Grundbegriffe der Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundbegriffe der Informatik"

Transkript

1 Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25

2 Was kann man mit endlichen Akzeptoren? manche Sprachen kann man mit endlichen Akzeptoren erkennen z. B. {a} + {b} {b} + {a} manche Sprachen nicht z. B. {a k b k k N 0 } Charakterisierung der erkennbaren Sprachen? i. e. Beschreibung ohne Benutzung endlicher Akzeptoren 2/25

3 Überblick Reguläre Ausdrücke Rechtslineare Grammatiken Überblick 3/25

4 Überblick Reguläre Ausdrücke Rechtslineare Grammatiken Reguläre Ausdrücke 4/25

5 Zum Begriff regulärer Ausdruck Ursprung: Stephen Kleene: Representation of Events in Nerve Nets and Finite Automata, in: Shannon, McCarthy, Ashby (eds.): Automata Studies, 1956 heute: verschiedene Bedeutungen in dieser Vorlesung: die klassische Definition Verallgemeinerung: regular expressions sehr nützlich verschiedene Varianten (bei Syntax, bei Semantik) emacs, grep, sed,... Java (java.util.regex), Python, Perl,... Reguläre Ausdrücke 5/25

6 Definition regulärer Ausdrücke (1) sei Z das Alphabet Z = {, (, ), *, O/} sei A ein Alphabet, das kein Zeichen aus Z enthält regulärer Ausdruck über A ist eine Zeichenfolge über dem Alphabet A Z, die gewissen Vorschriften genügt. Menge der regulären Ausdrücke ist wie folgt festgelegt: O/ ist ein regulärer Ausdruck. Für jedes a A ist a ein regulärer Ausdruck. Wenn R1 und R 2 reguläre Ausdrücke sind, dann sind auch (R 1 R 2 ) und (R 1 R 2 ) reguläre Ausdrücke. Wenn R ein regulärer Ausdruck ist, dann auch (R*). Nichts anderes sind reguläre Ausdrücke. Reguläre Ausdrücke 6/25

7 Klammereinsparungsregeln Stern- vor Punktrechnung Punkt- vor Strichrechnung Beispiel: R 1 R 2 R 3 * ist als (R 1 (R 2 (R 3 *))) zu verstehen. Bei mehreren gleichen binären Operatoren gilt das als links geklammert Beispiel R 1 R 2 R 3 ist als ((R 1 R 2 ) R 3 ) zu verstehen. Reguläre Ausdrücke 7/25

8 Beispiele O/ 0 1 (01) ((01)0) (((01)0)0) ((01)(00)) (O/ 1) (0 1) ((0(0 1)) 1) (0 (1 (0 0))) (O/*) (0*) ((10)(1*)) (((10)1)*) ((0*)*) (((((01)1)*)*) (O/*)) Mit Klammereinsparungsregeln: (00) O/ (0 1) 1 (0 (1 (0 0))) O/* 0* 101* (101)* 0** (011)** O/* Reguläre Ausdrücke 8/25

9 Nichtbeispiele keine regulären Ausdrücke über {0, 1}: ( 1) vor fehlt ein regulärer Ausdruck O/ vor und hinter fehlt je ein regulärer Ausdruck ()01 zwischen ( und ) fehlt ein regulärer Ausdruck ((01) Klammern müssen gepaart auftreten *(01) vor * fehlt ein regulärer Ausdruck 2* 2 ist nicht Zeichen des Alphabetes Reguläre Ausdrücke 9/25

10 Definition regulärer Ausdrücke (2) alternative Formulierung mit Hilfe einer kontextfreien Grammatik reguläre Ausdrücke über Alphabet A sind die Wörter, die von der folgenden Grammatik erzeugt werden: G = ({R}, {, (, ), *, O/} A, R, P) und P = {R O/, R (R R), R (RR), R (R*)} {R a a A} Reguläre Ausdrücke 10/25

11 Beschriebene formale Sprache Die von einem regulären Ausdruck R beschriebene formale Sprache R ist wie folgt definiert: O/ = {} (d. h. die leere Menge). Für a A ist a = {a}. Sind R 1 und R 2 reguläre Ausdrücke, so ist R 1 R 2 = R 1 R 2. Sind R 1 und R 2 reguläre Ausdrücke, so ist R 1 R 2 = R 1 R 2. Ist R ein regulärer Ausdruck, so ist R* = R. die Definition folgt der für reguläre Ausdrücke Reguläre Ausdrücke 11/25

12 Beschriebene formale Sprache Die von einem regulären Ausdruck R beschriebene formale Sprache R ist wie folgt definiert: O/ = {} (d. h. die leere Menge). Für a A ist a = {a}. Sind R 1 und R 2 reguläre Ausdrücke, so ist R 1 R 2 = R 1 R 2. Sind R 1 und R 2 reguläre Ausdrücke, so ist R 1 R 2 = R 1 R 2. Ist R ein regulärer Ausdruck, so ist R* = R. die Definition folgt der für reguläre Ausdrücke Reguläre Ausdrücke 11/25

13 Beispiele für R Betrachten wir drei einfache Beispiele: R = a b: Dann ist R = a b = a b = {a} {b} = {a, b}. R = (a b)*: Dann ist R = (a b)* = a b = {a, b}. R = (a*b*)*: Dann ist R = (a*b*)* = a*b* = ( a* b* ) = ( a b ) = ({a} {b} ). Nachdenken: ({a} {b} ) = {a, b} Reguläre Ausdrücke 12/25

14 Beispiele für R Betrachten wir drei einfache Beispiele: R = a b: Dann ist R = a b = a b = {a} {b} = {a, b}. R = (a b)*: Dann ist R = (a b)* = a b = {a, b}. R = (a*b*)*: Dann ist R = (a*b*)* = a*b* = ( a* b* ) = ( a b ) = ({a} {b} ). Nachdenken: ({a} {b} ) = {a, b} Reguläre Ausdrücke 12/25

15 Beispiele für R Betrachten wir drei einfache Beispiele: R = a b: Dann ist R = a b = a b = {a} {b} = {a, b}. R = (a b)*: Dann ist R = (a b)* = a b = {a, b}. R = (a*b*)*: Dann ist R = (a*b*)* = a*b* = ( a* b* ) = ( a b ) = ({a} {b} ). Nachdenken: ({a} {b} ) = {a, b} Reguläre Ausdrücke 12/25

16 Beispiele für R Betrachten wir drei einfache Beispiele: R = a b: Dann ist R = a b = a b = {a} {b} = {a, b}. R = (a b)*: Dann ist R = (a b)* = a b = {a, b}. R = (a*b*)*: Dann ist R = (a*b*)* = a*b* = ( a* b* ) = ( a b ) = ({a} {b} ). Nachdenken: ({a} {b} ) = {a, b} Reguläre Ausdrücke 12/25

17 Wie ist das denn eigentlich? Kann man allgemein von regulären Ausdrücken R 1, R 2 feststellen, ob R 1 = R 2 ist? Geht das algorithmisch? Welche formalen Sprachen sind denn durch reguläre Ausdrücke beschreibbar? Reguläre Ausdrücke 13/25

18 Äquivalenz regulärer Ausdrücke Es gibt Algorithmen, um für reguläre Ausdrücken R 1, R 2 festzustellen, ob R 1 = R 2 ist sogar konzeptionell ziemlich einfache Aber: Dieses Problem ist PSPACE-vollständig. Definition: siehe nächste Einheit d. h. jedenfalls: alle bisher bekannten (!) Algorithmen sind im allgemeinen sehr sehr sehr langsam, Laufzeit z. B. 2 n2... Man weiß nicht, ob es vielleicht doch Algorithmen mit polynomieller Laufzeit für das Problem gibt, aber man sie nur noch nicht gefunden hat. Reguläre Ausdrücke 14/25

19 Charakterisierungen Satz Für jede formale Sprache L sind die folgenden drei Aussagen äquivalent: 1. L kann von einem endlichen Akzeptor erkannt werden. 2. L kann durch einen regulären Ausdruck beschrieben werden. 3. L kann von einer rechtslinearen Grammatik erzeugt werden. rechtslineare Grammatiken kommen gleich Eine formale Sprache, die die Eigenschaften des Satzes hat, heißt reguläre Sprache. Jede rechtslineare Grammatik ist eine kontextfreie Grammatik, also ist jede reguläre Sprache eine kontextfreie Sprache, aber nicht umgekehrt, wie man z. B. an {a k b k k N 0 } sieht. Reguläre Ausdrücke 15/25

20 Charakterisierungen Satz Für jede formale Sprache L sind die folgenden drei Aussagen äquivalent: 1. L kann von einem endlichen Akzeptor erkannt werden. 2. L kann durch einen regulären Ausdruck beschrieben werden. 3. L kann von einer rechtslinearen Grammatik erzeugt werden. rechtslineare Grammatiken kommen gleich Eine formale Sprache, die die Eigenschaften des Satzes hat, heißt reguläre Sprache. Jede rechtslineare Grammatik ist eine kontextfreie Grammatik, also ist jede reguläre Sprache eine kontextfreie Sprache, aber nicht umgekehrt, wie man z. B. an {a k b k k N 0 } sieht. Reguläre Ausdrücke 15/25

21 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

22 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall Kernidee: R i,0,j = reg. Aus. für {x X f (z i, x) = z j } { {ε} falls i = j {} falls i j R i,k,j = (R i,k 1,j (R i,k 1,k 1 (R k 1,k 1,k 1 )* R k 1,k 1,j )) zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

23 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

24 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

25 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht Idee: z. B. für (R 1 R 2 ) gegeben G 1 = (N 1, T 1, X 1, P 1 ) für R 1 gegeben G2 = (N 2, T 2, X 2, P 2 ) für R 2 mit N 1 N 2 = G = ({X0 } N 1 N 2, T 1 T 2, X 0, {X 0 X 1 X 2 } P 1 P 2 ) Grammatik für (R 1 R 2 ) (mit neuem X 0 / N 1 N 2 ) zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

26 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

27 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

28 Zum Beweis des Satzes konstruktiv: zu gegebenem endlichen Akzeptor A ein regulärer Ausdruck R mit R = L(A) mittel schwer, z. B. inspiriert vom Algorithmus von Warshall zu gegebenem regulären Ausdruck R eine rechtslineare Grammatik G mit L(G) = R : relativ leicht zu gegebener rechtslinearer Grammatik G ein endlicher Akzeptor A mit L(A) = L(G): am schwierigsten beachte: für die umgekehrten Richtungen braucht man keine expliziten Konstruktionen Reguläre Ausdrücke 16/25

29 Was ist wichtig Das sollten Sie mitnehmen: Definition klassischer regulärer Ausdrücke atomare: O/ a A zusammengesetzte: (R 1 R 2) (R 1R 2) (R)* wissen: reguläre Ausdrücke und die Verallgemeinerung Regular Expressions sind z. B. bei Textverarbeitungsaufgaben manchmal nützlich Das sollten Sie üben: zu L ein R mit R = L konstruieren zu R das R bestimmen Reguläre Ausdrücke 17/25

30 Überblick Reguläre Ausdrücke Rechtslineare Grammatiken Rechtslineare Grammatiken 18/25

31 Motivation Mit kontextfreien Grammatiken kann man jedenfalls zum Teil andere formale Sprachen erzeugen, als man mit endlichen Akzeptoren erkennen kann. Beispiel: G = ({X }, {a, b}, X, {X ax b ε}) erzeugt {a k b k k N 0 } und diese Sprache ist nicht regulär. Kann man kontextfreie Grammatiken so einschränken, dass sie zu endlichen Akzeptoren passen? Rechtslineare Grammatiken 19/25

32 Rechtslineare Grammatiken: Definition Eine rechtslineare Grammatik ist eine kontextfreie Grammatik G = (N, T, S, P), die der folgenden Einschränkung genügt: Jede Produktion ist entweder von der Form X w mit w T oder von der Form X wy mit w T und X, Y N. Auf der rechten Seite einer Produktion darf also höchstens ein Nichterminalsymbol vorkommen, und wenn dann nur als letztes Symbol. Rechtslineare Grammatiken 20/25

33 Rechtslineare Grammatiken: Beispiel G = ({X }, {a, b}, X, {X abx bbax ε} L(G) = (ab bba)* Rechtslineare Grammatiken 21/25

34 Rechtslineare Grammatiken: Nichtbeispiel G = ({X }, {a, b}, X, {X ax b ε}) ist nicht rechtslinear, denn in X ax b steht das Nichtterminalsymbol X nicht am rechten Ende. Da die erzeugte formale Sprache nicht regulär ist, kann es auch gar keine rechtslineare Grammatik geben, die {a k b k k N 0 } erzeugt. Rechtslineare Grammatiken 22/25

35 Sprechweisen Rechtslineare Grammatiken heißen auch Typ-3-Grammatiken. Kontextfreien Grammatiken heißen auch Typ-2-Grammatiken. Man ahnt schon: Es gibt auch noch Typ-1-Grammatiken und Typ-0-Grammatiken, die wir hier nicht weiter betrachten werden. Wenn für ein i {0, 1, 2, 3} eine formale Sprache L von einer Typ-i-Grammatik erzeugt wird, dann sagt man auch, L sei eine Typ-i-Sprache oder kurz vom Typ i. Rechtslineare Grammatiken 23/25

36 Sprechweisen Rechtslineare Grammatiken heißen auch Typ-3-Grammatiken. Kontextfreien Grammatiken heißen auch Typ-2-Grammatiken. Man ahnt schon: Es gibt auch noch Typ-1-Grammatiken und Typ-0-Grammatiken, die wir hier nicht weiter betrachten werden. Wenn für ein i {0, 1, 2, 3} eine formale Sprache L von einer Typ-i-Grammatik erzeugt wird, dann sagt man auch, L sei eine Typ-i-Sprache oder kurz vom Typ i. Rechtslineare Grammatiken 23/25

37 Sprechweisen Rechtslineare Grammatiken heißen auch Typ-3-Grammatiken. Kontextfreien Grammatiken heißen auch Typ-2-Grammatiken. Man ahnt schon: Es gibt auch noch Typ-1-Grammatiken und Typ-0-Grammatiken, die wir hier nicht weiter betrachten werden. Wenn für ein i {0, 1, 2, 3} eine formale Sprache L von einer Typ-i-Grammatik erzeugt wird, dann sagt man auch, L sei eine Typ-i-Sprache oder kurz vom Typ i. Rechtslineare Grammatiken 23/25

38 Sprechweisen Rechtslineare Grammatiken heißen auch Typ-3-Grammatiken. Kontextfreien Grammatiken heißen auch Typ-2-Grammatiken. Man ahnt schon: Es gibt auch noch Typ-1-Grammatiken und Typ-0-Grammatiken, die wir hier nicht weiter betrachten werden. Wenn für ein i {0, 1, 2, 3} eine formale Sprache L von einer Typ-i-Grammatik erzeugt wird, dann sagt man auch, L sei eine Typ-i-Sprache oder kurz vom Typ i. Rechtslineare Grammatiken 23/25

39 Was ist wichtig Das sollten Sie mitnehmen: Definition rechtslineare Grammatiken Das sollten Sie üben: rechtslineare Grammatiken konstruieren (zu gegebenem Akzeptor, regulären Ausdruck, formaler Sprache) Rechtslineare Grammatiken 24/25

40 Zusammenfassung reguläre Ausdrücke werden von diversen Unix-Tools genutzt in manchen Programmiersprachen zur Textverarbeitung praktisch rechtslineare Grammatiken Zusammenfassung 25/25

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/47 Was kann

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 19: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

15 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N

15 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N 15 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N Am Ende von Einheit 14 über endliche Automaten haben wir gesehen, dass manche formale Sprachen zwar von kontextfreien

Mehr

19 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N

19 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N 19 R E G U L Ä R E AU S D R Ü C K E U N D R E C H T S L I N E A R E G R A M M AT I K E N Am Ende von Einheit 18 über endliche Automaten haben wir gesehen, dass manche formale Sprachen zwar von kontextfreien

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Grundbegriffe der Informatik Tutorium 11

Grundbegriffe der Informatik Tutorium 11 Grundbegriffe der Informatik Tutorium 11 Tutorium Nr. 32 Philipp Oppermann 29. Januar 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Grundbegriffe der Informatik Tutorium 33

Grundbegriffe der Informatik Tutorium 33 Tutorium 33 02.02.2017 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Gliederung 1 2 3 Ein ist ein Tupel A = (Z, z 0, X, f, Y, h)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Formale Sprachen und Automaten Kapitel 1: Grundlagen Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Ziel Einführung der wichtigsten

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Formale Sprachen. Reguläre Sprachen. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Reguläre Sprachen. Rudolf FREUND, Marian KOGLER Formale Sprachen Reguläre Sprachen Rudolf FREUND, Marian KOGLER Endliche Automaten - Kleene STEPHEN KLEENE (99-994) 956: Representation of events in nerve nets and finite automata. In: C.E. Shannon und

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen

Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Nachklausur zur Vorlesung Informatik 3 mit einigen Anmerkungen zu Lösungen Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 6 7 7 8 8 12 err. Punkte Gesamtpunktzahl: Note: 1 Aufgabe 1 (3+1+1+1 = 6 Punkte) Es seien

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was isher geschah: Formale Sprachen Alphaet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen reguläre Ausdrücke: Syntax, Semantik, Äquivalenz Wortersetzungssysteme Wortersetzungsregeln

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Reguläre Ausdrücke. Karin Haenelt

Reguläre Ausdrücke. Karin Haenelt Reguläre Ausdrücke Karin Haenelt 25.04.2010 1 Inhalt Einführung Definitionen Kleene-Theorem Schreibweisen regulärer Ausdrücke Eigenschaften regulärer Sprachen 2 Was sind reguläre Ausdrücke? Reguläre Ausdrücke

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

Was ist ein Compiler?

Was ist ein Compiler? Was ist ein Compiler? Was ist ein Compiler und worum geht es? Wie ist ein Compiler aufgebaut? Warum beschäftigen wir uns mit Compilerbau? Wie ist die Veranstaltung organisiert? Was interessiert Sie besonders?

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Informatik A ( Frank Hoffmann)

Informatik A ( Frank Hoffmann) Teillösungen zum 1. Aufgabenblatt zur Vorlesung Informatik A ( Frank Hoffmann) 1. Improvisieren Stellen Sie die Zahl 6 dar durch einen Ausdruck, der genau dreimal die Ziffer i enthält und ansonsten neben

Mehr

Grundbegriffe der Informatik Tutorium 7

Grundbegriffe der Informatik Tutorium 7 Grundbegriffe der Informatik Tutorium 7 Tutorium Nr. 16 Philipp Oppermann 16. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass: OOP (Java), 3. Syntaxdiagramme und Grammatikregeln 1/32 Objektorientierte Programmierung Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass Martin-Luther-Universität Halle-Wittenberg

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19 1/19 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 9: Speicher Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/20 Überblick Speicher Bit und Byte Speicher als Tabellen

Mehr

Einführung in die Informatik Grammars & Parsers

Einführung in die Informatik Grammars & Parsers Einführung in die Informatik Grammars & Parsers Grammatiken, Parsen von Texten Wolfram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben in den vorangehenden Kapiteln meistens vollständige Java- Programme

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Sommersemester 2011 Dozent: Prof. Dr. J. Rothe, Prof. Dr. M. Leuschel J. Rothe (HHU Düsseldorf)

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen.

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen. 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Formale Sprachen. www.kit.edu. Institut für Angewandte Informatik Programmieren I Formale Sprachen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Formale Sprachen: Allgemeines Sprachen werden

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken 1 / 15 Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken Prof. Dr. Hans Kleine Büning FG Wissensbasierte Systeme WS 08/09 2 / 15 Deterministischer endlicher Automat (DEA) Definition 1:

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

Reguläre Ausdrücke. Michael Jäger. 4. April 2017

Reguläre Ausdrücke. Michael Jäger. 4. April 2017 Reguläre Ausdrücke Michael Jäger 4. April 2017 Zeichenketten und Sprachen Ein Alphabet ist eine endliche Menge von Symbolen. Beispiele: 1. Σ 1 = {0, 1} 2. Σ 2 = {a, b, c, d, e, f, g, h, i, j, k, l, m,

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 6: formale Sprachen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/18 Überblick Formale Sprachen Formale Sprachen

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Automatentheorie und formale Sprachen rechtslineare Grammatiken

Automatentheorie und formale Sprachen rechtslineare Grammatiken Automatentheorie und formale Sprachen rechtslineare Grammatiken Dozentin: Wiebke Petersen 17.6.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Pumping lemma for regular languages

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete, Abbildungen, Aussagenlogik Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/32 Überblick Alphabete

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Kapitel 2. Methoden zur Beschreibung von Syntax

Kapitel 2. Methoden zur Beschreibung von Syntax 1 Kapitel 2 Methoden zur Beschreibung von Syntax Grammatik, die sogar Könige zu kontrollieren weiß... aus Molière, Les Femmes Savantes (1672), 2. Akt 2 Ziele Zwei Standards zur Definition der Syntax von

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Satz (Abschluß unter der Stern-Operation)

Satz (Abschluß unter der Stern-Operation) Satz (Abschluß unter der Stern-Operation) Wenn L eine reguläre Sprache ist, dann ist auch L regulär. Beweis: Es gibt einen NFA M = (Z, Σ, S, δ, S, E) mit L(M) = L. Wir bauen aus diesem NFA nun wie folgt

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 14: Endliche Automaten Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/38 Überblick Erstes Beispiel: ein Getränkeautomat Mealy-Automaten

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken

Mehr

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie.

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Formale Sprachen Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Inhaltsübersicht und Literatur Formale Sprachen: Definition und Darstellungen Grammatiken für formale Sprachen

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Multimedia Technologie II

Multimedia Technologie II Vorlesung / Übungen Multimedia Technologie II Prof. Dr. Michael Frank / Prof. Dr. Klaus Hering Sommersemester 2004 HTWK Leipzig, FB IMN Für die externe Vorhaltung der DTD werden sämtliche zwischen den

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Parsing-EinfŸhrung Ð 1

Parsing-EinfŸhrung Ð 1 Parsing-EinfŸhrung bersicht Falsifizierbarkeit, oder: Sind Grammatiken wissenschaftlich? Grammatik, Formalismus Kontextfreie Grammatiken Ableitungen Ziel Verstehen der linguistischen Motivation Intuitives

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

syntax.tex Eine Übersicht

syntax.tex Eine Übersicht syntax.tex Eine Übersicht Bernd Worsch 7. Juli 1997 Inhaltsverzeichnis 1 Einleitung 1 2 Bevor es funktioniert... 1 3 Grundelemente von syntax.tex 1 4 Strukturelemente von syntax.tex 3 5 Setzen von Syntaxdiagrammen

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme Stefan Brass: OOP (Java), 3. 1/31 Objektorientierte Programmierung Kapitel 3: Stefan Brass Martin-Luther-Universität Halle-Wittenberg Wintersemester 2014/15 http://www.informatik.uni-halle.de/ brass/oop14/

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen (noch weiter) 2.3. Kontextfreie Sprachen 2/4,

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Aufgabentypen die in der Klausur vorkommen

Aufgabentypen die in der Klausur vorkommen Aufgabentypen die in der Klausur vorkommen können 1. Nennen Sie fünf wichtige Anwendungsgebiete der Computerlinguistik. 2. Für welches der drei Anwendungsgebiete Maschinelle Übersetzung, Rechtschreibkorrektur

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr