000,- $ (10 % auf 1 Mio. $) = EBT (Earnings before Taxes) 660.000,- $ - Steuern (35 % auf 660.000,-

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Optionspreistheorie von Black & Scholes

Optionspreistheorie von Black & Scholes Optionspreistheorie von Black & Scholes Vortrag zum Seminar Econophysics Maximilian Eichberger 20. November 2007 Zusammenfassung Nach einer kurzen Erläuterung zu den Grundbegriffen und -prinzipien des

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Betreuer: Lars Grüne. Dornbirn, 12. März 2015

Betreuer: Lars Grüne. Dornbirn, 12. März 2015 Betreuer: Lars Grüne Universität Bayreuth Dornbirn, 12. März 2015 Motivation Hedging im diskretisierten Black-Scholes-Modell: Portfolio (solid), Bank (dashed) 110 120 130 140 150 160 170 Portfolio (solid),

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte Private Banking Region Ost Risikomanagement und Ertragsverbesserung durch Termingeschäfte Ihre Ansprechpartner Deutsche Bank AG Betreuungscenter Derivate Region Ost Vermögensverwaltung Unter den Linden

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Die zufällige Irrfahrt einer Aktie

Die zufällige Irrfahrt einer Aktie Die zufällige Irrfahrt einer Aktie Teilnehmer: Daniela Garske (Herder-Oberschule) Joseph Jung (Pamina-Schulzentrum Herxheim) Martin Laudien (Herder-Oberschule) Kaina Schäfer (Herder-Oberschule) Anja Seegert

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Teilnehmer: Lukas Thum Yu Wang Luciana Plocki Johanna Ridder Felix Tschierschke Thu Hien Nguyen Janin Rekittke Johanna Lindberg Gruppenleiter:

Mehr

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner Optionsstrategien Die wichtigsten marktorientierte Strategien Jennifer Wießner Yetkin Uslu 12.05.2014 Gliederung Grundlagen Definition einer Option Begriffsbestimmungen Optionen Put Option Call Option

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn

Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn Bei Zinsbegrenzungsverträgen werdenzinsoptionen angewandt. Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn ein

Mehr

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten Anlagestrategien mit Hebelprodukten Hebelprodukte sind Derivate, die wie der Name schon beinhaltet gehebelt, also überproportional auf Veränderungen des zugrunde liegenden Wertes reagieren. Mit Hebelprodukten

Mehr

Optionen, Futures und andere Derivate

Optionen, Futures und andere Derivate John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 8., aktualisierte Auflage Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Higher Education München

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Materialien zur Vorlesung. Rendite und Risiko

Materialien zur Vorlesung. Rendite und Risiko Materialien zur Vorlesung Rendite und Risiko Burkhard Erke Quellen: Brealey/Myers, Kap. 7 Mai 2006 Lernziele Langfristige Rendite von Finanzanlagen: Empirie Aktienindizes Messung von Durchschnittsrenditen

Mehr

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de)

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabe 1 Betrachten Sie die Cashflows der Abbildung 1 (Auf- und Abwärtsbewegungen finden mit gleicher Wahrscheinlichkeit statt). 1 Nehmen Sie an, dass

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 27. April 2015 Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Optionspreisberechnung (naive Idee)

Optionspreisberechnung (naive Idee) Wiener-Prozess Itô-Formel Stochastische Differenzialgleichung Stochastische Prozesse Itô-Integration Binomialmodell Optionspreisberechnung (naive Idee) Preisberechnung einer Call-Option Put-Call-Parität

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

DIPLOMARBEIT. Vergleich numerischer Berechnungsmethoden für Optionswerte und Handelsstrategien

DIPLOMARBEIT. Vergleich numerischer Berechnungsmethoden für Optionswerte und Handelsstrategien UNIVERSITÄT BAYREUTH FAKULTÄT FÜR MATHEMATIK UND PHYSIK Lehrstuhl für Mathematik V DIPLOMARBEIT Vergleich numerischer Berechnungsmethoden für Optionswerte und Handelsstrategien eingereicht von: Martin

Mehr

FINANZMATHEMATIK. Toker Claudia, Hackner Denise

FINANZMATHEMATIK. Toker Claudia, Hackner Denise FINANZMATHEMATIK Toker Claudia, Hackner Denise AKTIEN Aktien Ökonomische Grundlagen Graphische Darstellung von Aktienkursverläufen Aktienkurs und Aktienindex Die Rendite einer Aktie Statistik der Aktienmärkte

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

Internationale Finanzierung 6. Bewertung von Aktien

Internationale Finanzierung 6. Bewertung von Aktien Übersicht Kapitel 6: 6.1. Einführung 6.2. Aktienbewertung mittels Kennzahlen aus Rechnungswesen 6.3. Aktienbewertung unter Berücksichtigung der Wachstumschancen 6.4. Aktienbewertung mittels Dividenden

Mehr

Sensitivitätsfaktoren

Sensitivitätsfaktoren Sensitivitätsfaktoren Überblick Sensitivitätsfaktoren zeigen die Änderungen des Optionspreises, wenn sich eine Einflussgröße ändert Sensitivitätsfaktoren werden mit einem Optionspreismodell errechnet Einflussgrößen:

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Wie verdienen Investment Banken Ihr Geld? Uwe Wystup

Wie verdienen Investment Banken Ihr Geld? Uwe Wystup Wie verdienen Investment Banken Ihr Geld? Uwe Wystup Frankfurt am Main, 24 April 2004 22.04.04. 2 Agenda Investment Banking - Geschäftsfelder Massengeschäft Individualgeschäft Eigenhandel Beispiel 1: DAX-Sparbuch

Mehr