Felix Klug SS Tutorium Deskriptive Statistik

Größe: px
Ab Seite anzeigen:

Download "Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik"

Transkript

1 2. Tutorium Deskriptive Statistik Felix Klug SS 2011

2 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala Absolutskaliert Beispiele Numierung von Fußballspielern, Kontonummer,Martikelnummer Richtersche Erdbebenskala, Schulnoten, Hunger Temperatur (Celcius, Fahrenheit), Nutzen Länge, Masse, Zeit, Winkel,Temperatur (Kelvin),Preise Wahrscheinlichkeit, Anzahl, Häufigkeit

3 Unterschied zwischen stetig und quasistetigen Merkmalen Auszug aus Toutenburg, Heumann (2009): Deskriptive Statistik...Wir haben quantitative Merkmale in stetige und diskrete Merkmale unterschieden. Dabei ist zu beachten, dass wegen der endlichen Messgenauigkeit jedes stetige Merkmal tatsächlich nur diskret gemessen werden kann. Aber selbst bei einer endlichen Anzahl von Merkmalsausprägungen kann es sinnvoll sein, das Merkmal als stetig aufzufassen, wenn die Anzahl der Ausprägungen hinreichend groß ist. Derartige Fälle nennt man auch quasistetige Merkmale. Beispiele hierfür sind monetäre Größen, wie Preise oder Einkommen, die beliebig genau festgeleget werden können und damit stetige Merkmale sind. Da monetäre Größen aber nur in bestimmten Schritten, die durch die kleinste Geldeinheit festgelegt sind, auch ausgezahlt werden können, kann man dieese Merkmale auch als diskret auffasen...

4 Aufgabe 1. Neben Stab-, Balken- und Kreisdiagrammen haben Sie auch das Stamm-Blatt-Diagramm sowie das Histogramm kennen gelernt. (a) Wie lässt sich zwischen Stamm-Blatt-Diagramm und Histogramm bzw. Dichtekurve eine Beziehung herstellen? (b) Welchen Aussagen bezüglich des Histogramms können Sie zustimmen? (b1) Bei einem Histogramm müssen immer die relativen Häufigkeiten angegeben werden. (b2) Sind die Klassen des Histogramms gleich breit, so ist es äquivalent zum Balkendiagramm. (b3) Die Klassengrenzen müssen so gewählt werden, dass keine leere Klasse ensteht. (b4) Das Histogramm folgt dem Prinzip der Flächentreue. (b5) Fällt ein Wert genau auf die Klassengrenze, zählt er je halb zur unteren und zur oberen Klasse. (b6) Bei der Entscheidung über die Klassenbreiten entscheidet im Endeffekt der subjektive Eindruck.

5 Lösung zu Aufgabe 1. (a) Stamm-Blatt-Diagramm und Histogramm sind Schätzer für die Dichtekurve. Sie sollen einen groben Überblick der Daten liefern. Oftmals ist das notwendig wenn man nicht genau weiß welcher Verteilung bestimmte Daten folgen. Außerdem handelt es sich sowohl beim Stamm-Blatt als auch beim Histogramm um klassierte Daten. (b) Angaben zum Histogramm Zeichne über den Klassen [c 0 ; c 1 ),..., [c k 1, c k ) Rechtecke mit Breite: d j = c j c j 1 Höhe: gleich (oder proportional zu) h j /d j bzw. f j /d j gleich (oder proportional zu) h j bzw. f j

6 Lösung zu Aufgabe 1. (b1) Muss nicht immer angegeben werden, siehe h j /d j (b2) Richtig (b3) Stimmt nicht es kann durchaus leere Klassen geben (b4) Richtig (b5) Stimmt nicht. Wegen der Definition der Klassengrenzen [c 0 ; c 1 ) wird es der oberen Klasse angerechnet. (b6) Richtig

7 Aufgabe 1. (c) Im unten stehenden Histogramm ist das Merkmal Alter für 20 zufällig ausgewählte Besucher eines Pop-Konzerts dargestellt. Welchen der folgenden Aussagen können Sie nicht widersprechen? [Anmerkung: Die Klassen sind alle genau gleich breit gewählt.] (c1) Der Altersunterschied zwischen der ältesten und der jüngsten Person beträgt genau 20 Jahre. (c2) Der Median liegt bei 27. (c3) Mehr als die Hälfte der Personen ist über 20. (c4) Die Personen sind zwischen 15 und 33 Jahren alt. (c5) Der Altersdurchschnitt beträgt rund 22 Jahre. (c6) Es gibt nur eine Person, die älter als 28 ist. (c7) Der Modus liegt bei 19. (c8) Der Modus liegt bei 31. (c9) Die Gruppe der 15- bis 24-Jährigen ist doppelt so stark vertreten wie die der 25- bis 34-Jährigen.

8 Lösung zu Aufgabe 1. Folgenden Aussagen kann man zu dieser Aufgabe machen (c1) Stimmt nicht umbedingt. Die Klassengrenzen sind so angelegt. Das bedeutet jedoch nicht das es tatsächlich dort Daten gibt. (c6) Stimmt ebenfalls nicht umbedingt. Da hier klassierte Daten vorliegen kann hier auch mehr als einer 28 Jahre alt seien. (c8) Kann nicht seien. Diese Klasse enthält weniger Werte als die sonstigen Klassen. Die Mittlere Klasse hat die größte Fläche und da die Klassen anscheinend gleich groß sind liegt wahrscheinlich hier auch der Modus drinnen.

9 Aufgabe 2. Ende März wurde in Baden-Württemberg ein neuer Landtag gewählt. Die folgende Tabelle gibt eine Übersicht über die Stimmenanteile der verschiedenen Parteien - wie aber lässt sich dieses Wahlergebnis geeignet visualisieren? [Anmerkung: Parteien, die weniger als 5% der Stimmen erhielten, wurden unter Sonstige zusammengefasst.] Partei Stimmenanteil CSU 39.0% SPD 24.2% Grüne 24.2% FDP 5.3% Sonstige 8.4%

10 Lösung zu Aufgabe 2. Am besten visualisiert man es durch ein Balken- oder Kreisdiagramm. Dabei zu beachten ist, das das menschliche Auge keine gute Einschätzung besitzt für Gradzahlen. Darstellung als Balkendiagram Stimmanteil in % CDU SPD Grüne FDP Sonstige Darstellung als Kreisdiagram CDU SPD Grüne FDP Sonstige

11 Aufgabe 3. Folgende Daten wurden zur Untersuchung des Zusammenhangs zwischen Körpermaßen und Geweihlängen einer Fliegenart erhoben, die im baltischen Bernstein gefunden wurde. Wir betrachten nur die Länge der Fliegen in mm: 3.30,3.71,3.45,4.05,4.14,4.25,4.45,4.6,4.72,5.00,5.11,5.20,3.31, 3.60,3.98,4.08,4.30,4.35,4.40,4.40,4.70 Zeichnen Sie ein Histogramm zu den Daten. Wählen Sie eine Ihnen sinnvoll erscheinden Klassenbreite.

12 Lösung zu Aufgabe 3. Geordnete Urliste: 3.30,3.31,3.45,3.60,3.71,3.98,4.05,4.08,4.14, 4.25,4.30,4.35,4.40,4.40,4.45,4.60,4.70,4.72,5.00,5.11,5.20 Klasseneinteilung d j = 0.5: [3.00; 3.50)[3.50; 4.00)[4.00; 4.50)[4.50; 5.00)[5.00; 5.50) Klasseneinteilung d j = 1: [3.00; 4.00)[4.00; 5.00)[5.00; 6.00) Höhenberechnung fürd j = 0.5 : f 1 d 1 = f 2 d 2 = f 3 d 3 = f 4 d 4 = 3 21 = = = = = = = = f 5 21 = = = 2.85 d 5 0.5

13 Graphische Auswertung Aufgabe 3. R Auswertung zu den Histogrammen mit d j = 0.5 und d j = 1 Histogramm zu d_j = 0.5 Häufigkeit f_j/d_j Gewährlänge von Fliegen Histogramm zu d_j = 1 Häufigkeit f_j/d_j Gewährlänge von Fliegen

14 Graphische Auswertung Aufgabe 3. Beides sind allerdings keine wahren Histogramme. Unsere Auswertung gleicht diesem: Wahres Histogramm Dichte Gewährlänge Gewährlänge von Fliegen

15 Zusatzaufgabe: Visualisierung in R Skalenniveus: Variable Skalenniveu Diskret/Stetig heimteam Nominalskala Diskret heimtore Absolutskaliert Diskret gastteam Nominalskala Diskret gasttore Absolutskaliert Diskret wochentag Nominalskala Diskret datum Nominalskala Diskret runde Nominalskala Diskret Weitere Auswertung mit R

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Statistik Daten graphisch darstellen 21. April 2009 Dr. Katja Krüger Universität Paderborn Grundlagen der Schulmathematik SoSe 2009 1 Daten graphisch darstellen warum? Die rasche und sichere

Mehr

Lösungen zu Übung 1 (Kap. 1.5) Prof. Dr.B.Grabowski

Lösungen zu Übung 1 (Kap. 1.5) Prof. Dr.B.Grabowski Lösungen zur Übung1: Skript I (Beschreibende Statistik), Kap. 1.5 Aufgabe 1 1. Sind folgende Merkmale diskret oder stetig? a) Die durch eine wahlberechtigte Person der BRD gewählte Partei bei der Bundestagswahl.

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung:

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: k ( np) np B( n, p; k) Poi( np, k) e k! falls gilt: p

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Beschreibende Statistik Daten darstellen und charakterisieren

Beschreibende Statistik Daten darstellen und charakterisieren Beschreibende Statistik Daten darstellen und charakterisieren Roland Heynkes 1. April 2006, Aachen Die beschreibende (descriptive) Statistik versucht, große und unübersichtliche, experimentell sowie durch

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Foliensymbolik... Beginn eines neuen Kapitels (Folienkopf) Übung... Aufgaben für die Übungen R Programmcode 2 Einführung

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

Der Deutsche Bundestag

Der Deutsche Bundestag Der Deutsche Bundestag Hier kannst Du viel über den Deutschen Bundestag erfahren. Unten siehst du Stichpunkte. Diese Stichpunkte kannst du nach der Reihe anklicken. Probier es einfach aus. 1 In Deutschland

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Einführung in die Statistik mit EXCEL und SPSS Ein

Mehr

4. Auswertung eindimensionaler Daten

4. Auswertung eindimensionaler Daten 4. Auswertung eindimensionaler Daten Ziel dieses Kapitels: Präsentation von Methoden zur statistischen Auswertung eines einzelnen Merkmals 64 Bezeichnungen (Wiederholung): Merkmalsträger: e 1,..., e n

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise

2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 6 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise 2 Analyse statistischer Daten zu einem Merkmal Lösungshinweise : In der folgenden Tabelle ist eine Teilstichprobe zu den Studierenden in

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Umfrage zum Thema Flüchtlinge/Integration Eine repräsentative Umfrage im Auftrag des NDR Redaktion PANORAMA Die Reporter

Umfrage zum Thema Flüchtlinge/Integration Eine repräsentative Umfrage im Auftrag des NDR Redaktion PANORAMA Die Reporter Umfrage zum Thema Flüchtlinge/Integration Eine repräsentative Umfrage im Auftrag des NDR Redaktion PANORAMA Die Reporter Flüchtlinge/Integration Untersuchungsanlage Grundgesamtheit: Wahlberechtigte Bevölkerung

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Skript zur Vorlesung Statistik

Skript zur Vorlesung Statistik Skript zur Vorlesung Statistik Dietrich Baumgarten «16. Januar 2014 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Übersicht und Lernziele........................... 1 1.2 Zum Begri Statistik.............................

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Akzeptanz von Studiengebühren

Akzeptanz von Studiengebühren Akzeptanz von Studiengebühren Ergebnisse einer forsa-umfrage in der Bevölkerung und bei Studierenden Im November 2003, im Juni 2000 und im Februar 1998 hat die Gesellschaft für Sozialforschung und statistische

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Fortgeschrittene Statistik SPSS Einführung

Fortgeschrittene Statistik SPSS Einführung Fortgeschrittene Statistik SPSS Einführung Q U A N T I T A T I V E M E R K M A L E, Q U A L I T A T I V E M E R K M A L E, A U S P R Ä G U N G E N, C O D I E R U N G E N, S K A L E N N I V E A U, D A T

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Visualisierung, WS07/08 9. November 2007. Visualisierung. Visuelle Variablen, Standardgraphen

Visualisierung, WS07/08 9. November 2007. Visualisierung. Visuelle Variablen, Standardgraphen Visualisierung, Standardgraphen Detlef Krömker Uni Frankfurt, Graphische Datenverarbeitung Wolfgang Müller PH Weingarten, Mediendidaktik und Visualisierung 09.11.2007 Visualisierung - D.Krömker, W.Müller

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Triodos Bank: Banken-/Finanzmarktregulierung

Triodos Bank: Banken-/Finanzmarktregulierung Aussagen zur Euro- und Schulden- bzw. Finanzkrise (Graphik ) Durch die Euro- und Finanzkrise hat sich meine persönliche wirtschaftliche Situation verschlechtert. Stimme eher zu 6 Stimme eher nicht zu 6

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

Wahl zum 18. Deutschen Bundestag am 22. September 2013

Wahl zum 18. Deutschen Bundestag am 22. September 2013 Der Bundeswahlleiter Wahl zum 18. Deutschen Bundestag am 22. September 2013 Heft 4 Wahlbeteiligung und Stimmabgabe der und nach Altersgruppen Informationen des Bundeswahlleiters Herausgeber: Der Bundeswahlleiter,

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S Statistik mit Excel 2010 Peter Wies 1. Ausgabe, September 2011 Themen-Special W-EX2010S 3 Statistik mit Excel 2010 - Themen-Special 3 Statistische Maßzahlen In diesem Kapitel erfahren Sie wie Sie Daten

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Wahrscheinlichkeitsrechnung anhand realer Situationen

Wahrscheinlichkeitsrechnung anhand realer Situationen MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Wahrscheinlichkeitsrechnung anhand realer Situationen Paula Lagares Barreiro 1 Frederico Perea Rojas-Marcos

Mehr

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich Lösungen Benjamin 2015, Känguru der Mathematik - Österreich 1. In welcher Figur ist genau die Hälfte grau gefärbt? Lösung: In (A) ist 1/3 gefärbt, in (B) die Hälfte, in (C) ¾, in (D) ¼ und in (E) 2/5.

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36 Daten und Zufall 2 Dr. Elke Warmuth Sommersemester 2016 1 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene Standards, S. 30 2 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene

Mehr

Meinungen zu Volksbegehren und Volksentscheiden

Meinungen zu Volksbegehren und Volksentscheiden Meinungen zu Volksbegehren und Volksentscheiden Datenbasis: 1.004 Befragte Erhebungszeitraum: 2. bis 4. Juni 2009 statistische Fehlertoleranz: +/- 3 Prozentpunkte Auftraggeber: Mehr Demokratie e.v. Auf

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Vergleich der Positionen

Vergleich der Positionen 12. Wer eine Meisterprüfung besteht soll vom Land eine Prämie 1/5 12. Wer eine Meisterprüfung besteht soll vom Land eine Prämie 2/5 12. Wer eine Meisterprüfung besteht soll vom Land eine Prämie 3/5 12.

Mehr

Kapitle 3: Swaps und Forward Swaps

Kapitle 3: Swaps und Forward Swaps Kapitle 3: Swaps und Forward Swaps Stefan Ehrenfried Institut für Finanzmathematik Universität Ulm 13.12.2011 Inhaltsverzeichnis 1 Grundlagen 2 Zinsswaps 3 Bewertung 1-jähriger Forward-Swaps Fixed for

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2014 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

Die Einteilung nach Maßstabsgruppen kann sich auf folgende Grobgliederungen beschränken: Thematische Plankarten: größer 1 : 10 000

Die Einteilung nach Maßstabsgruppen kann sich auf folgende Grobgliederungen beschränken: Thematische Plankarten: größer 1 : 10 000 Maßstabsgruppen Die Einteilung nach Maßstabsgruppen kann sich auf folgende Grobgliederungen beschränken: Thematische Plankarten: größer 1 : 10 000 Thematische Karten Großer Maßstäbe 1 : 10 000 bis größer

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

QS-SYSTEM FS-8000 - Majesty

QS-SYSTEM FS-8000 - Majesty Mühleschweg 34 78052 Villingen-Schwenningen Tel. 07705/91057 Fax: 07705/91056 E-Mail: info@fs-gruppe.de www.fs-gruppe.de QS-SYSTEM FS-8000 - Majesty FS 8000 Fertigungssteuerung und Statistik Vorteile besonders

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Kapitel 13 Häufigkeitstabellen

Kapitel 13 Häufigkeitstabellen Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Vergleich der Positionen

Vergleich der Positionen 1/6 2/6 3/6 4/6 5/6 Legende stimme zu stimme nicht zu neutral SPD Sozialdemokratische Partei Deutschlands CDU Christlich Demokratische Union Deutschlands GRÜNE BÜNDNIS 90/DIE GRÜNEN FDP Freie Demokratische

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Lehrerbefragung Kostenlose Bildungsmedien online (Abstract, 9. Oktober 2013)

Lehrerbefragung Kostenlose Bildungsmedien online (Abstract, 9. Oktober 2013) Lehrerbefragung Kostenlose Bildungsmedien online (Abstract, 9. Oktober 2013) Dieses Abstract ist Teil des dreijährigen Forschungsprojektes Bildungsmedien online an der Philosophisch-Sozialwissenschaftlichen

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Grundgesamtheit, Stichprobe und Repräsentativität

Grundgesamtheit, Stichprobe und Repräsentativität 23 Teil I: Beschreibende Statistik 1 Grundbegriffe In diesem Kapitel Grundgesamtheit, Stichprobe und Repräsentativität Merkmalsträger, Merkmale, Merkmalswerte und Merkmalsausprägungen Merkmalsarten Qualitativ

Mehr

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: Di. 15-16 Uhr Andrea.Kummerer@sowi.uni-goettingen.de Statistik mit Stata

Mehr