Sommersemester Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik

Größe: px
Ab Seite anzeigen:

Download "Sommersemester 2015. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik"

Transkript

1 Sommersemester 2015 Analytisches CRM Prozess und Methoden Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische Universität Eichstätt-Ingolstadt

2 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

3 Literatur 3 Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. (2006): Multivariate Analysemethoden Eine anwendungsorientierte Einführung,11. Aufl., Berlin. Berry, M. J. A.; Linoff, G. S. (2000): Mastering Data Mining The Art and Science of Customer Relationship Management, New York. Blattberg, R. C.; Kim, B. D.; Neslin, S. A. (2008): Database Marketing, Analyzing and Managing Customers, New York. Hippner, H.; Hubrich, B.; Wilde, K. D. (Hrsg.) (2011): Grundlagen des CRM. Strategie, Geschäftsprozesse und IT-Unterstützung, 3. Aufl., Wiesbaden. Hippner, H., Küsters, U., Meyer, M., Wilde, K. D. (2001): Handbuch Data Mining im Marketing Knowledge Discovery in Marketing Databases, Wiesbaden.

4 Einführung Curriculum 4 Grundlagen des CRM (Wintersemester) Analytisches CRM (Sommersemester) Business Intelligence (Sommersemester) CRM: IT-Systems (Sommersemester) CRM in der Praxis (Wintersemester) Das Master-Modul Analytische CRM besteht aus den Veranstaltungen Analytisches CRM: Prozess und Methoden und Analytisches CRM: Anwendungen Gesonderte Anmeldung für beide Veranstaltungen per KU-Campus erforderlich. Vorlesung Prozess und Methoden jeweils 105 Minuten (12:15-14:00) bis Die Übung Anwendungen beginnt am

5 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

6 Operatives und analytisches CRM Definition 6 Customer Relationship Management (CRM) versucht mit Hilfe moderner Informations- und Kommunikationstechnologien, auf lange Sicht profitable Kundenbeziehungen durch ganzheitliche und individuelle Marketing-, Salesund Servicekonzepte aufzubauen und zu festigen. Zentrale Gestaltungsbereiche des CRM sind die Entwicklung der Strategie für das Management von Kundenbeziehungen (CRM-Strategie) die Ausrichtung aller kundenbezogenen Geschäftsprozesse auf die Erfordernisse dieser CRM-Strategie die Unterstützung dieser kundenbezogenen Geschäftsprozesse durch geeignete IT-Systeme, in Form einer Zusammenführung aller kundenbezogenen Daten (Datenintegration, One Face of the Customer ) kundenindividuelle Ausrichtung und Synchronisation der Kundenansprache (Prozessintegration, One Face to the Customer )

7 Operatives und analytisches CRM Kernprozesse im CRM 7 Kundenwertanalyse Übergreifende Prozesse Kundensegmentierung Kundencharakterisierung Strategische Zielsetzung Strategische Analyse Vision Umfeldanalyse Ressourcenanalyse SWOT- Analyse Strategische Konzeption Strategie Entwicklung Zielgruppenanalyse Maßnahmenspezifische Prozesse Cross-Selling- Analyse Abwanderungsanalyse Analytische CRM-Prozesse Kundenrisikoanalyse Operative CRM-Prozesse Strategischer CRM-Prozess Marketing -Prozesse Sales-Prozesse Leistungs- Service-Prozesse erstellung Kampagne Lead Opportunity Angebot Auftrag Strategie Umsetzung Strategisches Controlling Ergebnis Controlling Prozess Controlling Feedback Support

8 Operatives und analytisches CRM Architektur von CRM-Systemen 8 Marketing- Prozesse Sales- Prozesse Service- Prozesse Back Office Enterprise Ressource Planning Supply Chain Management Interaktionskanäle Customer Touch Points CRM- Anwendungen Basis- Anwendungen Operative CRM-Systeme Analytische CRM-Systeme Pers. Kontakt WWW Telefon Brief/Fax Etc. Außendienst Innendienst CIC Filiale Website Stammdaten Data Mining Operative Kundendatenbank Data Warehouse OLAP In Anlehnung an: Leußer, W.; Hippner, H.; Wilde, K. D. (2011): CRM Grundlagen, Konzepte und Prozesse, in: Hippner et al. 2011, S Etc. Kampagne Opportunity Feedback Lead Angebot/Auftrag Support Aktivitäten Kontakt Eskalation Workflow

9 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

10 Kundendaten Inhalte von Kundendaten 10 Identifikationsdaten Daten zur Identifikation des individuellen Kunden. Umfassen Identifikationsdaten i. e. S. (Kundennummer, Name, Vorname, Anrede, Akademische Titel) auch Adress- und Kontaktdaten, um die Erreichbarkeit des Kunden zu sichern. Deskriptionsdaten Daten zur Beschreibung geschäftsrelevanter Eigenschaften individueller Kunden (Kundenprofil) und ihres sozialen Umfeldes (Soziografie). Transaktionsdaten Daten zur Dokumentation aller Transaktionen, die innerhalb einer Kundenbeziehung stattfinden. Dazu gehören neben den Kaufakten des Kunden (Kaufhistorie) alle vor- und nachgelagerten Kommunikations-Episoden zwischen Unternehmen und Kunden (Kontakthistorie) sowie Daten über das Produktnutzungsverhalten des Kunden.

11 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

12 Data Warehouse und OLAP Data Warehouse 12 Begriffsbestimmung Datenbank, die aus der technischen Sicht Daten aus verschiedenen Datenquellen integriert und aus der betriebswirtschaftlichen Sicht dem Anwender diese Daten zu Analysezwecken zur Verfügung stellt (Bauer/Günzel 2004, S. 5). Datenbank, die als unternehmensweite Datenbasis für alle Ausprägungen managementunterstützender Systeme dient und durch eine strikte Trennung von operationalen und entscheidungsunterstützenden Daten und Systemen gekennzeichnet ist (Mucksch/Behme 2000, S. 6). Bauer, A.; Günzel, H. (2004): Data Warehouse Systeme, 2. Aufl., Heidelberg. Mucksch, H.; Behme, W. (2000): Das Data Warehouse-Konzept als Basis einer unternehmensweiten Informationslogistik, in: Mucksch, H.; Behme, W. (Hrsg.): Das Data Warehouse-Konzept, 4. Aufl., Wiesbaden, S Bange, C. (2006): Werkzeuge für analytische Informationssysteme, in: Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische Informationssysteme Business Intelligence-Technologien und -Anwendungen, 3. Aufl., Berlin u. a., S

13 Data Warehouse und OLAP OLAP (Online Analytical Processing) 13 Begriffsbestimmung und Aufbau OLAP wurde 1993 von Codd/Codd/Salley konzipiert als innovativer Analyseansatz [ ], der eine dynamische Analyse in multi-dimensionalen Datenräumen ermöglichen sollte (Kemper et al. 2006, S. 93). OLAP ist im Gegensatz zu OLTP (Online Transaction Processing) nicht auf die Unterstützung operativer Geschäftsprozesse zugeschnitten, sondern ermöglicht Fachund Führungskräften dynamische und multidimensionale Analysen auf historischen und konsolidierten Datenbeständen (Gluchowski et al. 1997, S. 282; Gluchowski/Chamoni 2006, S. 145). OLAP-Tabellen oder Würfel (Hypercubes) bilden ausgewählte Kennzahlen (Fakten) nach ausgewählten Gliederungskriterien (Dimensionen) aus dem DWH ab. Codd, E.; Codd, S. B.; Salley, C. T. (1993): Providing OLAP to User-Analysts: An IT Mandate. (Zugriff: ). Gluchowski, P.; Chamoni, P. (2006): Entwicklungslinien und Architekturkonzepte des On-Line Analytical Processing, in: Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische Informationssysteme Business Intelligence-Technologien und -Anwendungen, 3. Aufl., Berlin u. a., S Gluchowski, P.; Gabriel, R.; Chamoni, P. (1997): Management-Support- Systeme Computergestützte Informationssysteme für Führungskräfte und Entscheidungsträger, Berlin u. a. Kemper, H.-G.; Mehanna, W.; Unger, C. (2006): Business Intelligence Grundlagen und praktische Anwendungen: Eine Einführung in die IT-basierte Managementunterstützung, 2. Aufl., Wiesbaden.

14 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

15 Gegenstand des Data Mining Definition 15 Data Mining nimmt Bezug auf ein Bild aus dem Bergbau (Mining). Dort werden mit massivem Technikeinsatz riesige Gesteinsmengen maschinell abgebaut und aufbereitet, um Edelmetalle und Edelsteine zu fördern. Analog werden beim Data Mining riesige Datenberge mit modernsten Techniken nach neuen, interessanten Mustern ( Nuggets ) durchsucht. Data Mining ist die automatisierte Analyse umfangreicher Datenbestände mit dem Ziel, neue, generalisierbare und handlungsrelevante Strukturen zu erkennen. Hippner, H.; Grieser, L.; Wilde, K. D. (2011): Data Mining Grundlagen und Einsatzpotenziale in analytischen CRM-Prozessen, in: Hippner, H.; Hubrich, B.; Wilde, K. D. (Hrsg.): Grundlagen des CRM, 3. Aufl., Wiesbaden, S

16 Gegenstand des Data Mining Methoden 16 Problemtypen des Data Mining Vielzahl von Methoden aus unterschiedlichen Forschungstraditionen : Mathematik, Informatik, Statistik, Künstliche Intelligenz, Neurobiologie In Anlehnung an Hippner, H.; Grieser, L.; Wilde, K. D. (2011): Data Mining Grundlagen und Einsatzpotenziale in analytischen CRM-Prozessen, in: Hippner, H.; Hubrich, B.; Wilde, K. D. (Hrsg.): Grundlagen des CRM, 3. Aufl., Wiesbaden, S

17 Gegenstand des Data Mining Prozess 17

18 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

19 Data Mining-Werkzeuge Charakteristika und Anwendungsbeispiel 19 Charakteristika von Data Mining-Werkzeugen Dialogorientierte Unterstützung aller Prozessphasen Breites Methodenangebot für alle Aufgabenbereiche Anwendungsbeispiel Churn-Analyse (Life-Demo) IBM SPSS

20 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

21 Methoden des Data Mining Übersicht 21 Klassifikation Segmentierung Regression Abhängigkeit Neuronale Netze x x x x K & R-Bäume x x Clusteranalyse x Assoziationsanalyse x Lineare Regression x x Log. Regression x x

22 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

23 Künstliche Neuronale Netze Aufbau biologischer neuronaler Netze 23

24 Künstliche Neuronale Netze Aufbau künstlicher neuronaler Netze (KNN) 24

25 Künstliche Neuronale Netze Eingangs- und Aktivierungsfunktion 25 Eingangsfunktion (z. B. Skalarprodukt) ε = n j= 1 w j e j Aktivierungsfunktion (z. B. linear oder Identität) c = χε bzw. c = ε Konstante χ dient als Skalierungsfaktor

26 Künstliche Neuronale Netze Aktivierungsfunktionen 1/2 26 Verlaufsform Mathematische Beschreibung Graphische Darstellung Anmerkungen linear, unbegrenzt c = χ. ε + δ mit χ > 0; ε, δ R Mit χ = 1 und δ = 0 ergibt sich die Identitätsfunktion. Rampenfunktion (linear, begrenzt) β fallsε σ c = α fallsε σ ' χ ε + δ sonst mit β, α, ε, σ, σ, δ R Der untere Schwellenwert σ muss überschritten werden, bis eine Ausgabe erfolgt; ab σ erfolgt keine Änderung der Ausgabe mehr. Die Funktion ist nicht differenzierbar.

27 Künstliche Neuronale Netze Aktivierungsfunktionen 2/2 27 Verlaufsform Mathematische Beschreibung Graphische Darstellung Anmerkungen Schwellenwertfunktion (Treppenfunktion) Sigmoidfunktion β fallsε σ c = α sonst mit β, α, ε, σ R z.b. logistische Funktion: 1 c = δ ε 1 + e mit δ > 0; ε R oder Tangens Hyperbolicus: c = tanh(ε) mit ε R Beim Erreichen von σ erfolgt eine sprungartige Änderung der Aktivität. Hierdurch können Schwierigkeiten beim Lernvorgang hervorgerufen werden. Eingeschränkter Einsatzbereich, da keine kontinuierlichen Werte erzeugt werden können. Die Ausgabe konvergiert gegen α bzw. β. Tangens Hyperbolicus hat beim Lernverfahren Geschwindigkeitsvorteile gegenüber logistischer Funktion. Die Funktion ist differenzierbar (Voraussetzung für den Einsatz bestimmter Lernverfahren).

28 Künstliche Neuronale Netze Struktur eines KNN 28 INPUT LAYER HIDDEN LAYER OUTPUT LAYER w 14 = 3 4 w 48 = 1 1 w 24 = Eingangs- muster 2 3 w 37 w w = = 4 6 = 1 Verbindungsgewicht vom Neuron i zum Neuron j: w ij Ausgangs- muster

29 Künstliche Neuronale Netze Lernverfahren 29 Lernen Überwachtes Lernen Lernen von Regeln aus Beispielen mit bekannter Lösung Unüberwachtes Lernen Lernen von Regeln aus dem Vergleich von Objekten

30 Künstliche Neuronale Netze 30 Grundprinzip überwachter Lernverfahren Ausgabe erwünschte Ausgabe verdeckte Schicht(en) Eingabemuster Ausgabeschicht Eingabeschicht Neuronales Netz Differenzvektor (teaching input)

31 Künstliche Neuronale Netze Grundprinzip überwachter Lernverfahren 31 Fehlerfunktion Skalares Maß für die Ähnlichkeit von Soll-/Istausgabe Beispiel: Summe der Abweichungsquadrate D = i i ( A j S j ) i j 2 Nichtlineare Optimierungsmethoden Minimierung der Fehlerfunktion in Abhängigkeit von w ij Gradientenmethoden, z. B. Backpropagation

32 Künstliche Neuronale Netze Grundprinzip unüberwachter Lernverfahren 32 Self-Organizing Maps (SOM) zur Segmentierung Jedes Eingangsneuron ist mit jedem Ausgangsneuron verbunden Gewinner Nachbarn 1 Datensätze anlegen 2 3 Gewichte anpassen Gewinner berechnen Gewinner-Neuron: minimale Distanz zwischen Inputvektor und Gewichtungsvektor des Neurons Gewichtsanpassung bei Nachbar-Neuronen: Anpassung in Richtung des Eingabemusters Input w i,10 (Input-w i,10 ) 2 Input w i,9 (Input-w i,9 ) 2 0,50 0,40 0,01 0,50 0,90 0,16 0,20 0,40 0,04 0,20 0,90 0,49 0,10 0,10 0,00 0,10 0,90 0,64 0,90 0,80 0,01 0,90 0,10 0,64 Summe 0,06 Summe 1,93 NEU ALT i w i,9 = 0,9 * w i,9 + 0,1 * Input 1 0,86 0,9 * 0,90 + 0,1 * 0,50 2 0,83 0,9 * 0,90 + 0,1 * 0,20 3 0,82 0,9 * 0,90 + 0,1 * 0,10 4 0,18 0,9 * 0,10 + 0,1 * 0,90

33 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

34 Klassifikations- und Regressionsbäume Aufgabe und Funktionsprinzip 34 Klassifikationsbaum Datenstruktur Eine Zielgröße Mehrere erklärende Merkmale Datenbasis: Fälle mit bekanntem Ergebnis Modellbildung Automatische Aufspaltung nach dem besten erklärenden Merkmal Regeln über Klassenzugehörigkeit bei bestimmten Merkmalen Generalisierung: Regelanwendung auf neue Fälle Kundenbasis 5000 Kündiger (50,0%) 5000 Nicht-Kündiger (50,0%) Letzte Bestellung < 6 Monate 3000 Kündiger (37,5%) 5000 Nicht-Kündiger (62,5%) Kunde seit > 3 Jahren 500 Kündiger (11,1%) 4000 Nicht-Kündiger (88,9%) Alter < 40 Jahre 2000 Kündiger (100,0%) 0 Nichtkündiger (0,0%) Blatt Wurzel Kunde seit < 3 Jahren 2500 Kündiger (71,4%) 1000 Nicht-Kündiger (28,6%) Kante Letzte Bestellung > 6 Monate 2000 Kündiger (100,0%) 0 Nicht-Kündiger (0,0%) Alter > 40 Jahre 500 Kündiger (33,3%) 1000 Nicht-Kündiger (66,7%) Innerer Knoten

35 Klassifikations- und Regressionsbäume Aufgabe und Funktionsprinzip 35 Regressionsbaum Datenstruktur Eine Zielgröße Mehrere erklärende Merkmale Datenbasis: Fälle mit bekanntem Ergebnis Modellbildung Automatische Aufspaltung nach dem besten erklärenden Merkmal Regeln über Klassenzugehörigkeit bei bestimmten Merkmalen Generalisierung: Regelanwendung auf neue Fälle Kunde seit > 3 Jahren 4500 Kunden 1500 Durchschnittsumsatz Blatt Wurzel Kundenbasis Kunden 1018 Durchschnittsumsatz Letzte Bestellung < 6 Monate 8000 Kunden 1222 Durchschnittsumsatz Alter <= 40 Jahre 2000 Kunden 800 Durchschnittsumsatz Kunde seit < 3 Jahren 3500 Kunden 864 Durchschnittsumsatz Kante Letzte Bestellung > 6 Monate 2000 Kunden 200 Durchschnittsumsatz Alter > 40 Jahre 1500 Kunden 950 Durchschnittsumsatz Innerer Knoten

36 Klassifikations- und Regressionsbäume Begriffe und Eigenschaften 36 Begriffe: Split Aufteilung in Untermengen Homogener Knoten enthält nur Objekte einer Klasse Binärbaum 2er-Splits pro Knoten Eigenschaften: Leichte Verständlichkeit und Interpretierbarkeit Intervallweise Abbildung nichtlinearer Relationen Regeln können sehr komplex werden: Maßnahmen zur Komplexitätsreduktion Stopp-Kriterien Pruning-Strategien

37 Klassifikations- und Regressionsbäume Vorgehensweise Start: alle Objekte befinden sich in einem Knoten 2. Suche nach dem besten Klassifikationsmerkmal 3. Klassifizierung der Objekte nach diesem Merkmal 4. Rekursive Anwendung der Schritte 2 und 3 bis zum Stopp 5. Nachträgliches Zurückschneiden des Baumes (Pruning)

38 Klassifikations- und Regressionsbäume Attributwahl 38 Objektmenge: Split A: generell 20 % Fehler Split B: je nach Gruppe 0 oder 29 % Fehler Was ist besser? Festlegung eines Fehlermaßes

39 Klassifikations- und Regressionsbäume Attributwahl Gini-Index 39 Minimierung der Heterogenität Wahrscheinlichkeit, bei Stichprobe n=2 Objekte aus unterschiedlichen Klassen zu erhalten: 1 - p (0,0) - p (1,1) = 1 - p(0)² - p(1)² Minimum = 0,0: alle Objekte aus einer Klasse Maximum = 0,5: Objekte zweier Klassen gleich häufig Beispiel Anzahl: 30 Kündiger 70 Nicht-Kündiger p: 30/100 = 0,3 70/100 = 0,7 Gini-Index = 1-0,3² - 0,7² = 0,42

40 Klassifikations- und Regressionsbäume Attributwahl Gini-Index 40 Berechnung der Heterogenität in einem Split: Split A: Split B: (A, links) = 0,32 (A, rechts) = 0,32 (B, links) = 0,49 (B, rechts) = 0,0 Gewichteter Durchschnitt A: 0,32 B: 0,44 A wird bevorzugt!

41 Klassifikations- und Regressionsbäume Weitere Heterogenitätsmaße 41 Chi-Quadrat-Test Klassifikationsprobleme Maß für die Abhängigkeit zwischen Merkmal und Zielgröße Auswahl des Merkmals mit dem höchsten Chi-Quadrat-Signifikanzwert Aufbau des Chi-Quadrat-Unabhängigkeitstests (Zugriff: ).

42 Klassifikations- und Regressionsbäume Weitere Heterogenitätsmaße 42 F-Test Regressionsprobleme Test auf Signifikanz von Mittelwert-Unterschieden in Stichproben Auswahl des Merkmals mit der höchsten Signifikanz der Mittelwert-Unterschiede Aufbau des F-Tests (Zugriff: ).

43 Klassifikations- und Regressionsbäume Stopp-Kriterien 43 Natürliche Stopp-Kriterien Knoten enthält nur Objekte mit dem gleichen Wert der Zielvariablen Alle Erklärungsmerkmale ausgeschöpft Weitere Stopp-Kriterien Minimale Objektzahl je Knoten (absolut/prozentual) Grenzwert für Verbesserung der Homogenität Maximale Baumtiefe

44 Klassifikations- und Regressionsbäume Pruning 44 Vereinfachung komplexer Bäume Einfachheit Overfitting/Generalisierungsfähigkeit Top-Down-Pruning: Stopp-Kriterien bei Baumerstellung Bottom-Up-Pruning: Nachträgliches Stutzen Pruning von Splits mit geringem Homogenitäts-Beitrag Pruning zur Beseitigung von Overfitting Überprüfung anhand von Validierungsdaten Baumteile ohne nennenswerten Klassifikations-Beitrag auf Validierungsdaten werden zurückgeschnitten.

45 Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

46 Clusteranalyse Aufgabe der Clusteranalyse 46 Datenstruktur Keine Zielgröße Mehrere beschreibende Merkmale Datenbasis: Objekte (z. B. Kunden) mit ihrem Merkmalsprofil Serviceanspruch Modellbildung Agglomerativ: Schrittweise Zusammenfassung der ähnlichsten Objekte Partitionierend: Zufällige Ausgangsgruppierung und schrittweise Umordnung Clusterbeschreibung anhand des typischen Merkmalsprofils Zahlungsbereitschaft

47 Clusteranalyse Beispiel Kundensegmentierung Mobilkommunikation 47 Merkmale: Anzahl der Gespräche pro Woche Dauer der Gespräche Zeitpunkt (Geschäftszeit, Wochenende,...) Inland-/Auslandsgespräch,... Charakterisierung der Kundengruppe durch typische Merkmalsausprägungen und charakteristische Bezeichnung: Wochenendtelefonierer, Geschäftsreisender-Inland,...

48 Clusteranalyse Proximitätsmaße 48 Proximitätsmaß quantifiziert die Ähnlichkeit oder die Unähnlichkeit von Objekten Proximitätsmaß überführt Rohdatenmatrix in eine Ähnlichkeits- oder Distanzmatrix Ähnlichkeitsmaß: je höher desto größer die Ähnlichkeit Distanzmaß: je höher desto kleiner die Ähnlichkeit Rohdatenmatrix Ähnlichkeits- oder Distanzmatrix

49 Clusteranalyse Proximitätsmaße 49 Proximitätsmaße Metrische Skalen Nominal-Skalen Q-Korrelationskoeffizient City-Block- Metrik Tanimoto- Koeffizient M-Koeffizient Euklidische Distanz Distanzmaße Ähnlichkeitsmaß RR-Koeffizient Ähnlichkeitsmaße

50 Clusteranalyse Proximitätsmaße für metrische Skalen 50 City-Block-Metrik Rohdaten M 1 M 2 M 3 Objekt Objekt d = = = 4 Serviceanspruch Zahlungsbereitschaft (Quadrierte) Euklidische Distanz d d = d 2 = = = = 2,45 Serviceanspruch Zahlungsbereitschaft

51 Clusteranalyse Proximitätsmaße für metrische Skalen 51 Q-Korrelationskoeffizient Ähnlichkeit = Korrelation der Merkmalsprofile der Objekte Rohdaten Objekt 1 Objekt 2 Objekt 3 Objekt 4 M 1 M 2 M Korrelation zwischen Wertevektoren ,000,000 1,000-1,000,000 1,000,000,000 1,000,000 1,000-1,000-1,000,000-1,000 1,000 Identischer Profilverlauf Korrelation = 1 Entgegengesetzter Profilverlauf Korrelation = -1

52 Clusteranalyse Wahl des Proximitätsmaßes 52 Entscheidender Einfluss auf die Ähnlichkeit der Objekte Abhängig vom Untersuchungsgegenstand: Sind die Profilverläufe von Interesse? z. B. Umsatzentwicklung Q-Korrelationskoeffizient Interessiert der absolute Abstand? z. B. Umsatzhöhe City-Block, Euklid Metrische Skalen Standardisierung der Merkmale Keine Maßstabsinvarianz der Proximitätsmaße!

53 Clusteranalyse Nominale Skalen Grundlagen 53 Familienstand: ledig=1/verheiratet=2/geschieden=3 Umcodieren in Binärvariable für jede Ausprägung, da Ähnlichkeit nicht aus den Codierungen bestimmbar Familienstand: 3 neue Binärvariablen: ledig nein=0/ja=1 verheiratet nein=0/ja=1 geschieden nein=0/ja=1

54 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 54 Ähnlichkeit abhängig von Merkmalsübereinstimmung Objekt 2 Eigenschaft vorhanden nicht vorhanden Objekt 1 Eigenschaft vorhanden nicht vorhanden a b Berechnung von Proximitätsmaßen aus a, b, c, d Implizite Gewichtung der Merkmale durch Anzahl der Binärmerkmale Gewichtung der Merkmale c d

55 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 55 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M 10 Objekt 1 Objekt Objekt 1 Eigenschaft vorhanden nicht vorhanden Objekt 2 Eigenschaft vorhanden nicht vorhanden a=3 c=2 b=3 d=2

56 Clusteranalyse Nominale Skalen Ähnlichkeit bei Binärvariablen 56 Tanimoto-Koeffizient: a a + b + c Simple Matching (M)-Koeffizient: a + d a + b + c + d Russel & Rao (RR)-Koeffizient: a a + b + c + d

57 Clusteranalyse Proximität von Clustern (Fusionsalgorithmen) 57 Single-Linkage: Clusterabstand ist der kleinste Abstand zweier Objekte aus verschiedenen Clustern Complete-Linkage: Clusterabstand ist der größte Abstand zweier Objekte aus verschiedenen Clustern Average-Linkage: Clusterabstand ist der mittlere Abstand zweier Objekte aus verschiedenen Clustern Ward: Clusterabstand ist minimal, wenn die Fusion die Summe der Abweichungsquadrate von den Cluster-Mittelwerten am geringsten anwachsen lässt

58 Clusteranalyse Beispiel: Single-Linkage 58 Initiale Distanzmatrix: Fusion von Objekt 1 + Objekt 3 O1 O2 O3 O4 Objekt 2 Objekt 3 Objekt 4 Objekt Distanzmatrix nach Fusion von Objekt 1 + Objekt O2 O4 Objekt 2 Objekt Objekt

59 Clusteranalyse Charakteristika der Fusionsalgorithmen 59 Single-Linkage: Wenige große und viele kleine Ausreißer -Gruppen. Die großen Gruppen können noch interessante Untergruppen enthalten. Tendenz zu Kettenbildung. Complete-Linkage: Etwa gleich große Gruppen, Probleme mit Ausreißern. Ward: Etwa gleich große Gruppen. Probleme mit Ausreißern. Findet meist gute Partitionierungen. => Kombination von Fusionsalgorithmen Single-Linkage Identifikation und Ausschluss kleiner Ausreißer -Gruppen Ward Gute Partitionierung der ausreißerbereinigten Mehrheits-Fälle

60 Clusteranalyse Ablauf partitionierender Verfahren (Beispiel: K-means-Verfahren) Start: Vorgabe von K zufällig ausgewählten Objekten als Startpunkte. 2. Die übrigen Objekte werden dem nächstgelegenen der k Startpunkte zugewiesen. Auf diese Weise entstehen K Cluster. 3. Für jedes der K Cluster wird nun der Zentroid (Mittelpunkt) berechnet (Durchschnittswert aller zu dem Cluster gehörenden Objekte in jeder Dimension). 4. Die Zentroide bilden die neue Ausgangsbasis. Wieder wird jedes Objekt dem nächstgelegenen Zentroid zugewiesen. Da die neuen Zentroide von den Startpunkten abweichen, gibt es eine neue Cluster-Verteilung. 5. Iterative Anwendung von Schritt 3 und 4 bis die Lage der Zentroide stabil ist. Berry/Linoff 2006, S. 104 ff.

61 Clusteranalyse Ablauf partitionierender Verfahren (Beispiel: K-means-Verfahren) 61 Beispiel (Zugriff: ).

62 Clusteranalyse Ablauf agglomerativer Verfahren Start: Jedes Objekt = ein eigenes Cluster 2. Berechnung der Distanzmatrix der Cluster 3. Suche nach den beiden Objekten/Clustern mit minimaler Distanz 4. Fusionierung der ähnlichsten Objekte/Cluster 5. Aktualisierung der Distanzmatrix 6. Zurück zu Schritt 3, bis alle Objekte in einer Gruppe 7. Ende Backhaus et al. 2006, S. 514 f.

63 Clusteranalyse Abbruch des Fusionsprozesses 63 Fusion endet erst, wenn alle Objekte einer Gruppe zugeteilt sind. Abbruch des Fusionsprozesses, wenn fallspezifisch sinnvolle, vorgegebene Gruppenanzahl erreicht Proximitätsmaß stark ansteigt (Elbow-Kriterium) Distanz der fusionierten Cluster Elbow Zahl der Cluster

64 Clusteranalyse Prozess der Clusteranalyse Ergebnisdarstellung 64 Merkmalsverteilungen 2D-Projektion der Cluster Profildiagramm Netzdiagramm

65 65 1 Analytisches CRM 1.1 Operatives und analytisches CRM 1.2 Kundendaten 1.3 Data Warehouse und OLAP 1.4 Gegenstand des Data Mining 1.5 Data Mining-Werkzeuge 2 Methoden des Data Mining 2.1 Künstliche Neuronale Netze 2.2 Klassifikations- und Regressionsbäume 2.3 Clusteranalyse 2.4 Assoziations- und Sequenzanalyse 2.5 Regressionsanalyse 3 Prozess des Data Mining 3.1 Aufgabendefinition 3.2 Auswahl der relevanten Datenbestände 3.3 Datenaufbereitung 3.4 Anwendung von Data Mining-Methoden 3.5 Evaluation der Ergebnisse 3.6 Anwendung der Ergebnisse

Sommersemester 2013. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik

Sommersemester 2013. Analytisches CRM. Prozess und Methoden. Prof. Dr. Klaus D. Wilde. Lehrstuhl für ABWL und Wirtschaftsinformatik Sommersemester 2013 Analytisches CRM Prozess und Methoden Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische Universität Eichstätt-Ingolstadt Übersicht 1 Analytisches CRM 1.1 Operatives und analytisches

Mehr

Customer Relationship Management CRM

Customer Relationship Management CRM Customer Relationship Management CRM 1.1 Zielsetzung von CRM...2 1.2 Komponenten einer CRM-Lösung...4 1.2.1 Aufgabenbereiche eines CRM-Systems...4 1.2.2 Analytisches CRM...7 1.2.3 Operatives CRM...7 1.2.4

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Datenqualitätsmanagement im Customer Relationship Management

Datenqualitätsmanagement im Customer Relationship Management Wolfgang Leußer Datenqualitätsmanagement im Customer Relationship Management Verlag Dr. Kovac Hamburg 2011 Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis XVII XIX XXI

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Feedback-Management als Daten-Schatz für das Multi-Channel-Marketing

Feedback-Management als Daten-Schatz für das Multi-Channel-Marketing Feedback-Management als Daten-Schatz für das Multi-Channel- - Strategische CRM-Unternehmensberatung Vortrag im Rahmen des MTP-Alumni Forums Erfolgsfaktor Kundendialog warum Kunden wiederkommen, Darmstadt,

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung Next Best Product Kundenspezifische Produktangebote in einer Multichannel Umgebung - Mag. Thomas Schierer - Erste Bank der oesterreichischen Sparkassen AG Agenda Erste Bank Allgemeine Information CRM in

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

CRM Customer Relationship Management. Dipl.-Psych. Anja Krol

CRM Customer Relationship Management. Dipl.-Psych. Anja Krol CRM Customer Relationship Management Gliederung Entwicklung und Einführung von Bezugspunkte und CRM - Systeme Veränderte Rahmenbedingungen Entwicklung CRM - Systeme» Deregulierung verstärkt internationalen

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Management Support Systeme

Management Support Systeme Folie 1 Management Support Systeme Literatur zur Vorlesung MSS Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter (1997): Management Support Systeme. Computergestützte Informationssysteme für Führungskräfte

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Data Mining Wiederholung Begriffsverständnis Prozessorientiertes Verständnis von Data Mining: entspricht

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Ergebnisse einer explorativen Studie

Ergebnisse einer explorativen Studie Dr. Henning Baars Integration von CRM-Systemen für den Außendienst des industriellen Mittelstandes Ergebnisse einer explorativen Studie Präsentation auf der MKWI 2006 20.02.2006 Prof. Dr. Hans-Georg Kemper,

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Teil A Grundlagen und Methoden 1. 1 Customer Relationship Management ein Bezugsrahmen 3

Teil A Grundlagen und Methoden 1. 1 Customer Relationship Management ein Bezugsrahmen 3 xi Teil A Grundlagen und Methoden 1 1 Customer Relationship Management ein Bezugsrahmen 3 1.1 Die Entwicklung zum kundenzentrierten Unternehmen 3 1.2 Ziel und Kernkonzepte des CRM 5 1.2.1 Ziel: Profitable

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Räumliches Data Mining

Räumliches Data Mining Räumliches Data Mining Spatial Data Mining Data Mining = Suche nach "interessanten Mustern" in sehr großen Datensätzen => explorative Datenanlyse auch: Knowledge Discovery in Databases (KDD) verbreitete

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder.

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. Präsenzübung Service 2.1. CRM Customer-Relationship Management a) Anliegen des CRM Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. CRM, auch Beziehungsmanagement

Mehr

Künstliche Intelligenz Dirk Krechel SS 2009

Künstliche Intelligenz Dirk Krechel SS 2009 Künstliche Intelligenz Dirk Krechel SS 2009 Überblick über das Modul 1. Einführung 2. Symbolische Verfahren Logik Aussagenlogik Prädikatenlogik Horn Logik Prolog 3. Suchen und Bewerten Problemlösen durch

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

CRM im Online-Bereich für die Druck- und Medienindustrie

CRM im Online-Bereich für die Druck- und Medienindustrie CRM im Online-Bereich für die Druck- und Medienindustrie Vorlesung an der Berufsakademie Mannheim Dr. Gerald Lembke www. 30.03.2007 Was ist noch mal Customer-Relationship-Management? CRM ist eine kundenorientierte

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Entscheidungsbaumverfahren

Entscheidungsbaumverfahren Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten von Jürgen Mauerer Foto: Avantum Consult AG Seite 1 von 21 Inhalt Mehrwert aufzeigen nach Analyse des Geschäftsmodells...

Mehr

Diplomarbeiten. Ansätze zur Kundenbewertung im CRM - Möglichkeiten zur Bestimmung des Kundenpotenzials

Diplomarbeiten. Ansätze zur Kundenbewertung im CRM - Möglichkeiten zur Bestimmung des Kundenpotenzials Diplomarbeiten - Möglichkeiten zur Bestimmung des Kundenpotenzials Datengestützte Validierung von Customer-Lifetime-Konzepten Agenda 1) WEKA-MEDIA-Verlage 2) Ziel der ersten Arbeit: Neu- und Bestandskundenbewertung

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K.

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. badger Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. Die www.bawagpskfonds.at neue Bank. Die neue BAWAG. www.bawagpsk.com Montag, 25. Februar 2013 BAWAG P.S.K. EINE BANK

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

Customer Relationship Management

Customer Relationship Management Customer Relationship Management Seminar der AG DBIS: DB-Aspekte des E-Commerce Wintersemester 2001/2001 Christian Amlinger christian@amlinger.de 4. 4. Inhalt 5. Komponenten 5. 5. 5. Komponenten 5.1 acrm

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 4. Messtheorie Messen in den Sozialwissenschaften, Operationalisierung und Indikatoren, Messniveaus,

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr