Data-Warehouse-Architektur

Größe: px
Ab Seite anzeigen:

Download "Data-Warehouse-Architektur"

Transkript

1 Data-Warehouse-Architektur ƒ Anforderungen ƒ Referenzarchitektur ƒ Phasen des Data Warehousing ƒ Komponenten Vorlesung Data-Warehouse-Technologien 2-1 Anforderungen des Data Warehousing ƒ Unabhängigkeit zwischen Datenquellen und Analysesystemen (bzgl. Verfügbarkeit, Belastung, laufender Änderungen) ƒ Dauerhafte Bereitstellung integrierter und abgeleiteter Daten (Persistenz) ƒ Mehrfachverwendbarkeit der bereitgestellten Daten ƒ Möglichkeit der Durchführung prinizipiell beliebiger Auswertungen Vorlesung Data-Warehouse-Technologien 2-2 1

2 Anforderungen des Data Warehousing ƒ Unterstützung individueller Sichten (z.b. bzgl. Zeithorizont, Struktur) ƒ Erweiterbarkeit (z.b. Integration neuer Quelle) ƒ Automatisierung der Abläufe ƒ Eindeutigkeit über Datenstrukturen, Zugriffsberechtigungen und Prozesse ƒ Ausrichtung am Zweck: Analyse der Daten Vorlesung Data-Warehouse-Technologien 2-3 Referenzarchitektur Datenbeschaffungsbereich Extraktion Laden Datenquelle Arbeitsbereich Basisdatenbank Laden Data Warehouse Analyse Monitor Transform ation Data- Warehouse- Manager Metadaten- Manager Datenfluß Kontrollfluß Repository Data-Warehouse-System Vorlesung Data-Warehouse-Technologien 2-4 2

3 Phasen des Data Warehousing 1. Überwachung der Quellen auf Änderungen durch Monitore 2. Kopieren der relevanten Daten mittels Extraktion in temporären Arbeitsbereich 3. Transformation der Daten im Arbeitsbereich (Bereinigung, Integration) 4. Kopieren der Daten in integrierte Basisdatenbank als Grundlage für verschiedene Analysen 5. Laden der Daten in das Data Warehouse (Datenbank für Analysezwecke) 6. Analyse: Operationen auf Daten des DW Vorlesung Data-Warehouse-Technologien 2-5 Data-Warehouse-Manager ƒ Zentrale Komponente eines DW-Systems ƒ Initiierung, Steuerung und Überwachung der einzelnen Prozesse (Ablaufsteuerung) ƒ Initiierung des Datenbeschaffungsprozesses in regelmäßigen Zeitabständen (jede Nacht, am Wochenende etc.): Starten der Extraktion von Daten aus Quellen und Übertragung in Arbeitsbereich bei Änderung einer Quelle: Start der entsprechenden Extraktionskomponente auf explizites Verlangen des Adiministrators Vorlesung Data-Warehouse-Technologien 2-6 3

4 Data-Warehouse-Manager ƒ Nach Auslösen des Ladeprozesses: Überwachung der weiteren Schritte (Bereinigung, Integration etc.) Koordination der Reihenfolge der Verarbeitung ƒ Fehlerfall Dokumentation von Fehlern Wiederanlaufmechanismen ƒ Zugriff auf Metadaten aus dem Repository Steuerung des Ablaufs Parameter der Komponenten Vorlesung Data-Warehouse-Technologien 2-7 Datenquellen ƒ Lieferanten der Daten für das Data Warehouse gehören nicht direkt zum DW können intern (Unternehmen) oder extern (z.b. Internet) sein heterogen bzgl. Struktur, Inhalt und Schnittstellen (Datenbanken, Dateien) Auswahl der Quellen und Qualität der Daten von besonderer Bedeutung ƒ Faktoren für Auswahl Zweck des DW Qualität der Quelldaten Verfügbarkeit (rechtlich, sozial, technisch) Preis für Erwerb der Daten (speziell bei externen Quellen) Vorlesung Data-Warehouse-Technologien 2-8 4

5 Datenquellen: Klassifikation ƒ Herkunft: intern, extern ƒ Zeit: aktuell, historisch ƒ Nutzungsebene: Primärdaten, Metadaten ƒ Inhalt: Zahl, Zeichenkette, Grafik, Referenz, Dokument ƒ Darstellung: numerisch, alphanumerisch, BLOB ƒ Sprache und Zeichensatz ƒ Vetraulichkeitsgrad Vorlesung Data-Warehouse-Technologien 2-9 Datenquellen: Qualitätsforderungen ƒ Konsistenz (Widerspruchsfreiheit) ƒ Korrektheit (Übereinstimmung mit Realität), ƒ Vollständigkeit (z.b. Abwesenheit von fehlenden Werten oder Attributen) ƒ Genauigkeit (z.b. Anzahl der Nachkommastellen) und Granularität (z.b. tagesgenaue Daten) Vorlesung Data-Warehouse-Technologien

6 Datenquellen: Qualitätsforderungen ƒ Zuverlässigkeit und Glaubwürdigkeit (Nachvollziehbarkeit der Entstehung, Vertrauenswürdigkeit des Lieferanten) ƒ Verständlichkeit (inhaltlich und technisch / strukturell für jeweilige Zielgruppe) ƒ Verwendbarkeit und Relevanz (geeignetes Format, Zweckdienlichkeit) Vorlesung Data-Warehouse-Technologien 2-11 Monitore ƒ Aufgabe: Entdeckung von Datenmanipulationen in einer Datenquelle ƒ Strategien: Trigger-basiert y aktive Datenbankmechanismen Auslösen von Triggern bei Datenänderungen Kopieren der geänderten Tupel in anderen Bereich replikationsbasiert y Nutzung von Replikationsmechanismen zur Übertragung geänderter Daten Vorlesung Data-Warehouse-Technologien

7 Monitore ƒ Strategien (fortg.): Log-basiert y Analyse von Transaktions-Log-Dateien der DBMS zur Erkennung von Änderungen zeitstempelbasiert y Zuordnung eines Zeitstempel zu Tupeln y Aktualisierung bei Änderungen y Identifizierung von Änderungen seit der letzten Extraktion durch Zeitvergleich Snapshot-basiert y Periodisches Kopieren des Datenbestandes in Datei (Snapshot) y Vergleich von Snapshots zur Identifizierung von Änderungen Vorlesung Data-Warehouse-Technologien 2-13 Arbeitsbereich ƒ Aufgabe: Zentrale Datenhaltungskomponente des Datenbeschaffungsbereichs (engl. staging area) Temporärer Zwischenspeicher zur Integration ƒ Nutzung: Ausführung der Transformationen (Bereinigung, Integration etc.) direkt auf Zwischenspeicher Laden der transformierten Daten in DW bzw. Basisdatenbank erst nach erfolgreichem Abschluß der Transformation ƒ Vorteile: Keine Beeinflussung der Quellen oder des DW Keine Übernahme fehlerbehafteter Daten Vorlesung Data-Warehouse-Technologien

8 Extraktionskomponente ƒ Aufgabe: Übertragung von Daten aus Quellen in Arbeitsbereich ƒ Funktion: abhängig von Monitoring-Strategie periodisch auf Anfrage Ereignisgesteuert (z.b. bei Erreichen einer definierten Anzahl von Änderungen) sofortige Extraktion ƒ Realisierung: Nutzung von Standardschnittstellen (z.b. ODBC) Ausnahmebehandlung zur Fortsetzung im Fehlerfall Vorlesung Data-Warehouse-Technologien 2-15 Transformationskomponente ƒ Vorbereitung und Anpassung der Daten für das Laden Inhaltlich: Daten-/Instanzintegration und Bereinigung Strukturell: Schemaintegration ƒ Überführung aller Daten in ein einheitliches Format Datentypen, Datumsangaben, Maßeinheiten, Kodierungen etc. ƒ Beseitigung von Verunreinigungen (engl. Data Cleaning bzw. Data Cleansing) Fehlerhafte oder fehlende Werte, Redundanzen, veraltete Werte Vorlesung Data-Warehouse-Technologien

9 Transformationskomponente ƒ Data Scrubbing: Ausnutzung von domänenspezifischen Wissen (z.b. Geschäftsregeln) zum Erkennen von Verunreinigungen Beispiel: Erkennen von Redundanzen ƒ Data Auditing: Anwendung von Data-Mining-Verfahren zum Aufdecken von Regeln Aufspüren von Abweichungen Vorlesung Data-Warehouse-Technologien 2-17 Ladekomponente ƒ Aufgabe: Übertragung der bereinigten und aufbereiteten (z.b. aggregierten) Daten in die Basisdatenbank bzw. das DW ƒ Besonderheiten: Nutzung spezieller Ladewerkzeuge (z.b. SQL*Loader von Oralce) Bulk-Laden Historisierung: Änderung in Quellen dürfen DW-Daten nicht überschreiben, stattdessen zusätzliches Abspeichern ƒ Ladevorgang: Online: Basisdatenbank bzw. DW steht weiterhin zur Verfügung Offline: stehen nicht zur Verfügung (Zeitfenster: nachts, Wochenende) Vorlesung Data-Warehouse-Technologien

10 Basisdatenbank ƒ Aufgabe: Integrierte Datenbasis für verschiedene Analysen unabhängig von konkreten Analysen, d.h. noch keine Aggregationen Versorgung des DW mit bereinigten Daten (u.u. durch Verdichtung) ƒ Anmerkungen: wird in der Praxis oft weggelassen entspricht Operational Data Store (ODS) nach Inmon Vorlesung Data-Warehouse-Technologien 2-19 Data Warehouse ƒ Aufgabe: Datenbank für Analysezwecke; orientiert sich in Struktur an Analysebedürfnissen ƒ Basis: DBMS ƒ Besonderheiten: Unterstützung des Ladeprozesses y Schnelles Laden großer Datenmengen Massenlader (engl. bulk loader) unter Umgehung von Mehrbenutzerkoordination und Konsistenzprüfung Unterstützung des Analyseprozesses y Effiziente Anfrageverarbeitung (Indexstrukturen, Caching) y Multidimensionales Datenmodell (z.b. über OLE DB for OLAP) Vorlesung Data-Warehouse-Technologien

11 Data Marts ƒ Aufgabe: Bereitstellung einer inhaltlich beschränkten Sicht auf das DW (z.b. für Abteilung) ƒ Gründe: Eigenständigkeit, Datenschutz, Lastverteilung, Datenvolumen, etc. ƒ Realisierung: Verteilung der DW-Daten ƒ Formen: Abhängige Data Marts Unabhängige Data Marts Vorlesung Data-Warehouse-Technologien 2-21 Abhängige Data Marts ƒ Verteilung des Datenbestandes nach Integration und Bereinigung (Basisdatenbank) und Organisation entsprechend der Analysebedürfnisse (Data Warehouse) ƒ Nabe- und Speiche -Architektur (engl. hub and spoke) ƒ Data Mart: nur Extrakt (inkl. Aggregation) des Data Warehouse Keine Bereinigung oder Normierung ƒ Analysen auf Data Mart konsistent zu Analysen auf DW ƒ Einfache Realisierung: Replikations- oder Sichtmechanismen von DBMS Vorlesung Data-Warehouse-Technologien

12 Nabe- und Speiche"-Architektur Analyse Analyse Analyse Analyse 'DWD 0DUWV 'DWD :DUHKRXVH Laden Vorlesung Data-Warehouse-Technologien 2-23 Abhängige Data Marts: Extraktbildung ƒ Strukturelle Extrakte Beschränkung auf Teile des Schemas Bsp.: nur bestimmte Kennzahlen oder Dimensionen ƒ Inhaltliche Extrakte inhaltliche Beschränkung Bsp.: nur bestimmte Filialen oder das letzte Jahresergebnis ƒ Aggregierte Extrakte Verringerung der Granularität Bsp.: Beschränkung auf Monatsergebnisse Vorlesung Data-Warehouse-Technologien

13 Unabhängige Data Marts ƒ unabhängig voneinander entstandene kleine Data Warehouses (z.b. von einzelnen Organisationen) ƒ nachträgliche Integration und Transformation ƒ Probleme: unterschiedliche Analysesichten (Data Mart, globales Data Warehouse) Konsistenz der Analysen aufgrund zusätzlicher Transformation Vorlesung Data-Warehouse-Technologien 2-25 Unabhängige Data Marts Analyse Analyse Analyse Analyse 'DWD :DUHKRXVH Transformation 'DWD 0DUWV Laden Laden Laden Laden Vorlesung Data-Warehouse-Technologien

14 Analysewerkzeuge ƒ engl. Business Intelligence Tools ƒ Aufgabe: Präsentation der gesammelten Daten mit interaktiven Navigations- und Analysemöglichkeiten ƒ Analyse: einfache arithm. Operationen (z.b. Aggregation)... komplexe statistische Untersuchungen (z.b. Data Mining) Aufbereitung der Ergebnisse für Weiterverarbeitung bzw. Weitergabe Vorlesung Data-Warehouse-Technologien 2-27 Analysewerkzeuge: Darstellung ƒ Tabellen Pivot-Tabellen := Kreuztabellen Analyse durch Vertauschen von Zeilen und Spalten Veränderung von Tabellendimensionen Schachtelung von Tabellendimensionen (Integration weiterer Dimensionen) ƒ Graphiken Bildliche Darstellung großer Datenmengen Netz-, Punkt-, Oberflächengraphen ƒ Text und Multimedia-Elemente Ergänzung um Audio- oder Videodaten Einbeziehung von Dokumentenmanagementsystemen Vorlesung Data-Warehouse-Technologien

15 Analysewerkzeuge: Funktionalität ƒ Data Access Reporting Werkzeuge Lesen von Daten, Veränderung/Anreichung durch einfache arithmetische Operationen Präsentation in Berichten Ampelfunktionen : regelgebundene Formatierung Basis: SQL Vorlesung Data-Warehouse-Technologien 2-29 Analysewerkzeuge: Funktionalität ƒ OLAP Interaktive Datenanalyse, Klassifikationsnavigation Berichte mit verdichteten Werten (Kennzahlen) Navigationsoperationen (Drill Down, Roll Up, Drill Across) Gruppierungs- und Berechnungsfunktionen (statistisch, betriebswirtschaftlich) Validierung von Hypothesen, Plausibilitätsprüfung Vorlesung Data-Warehouse-Technologien

16 Analysewerkzeuge: Funktionalität ƒ Data Mining Aufdeckung bisher unbekannter Zusammenhänge (Muster, Regeln) Verfahren (u.a.): y Klassifikation: Zuordnung der Daten zu vorgegebenen Klassen y Assoziationsregeln y Clusterbildung: Segmentierung, d.h. Daten bzgl. Ihrer Merkmalsausprägungen zu Gruppen zusammenfassen Vorlesung Data-Warehouse-Technologien 2-31 Analysewerkzeuge: Realisierung ƒ Standard Reporting: Reporting-Werkzeuge des klassischen Berichtswesens ƒ Berichtshefte: Graphische Entwicklungsumgebungen zur Erstellung von Präsentationen von Tabellen, Graphiken, etc. ƒ Ad-hoc Query & Reporting: Werkzeuge zur Erstellung und Präsentation von Berichten Verbergen von Datenbankanbindung und Anfragesprachen Vorlesung Data-Warehouse-Technologien

17 Analysewerkzeuge: Realisierung ƒ Analyse-Clients: Werkzeuge zur mehrdimensionalen Analyse beinhalten Navigation, Manipulation (Berechnung), erweiterte Analysefunktionen und Präsentation ƒ Spreadsheet Add-Ins: Erweiterung von Tabellenkalkulationen für Datenanbindung und Navigation ƒ Entwicklungsumgebungen: Unterstützung der Entwicklung eigener Analyseanwendungen Bereitstellung von Operationen auf multidimensionalen Daten Vorlesung Data-Warehouse-Technologien 2-33 Repository ƒ Aufgabe: Speicherung der Metadaten des DW-Systems ƒ Metadaten: Informationen, die Aufbau, Wartung und Administration des DW-Systems vereinfachen und Informationsgewinnung ermöglichen Beispiele: Datenbankschemata, Zugriffsrechte, Prozeßinformationen (Verarbeitungsschritte und Parameter), etc. Vorlesung Data-Warehouse-Technologien

18 Metadaten-Manager ƒ Aufgaben: Steuerung der Metadatenverwaltung Zugriff, Anfrage, Navigation Versions- und Konfigurationsverwaltung ƒ Formen: allgemein einsetzbar: erweiterbares Basisschema werkzeugspezifisch: fester Teil von Werkzeugen ƒ häufig Integration von bzw. Austausch zwischen dezentralen Metadaten-Managementsystemen notwendig Vorlesung Data-Warehouse-Technologien

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager 2. Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen und Analysesystemen (bzgl.

Mehr

Data-Warehouse-Architektur

Data-Warehouse-Architektur Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten VL Data Warehouses, WS 2000/2001 2-1 Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen

Mehr

Teil II Data-Warehouse-Architektur

Teil II Data-Warehouse-Architektur Teil II Data-Warehouse-Architektur Data-Warehouse-Architektur 1 Anforderungen 2 Referenzarchitektur 3 Phasen des Data Warehousing 4 c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

Mehr

Architektur eines Data Warehouse Systems. Mario Jandeck

Architektur eines Data Warehouse Systems. Mario Jandeck Architektur eines Data Warehouse Systems Mario Jandeck Agenda Folie 2 von 24 1. Die Referenzarchitektur 2. Komponenten des Data Warehouse Systems 3. Datenbeschaffung und Qualität 4. Analyse im Data Warehouse

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Data Warehouses. Alexander Fehr. 23. Dezember 2002

Data Warehouses. Alexander Fehr. 23. Dezember 2002 Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück 1 Kapitel 16: Data Warehousing und Knowledge Discovery in Databases DEFINITIONEN & BEGRIFFE Klassische

Mehr

Seminararbeit zum Thema. Referenzarchitektur von. Data-Warehouse-Systemen

Seminararbeit zum Thema. Referenzarchitektur von. Data-Warehouse-Systemen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Prof. Dr. Klaus Küspert, Dipl.-Math. Katharina Büchse Seminararbeit zum Thema Referenzarchitektur von

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Inhaltsverzeichnis. vii.

Inhaltsverzeichnis. vii. vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt 2 1.2 OLTP versus OLAP 4 1.2.1 OLAP-versus OLTP-Transaktionen 5 1.2.2 Vergleich von OLTP und OLAP 6 1.2.3 Abgrenzung: DBMS-Techniken

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur Stärkung der SelbstOrganisationsfähigkeit im Verkehr durch I+K-gestützte Dienste Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 Grundlagen und Architektur Bearbeiter: Ting Zheng Betreuer:

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Einführungsseminar Data Mining Seminarvortrag zum Thema: Data Warehouse und Data Mining Von gehalten am Betreuer: Dr. M. Grabert Einführung Problemstellung Seite 2 Einführung Unternehmen bekommen eine

Mehr

DATA-WAREHOUSE-TECHNOLOGIEN

DATA-WAREHOUSE-TECHNOLOGIEN Vorlesung DATA-WAREHOUSE-TECHNOLOGIEN Wintersemester 2007/2008 Vorlesender: Eike Schallehn Vorlesung und Skript von: Prof. Dr.-Ing. habil. Kai-Uwe Sattler TU Ilmenau, FG Datenbanken und Informationssysteme

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4 Contents Data Warehouse - ETL Prozess Version: July 10, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Informationsintegration und Webportale

Informationsintegration und Webportale Informationsintegration und Webportale 02.12.2013 : Data-Warehouse-Systeme, Markus Ewald (FZI) INSTITUTS-, FAKULTÄTS-, ABTEILUNGSNAME (in der Masteransicht ändern) KIT Universität des Landes Baden-Württemberg

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Ausarbeitung Projekt Sven Elvers Business Intelligence: Analyse Betreuender Prüfer: Prof. Dr. Olaf Zukunft Fakultät

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Integration Services - Dienstarchitektur

Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Integration Services - Dienstarchitektur Dieser Artikel solle dabei unterstützen, Integration Services in Microsoft SQL Server be sser zu verstehen und damit die

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Wesentliche Inhalte Begriff DBS Datenbankmodelle Datenbankentwurf konzeptionell, logisch und relational

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

Data Warehousing. 2. Architektur von Data Warehouse-Systemen

Data Warehousing. 2. Architektur von Data Warehouse-Systemen Data Warehousing Kapitel 2: Architektur von DWH-Systemen Dr. Andreas Thor Wintersemester 2009/10 Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de WS09/10, Prof. Dr. E. Rahm 2-1

Mehr

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor Yves-Deniz Obermeier Sales Manager Financial Services Ing. Thomas Heinzmann Division Management BI Mag. Martin Feith Senior Expert Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Mehr

Controlling leicht gemacht!

Controlling leicht gemacht! Controlling leicht gemacht! Was ist Controlling? Definition Controlling von engl. to control für steuern, regeln, ist ein umfassendes Steuerungs- und Koordinationskonzept zur Unterstützung der Geschäftsleitung

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Prof. Dr. Bernhard Schiefer 1-1 Wesentliche Inhalte Begriff DBS Datenbankmodelle

Mehr

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1 Info Seite 1 Merkblatt DWH Mittwoch, 6. Januar 2016 13:55 Version: 1.0.0 Study: 3. Semester, Bachelor in Business and Computer Science School: Hochschule Luzern - Wirtschaft Author: Janik von Rotz (http://janikvonrotz.ch)

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006)

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006) Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau (01/2006) Strategisches Informationsmanagement 1 Definition Notwendige Vermaischung der Daten in der Vorstufe zur Destillation von hochprozentiger

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG

DW2004. XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science. 3. November 2004. Dr. Michael Hahne, cundus AG DW2004 XML-Datenimport in das SAP Business Information Warehouse bei Bayer Material Science Dr. Michael Hahne, cundus AG 3. November 2004 cundus AG 2004 Gliederung Motivation SAP Business Information Warehouse

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Data-Wa re house-systeme

Data-Wa re house-systeme P Andreas Bauer + Holger Günzel (Hrsg.) Data-Wa re house-systeme Architektur Entwicklung Anwendung 2., überarbeitete und aktualisierte Auflage dpun kt.verlag I n ha I t sve rzeic h n is Teil I 1 1.1 1.2

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken Aufgabenzettel 1 Grundlagen Datenbanken: Kurzer historischer Überblick (1) Anwendung 1 Anwendung 2 Datei 1 Datei 2 Datei 3 Zugriff auf Dateien ohne spezielle Verwaltung 2 Exkurs:

Mehr

Gliederung Datenbanksysteme

Gliederung Datenbanksysteme Gliederung Datenbanksysteme 5. Datenbanksprachen 1. Datendefinitionsbefehle 2. Datenmanipulationsbefehle 3. Grundlagen zu SQL 6. Metadatenverwaltung 7. DB-Architekturen 1. 3-Schema-Modell 2. Verteilte

Mehr

Datenbanken. Produkte Dienstleistungen Referenzen

Datenbanken. Produkte Dienstleistungen Referenzen Datenbanken Produkte Dienstleistungen Referenzen Produkte: MS SQL Server MS SQL Server 2005 Datenbankmodul Berichtssysteme mit Reporting Services Data Warehousing/Data Mining mit Analysis Services Schnittstellen

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Trends, Muster und Korrelationen erkennen und die richtigen Schlüsse daraus ziehen: MACH BI der für öffentliche Einrichtungen passende Zugang zur

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Enterprise Applikation Integration und Service-orientierte Architekturen. 01 Einführung

Enterprise Applikation Integration und Service-orientierte Architekturen. 01 Einführung Enterprise Applikation Integration und Service-orientierte Architekturen 01 Einführung Agenda Warum EAI Klassifikation von EAI-Ansätzen Ebenen der Integration Architekturen zur Datenintegration Prof. Dr.

Mehr

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek

Datawarehouse. Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken. Klaus Schimitzek Datawarehouse Erfahrungsaustausch bezügeabrechnender Stellen vom 18. bis 21. September 2007 in Saarbrücken Klaus Schimitzek Berichtsprodukte gedruckt: zentraler Personalbericht (Struktur, Management) Blickpunkt

Mehr

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker 1 Data Preprocessing 1 Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing von Christian Merker 2 Gliederung Motivation Monitore Datenextraktion Schema- und Datenintegration Datenbereinigung

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

2. Architektur von Data Warehouse-Systemen

2. Architektur von Data Warehouse-Systemen 2. Architektur von Data Warehouse-Systemen Referenzarchitektur Scheduler Datenquellen Datenextraktion Transformation und Laden Abhängige vs. unabhängige Data Marts Architekturvarianten / Echtzeit-DWH Operational

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

Business Intelligence Data Warehouse für den Ferienclub

Business Intelligence Data Warehouse für den Ferienclub Business Intelligence Data Warehouse für den Ferienclub Jan Weinschenker 8. Juli 2005 Im Rahmen der Vortragsreihe im Fach Anwendungen I beschäftigt sich diese Ausarbeitung mit dem Thema Data Warehousing.

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Quality Point München Datenqualität

Quality Point München Datenqualität Quality Point München Datenqualität Paul, wie ist denn Eure Datenqualität? Nachdem ich bei der letzten Gehaltszahlung mit Frau... angeredet wurde, bin ich mir nicht mehr so sicher. Autor: W. Ulbrich IT&More

Mehr

ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.

ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is. ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.de insight und dynasight sind eingetragene Markenzeichen der

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Architektur und Komponenten von Data Warehouses Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Architektur Komponenten ETL Ulf Leser: Data Warehousing

Mehr

Abschluss Einblick und Ausblick

Abschluss Einblick und Ausblick Abschluss Einblick und Ausblick Prof. Dr. T. Kudraß 1 Benutzer Komponenten eines DBMS (Überblick) I/O-Prozessor Output-Generierung Parser für selbst. oder eingebettete Kommandos Precompiler Autorisierungs-Kontrolle

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr