Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich."

Transkript

1 Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die Animation z.b. bei: Unterhaltungsindustrie Lehre und Forschung Industrie Simulatoren ( z.b. Flugsimulatoren) Bei der Animation kann man unterscheiden zwischen: 2d-Animation: Dies bezeichnet die Animation im Bildraum. Ein Beispiel hierfür ist der Zeichentrickfilm. 3d-Animation: Das ist die Animation im Objektraum. Beispiele sind Filme mit Knetfiguren sowie viele Computeranimationen. 1

2 Echtzeit - Verfahren: Hierbei entstehen Bilder erst, während sie benutzt werden. Die entstehenden Bilder hängen also vom Benutzer ab. Beispiele sind Spiele und Simulationen. Offline - Verfahren: Hier werden ganze Animationen in Vorverarbeitung erzeugt. Der Effekt der Animation entsteht durch das Zeigen vieler Bilder in kurzer Zeit. Typisches Beispiel ist das Videoband. Dieses hat 36 fps (frames per second), d.h. es werden 36 Bilder pro Sekunde gezeigt und es entsteht der Eindruck eines flüssigen, nicht unterbrochenen Films. Abbildung 1.1: Filmstreifen 1.1 Konventionelle Animation Hier werden gezeichnete Bilder verwendet. Bestes Beispiel dafür ist der Zeichentrickfilm Die Vorgehensweise beim Erstellen einer solchen Animation ist: 1) Das Schreiben einer Geschichte: die so genannte story board 2

3 2) Das Erstellen einer Folge von Skizzen. Dies ist die Idee der Animation. Abbildung 1.2: Skizzen 3) Das Erstellen von keyframes ; das sind Bilder, die wesentlich unterschiedlich sind. Abbildung 1.3: keyframes 4) Zwischen den keyframes wird interpoliert: das sogenannte inbetweening 5) Ausmalen der Formen. Diese Schritte liefern einen Versuchsfilm, welcher inspiziert wird. Das Verfahren wird iteriert, bis genügende Ergebnisse entstanden sind. 3

4 1.1.1 Computeranimation (2d) Die Computeranimation automatisiert die Zwischenschritte, insbesondere das zeitliche Interpolieren. 1.2 Techniken der Computeranimation Animation starrer Körper Erfolgt durch Translation, Rotation Animation gegliederter Strukturen Abbildung 1.4: Gegliederte Struktur Teile von solchen Strukturen sind gegeneinander beweglich und durch Gelenke verbunden. Beispiele sind Tiere, Menschen, Roboter dynamische Simulation Beruhen auf physikalischen Gesetzen Bsp. Flugbahn, Verformung Partikelanimation Viele kleine Körper werden animiert, jeder mit eigenem Animationsskript. Bsp. Feuerwerk Verhaltensanimation Hier gibt es sowohl eigene als auch von den Nachbarn abhängige 4

5 Bewegung. Bsp. Vogel- oder Fischschwärme starre Körper Bei der Animation starrer Körper befindet sich dieser in einem Ausgangszustand. Desweiteren wird eine Endposition angegeben, wohin sich der Körper bewegen soll. Die Zwischenpositionen werden mittels Interpolation berechnet Ausgangsposition... } {{ } Endposition Zwischenpositionen durch Interpolation 1. Möglichkeit : Lineare Interpolation Zum Zeitpunkt 0 : Startattribut v s ist ein höherdimensionaler Vektor, der zum Beispiel die Lage (etwa: Koordinaten eines Referenzpunktes und Orientierung, also 6 Freiheitsgrade), Größe, Farbe,... definiert. Man kann z.b. eine Standardlage angeben, davon ausgehend eine Translation um die x y z Achse ausführen. Der Winkel, der verwendet wird, heißt Eulerwinkel. Zum Zeitpunkt 1 : Endattribut v E Zwischenpositionen berechnen sich mittels linearer Interpolation durch folgende Formel: zum Zeitpunkt t [0, 1]: Attribut v t = (1 t) v s + t v E Dies ist oft zufriedenstellend, aber nicht immer: Beispiel hüpfender Ball Abbildung 1.5: Keyframes der Bahn 5

6 Abbildung 1.6: Lineare Interpolation der Bahn Dies ist keine natürliche Bewegung. Der Ort ist nicht nach der Zeit differenzierbar. Die Geschwindigkeit ist nicht stetig. K = m d2 x dt 2 Wenn stetige Kraft auf Körper wirkt, ist auch seine Lage als Funktion der Zeit 2x stetig differenzierbar (siehe Formel). Somit sollte man die Interpolation statt mit einfacher Interpolation Abbildung 1.7: Einfache Interpolation lieber z.b. mit Splines 2. Ordnung, welche 2x differenzierbar sind 6

7 und Interpolationsformel Abbildung 1.8: Interpolation mittels Splines v t = (1 f(t)) v s + f(t) v E (1.1) ausführen Interpolation von Formen ( Morphing ) Als Beispiel werden Polygone verwendet: Abbildung 1.9: Interpolation zwischen Polygonen Lineare Interpolation der Eckpunkte einzeln liefert Zwischenpolygone. Das liefert brauchbare Ergebnisse, wenn Anfangs- und Endformen nicht sehr verschieden sind, sonst: 7

8 Abbildung 1.10: Interpolation mit unbrauchbaren Ergebnissen Gemeint ist wahrscheinlich Drehung um 180, diese lineare Interpolation lässt das Polygon aber verschwinden zum mittleren Zeitpunkt der Interpolation. Für komplexere Objekte verwendet man polygonzugförmige Skelette, die mit obiger Methode behandelt werden. 8

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

Die untere Abbildung zeigt eine Szene aus einer 3D-Computeranimation.

Die untere Abbildung zeigt eine Szene aus einer 3D-Computeranimation. 3D-Animation Als 3D-Animation bezeichnet man die Animation von dreidimensionalen Objekten. Diese können wie echte Objekte gedreht und bewegt werden. Die 3D-Animationen erinnern an die sogenannten Puppentrickfilme.

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien 3D-Animation Als 3D-Animation bezeichnet man die Animation von dreidimensionalen Objekten. Diese können wie echte Objekte gedreht und bewegt werden. Die 3D-Animationen erinnern an die sogenannten Puppentrickfilme.

Mehr

3D-Modellierung / Motion-Capturing. von Kevin O Brien

3D-Modellierung / Motion-Capturing. von Kevin O Brien 3D-Modellierung / Motion-Capturing von Kevin O Brien Inhalt 1. Animationsfilme Geschichte der Animation 3D-Modellierung 2. Special Effects Vorkommen Blue- / Greenscreen Motion-Capturing Kameraführung 2/36

Mehr

Seminar SS 2006 Intelligent Virtual Characters

Seminar SS 2006 Intelligent Virtual Characters Seminar SS 2006 Intelligent Virtual Characters Leiter: Dr. Michael Kipp Johannes Tran Character Animation Materials by Jeff Lander, John Lasseter and Rick Parent Überblick Einführung: Bewegung, Computer

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Computergrafik / Animation. künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten).

Computergrafik / Animation. künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Computergrafik / Animation künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Punkte, werden auch «Kontrollpunkte» genannt Wesentlicher Punkt:

Mehr

künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten).

künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Computergrafik / Animation künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Punkte, werden auch "Kontrollpunkte" genannt Wesentlicher Punkt:

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Animation. Eine Einführung von. Klaus Massanetz Jan 2011. Von: Klaus.Massanetz@gmx.net Download unter:www.massapix.de

Animation. Eine Einführung von. Klaus Massanetz Jan 2011. Von: Klaus.Massanetz@gmx.net Download unter:www.massapix.de Animation Eine Einführung von Klaus Massanetz Jan 2011 Was ist Animation? Animation (von lat. animare, zum Leben erwecken ; animus, Geist, Seele ) 1....ist im engeren Sinne jede Technik, bei der durch

Mehr

Morphing. von Tim Sternberg. Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder

Morphing. von Tim Sternberg. Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder von Tim Sternberg Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder Einleitung Mit Morphing wird der fließende Übergang eines Bildes in ein anderes bezeichnet. Zwei digitale Bilder

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

8 3D-Grafik mit VPython

8 3D-Grafik mit VPython 8 3D-Grafik mit VPython In diesem Kapitel wird das Python-Erweiterungsmodul Visual-Python bzw. VPython vorgestellt. Mit VPython können interaktive und animierte 3D-Szenen erzeugt werden. Dreidimensionale

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Featurebasierte 3D Modellierung

Featurebasierte 3D Modellierung 1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis

Mehr

Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion

Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion Digitale Bildverarbeitung Einheit 12 3D-Rekonstruktion Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Einen Eindruck davon

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

I2: Computeranimation (14)

I2: Computeranimation (14) I2: Computeranimation (14) Durch die Auseinandersetzung mit der Illusion von Bewegung lernen die Schüler geeignete Verfahren kennen, die es ihnen ermöglichen, professionell erstellte Werke zu analysieren

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Kompilieren und Linken

Kompilieren und Linken Kapitel 2 Kompilieren und Linken Bevor wir uns auf C++ selbst stürzen, brauchen wir einiges Vorgeplänkel, wie man komfortabel ein größeres C++- kompilieren kann. Mit Java stellt sich der Kompiliervorgang

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen. Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung Objekte und ihre Beschreibung Einleitung Computergraphik: 3D sehr wichtig photo-realistic rendering Computer-Animation, Modellierung Visualisierung, Virtual Reality Ansatz: per rendering wird eine 3D-Szene

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Probematura Mathematik

Probematura Mathematik Probematura Mathematik Mai / Juni 2013 Seite 1 von 5 Probematura Mathematik VHS 21 / Sommertermin 2013 1. Tennis Tennisspieler trainieren häufig mit einer Ballwurfmaschine. Die hier beschriebene befindet

Mehr

The Animation Process. Proseminar Computer Grafik und Visualisierung Daniel Lagler

The Animation Process. Proseminar Computer Grafik und Visualisierung Daniel Lagler Proseminar Computer Grafik und Visualisierung I. Inhaltsverzeichnis 1. Einleitung 1.1 Definition...3 1.2 Geschichte...3 1.3 Animationsfilme... 3 2. Techniken... 3 2.1 Rotoskopie... 3 2.2 Keyframing...

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Übungen zur Animation & Simulation. Übungsblatt 1

Übungen zur Animation & Simulation. Übungsblatt 1 Übungen zur Animation & Simulation SS 21 Prof. Dr. Stefan Müller et al. Übungsblatt 1 Aufgabe 1 (Die Newton schen Gesetze) Nennen und erklären Sie die Newton schen Gesetze. Aufgabe 2 (Kräfte und numerische

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz

Spline Morphing. Softwarepraktikum im IWR. Carl Friedrich Bolz. Carl Friedrich Bolz Spline Morphing Softwarepraktikum im IWR Einführung Motivation: Splines sind die Grundlage von jeglicher Vektorgrafik, 3D-Grafik, CAD/CAM,... Splines werden häufig zur Beschreibung von Schrift verwendet,

Mehr

Wie erstellt man dynamische Elemente mit JSXGraph?

Wie erstellt man dynamische Elemente mit JSXGraph? Wie erstellt man dynamische Elemente mit JSXGraph? 1. Kurzinformation zu JSXGraph Was ist JSXGraph? Eine freie dynamische Mathematiksoftware, die vollständig in Javascript programmiert ist. Daher benötigt

Mehr

Proseminar 3D-Modellierungsprogramme ANIMATIONEN MIT MAYA. Ramzi Karoui Uni-Ulm SS 06

Proseminar 3D-Modellierungsprogramme ANIMATIONEN MIT MAYA. Ramzi Karoui Uni-Ulm SS 06 Proseminar 3D-Modellierungsprogramme ANIMATIONEN MIT MAYA Ramzi Karoui Uni-Ulm SS 06 INHALTSVERZEICHNIS 1. Einführung 3 2. Die Animationsarten 4 2.1. Keyframe -Animation 4 2.2. Path -Animation... 5 2.3.

Mehr

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig

Tageserträge am Aktienmarkt. und die. 200-Tage-Linie. von. Dr. rer. nat. Hans Uhlig. Copyright 2009 - Dr. Hans Uhlig Tageserträge am Aktienmarkt und die 200-Tage-Linie von Dr. rer. nat. Hans Uhlig Copyright 2009 - Dr. Hans Uhlig Copyright Hinweis Der Text und die Abildungen dieses Beitrages unterliegen dem Urheberrechtsschutz.

Mehr

TUTORIAL ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar

TUTORIAL ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar ADOBE AFTER EFFECTS TUTORIAL von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar In diesem Tutorial werden grundlegende Arbeitsabläufe und Funktionen

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft?

Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Auf welche Stoffe wirkt die Magnetkraft? Auf welche Stoffe wirkt die Magnetkraft? Die Magnetkraft wirkt nur auf bestimmt Stoffe, nämlich Eisen, Nickel und Cobalt. Wie nennt man den Bereich, in dem die Magnetkraft wirkt? Der Bereich in dem die

Mehr

SPEZIALEFFEKTE IN CINEMA4D:

SPEZIALEFFEKTE IN CINEMA4D: ANIMATION UND 3D- VISUALISIERUNG SPEZIALEFFEKTE IN CINEMA4D: TUTORIAL: DER DINO AUS DEM EI ÜBUNGSAUFGABE 4 TEAM E KURZ MARGRET STÖGERER MANUELA 1 Animation Cinema4d EGG + DINO Als Ausgangsbasis für die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern

Feldbacher Markus Manipulationstechnik Kinematik. Kinetik. (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik (Bewegungslehre) Mechanik Lehre von der Bewegung von Körpern Kinematik Lehre von den geo- Metrischen Bewegungsverhältnissen von Körpern. Dynamik Lehre von den Kräften Kinetik Lehre von den Bewegungen

Mehr

A1.7: Entropie natürlicher Texte

A1.7: Entropie natürlicher Texte A1.7: Entropie natürlicher Texte Anfang der 1950er Jahre hat Claude E. Shannon die Entropie H der englischen Sprache mit einem bit pro Zeichen abgeschätzt. Kurz darauf kam Karl Küpfmüller bei einer empirischen

Mehr

A Vortex Particle Method for Smoke, Fire, and Explosions

A Vortex Particle Method for Smoke, Fire, and Explosions Hauptseminar WS 05/06 Graphische Datenverarbeitung A Vortex Particle Method for Smoke, Fire, and Explosions ( Ein Wirbel-Partikel Ansatz für Rauch, Feuer und Explosionen ) Martin Petrasch Inhalt 1. Überblick

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Vektoren mit GeoGebra

Vektoren mit GeoGebra Vektoren mit GeoGebra Eine Kurzanleitung mit Beispielen Markus Hohenwarter, 2005 In GeoGebra kann mit Vektoren und Punkten konstruiert und gerechnet werden. Diese Kurzanleitung gibt einen Überblick über

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,

Mehr

Effekte richtig einsetzen

Effekte richtig einsetzen Einleitung Post-Produktion, also die Nachbearbeitung des Videomaterials, ist eine der wichtigsten, spannendsten und aufwändigsten Aufgaben jeder Filmproduktion. Die Kamera liefert das Rohmaterial (engl.:

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Animationen erstellen

Animationen erstellen Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Kreatives Gestalten mit Flash 5.0

Kreatives Gestalten mit Flash 5.0 Kreatives Gestalten mit Flash 5.0 Animationen, Effekte und Anwendungen für das WWW Bearbeitet von Isolde Kommer 1. Auflage 2000. Buch. 444 S. Hardcover ISBN 978 3 446 21463 7 Format (B x L): 20,1 x 23,6

Mehr

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung)

gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) 7. Modelle für Flächen gekrümmte Flächen / Freiformflächen (analog zur Kurvendarstellung) man unterscheidet 2 Typen: finite Interpolationen / Approximationen: endliche Zahl von Stützstellen / Kontrollpunkten

Mehr

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich.

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich. Kapitel 2 Pulsweitenmodulation Die sogenannte Pulsweitenmodulation (kurz PWM) ist ein Rechtecksignal mit konstanter Periodendauer, das zwischen zwei verschiedenen Spannungspegeln oszilliert. Prinzipiell

Mehr

Betriebsschwingungsformanalyse in ME scopeves auf der Basis von Analyse-Ergebnissen aus der ArtemiS SUITE

Betriebsschwingungsformanalyse in ME scopeves auf der Basis von Analyse-Ergebnissen aus der ArtemiS SUITE 09/14 Betriebsschwingungsformanalyse in ME scopeves auf der Basis von Analyse-Ergebnissen aus der ArtemiS SUITE Einleitung 1 Analyse und ME scope-export in der ArtemiS SUITE 2 Modellerstellung und Import

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

C++ Tutorial: Timer 1

C++ Tutorial: Timer 1 C++ Tutorial: Timer 1 Timer v1.0 Einleitung Raum und Zeit sind spätestens seit der kopernikanischen Wende wichtige Gegenstände des Denkens geworden. In einem Programm bestimmt die Zeit die Abläufe und

Mehr

iterative Hashfunktionen

iterative Hashfunktionen Presentation im Rahmen von "Kryptographie" (SS 2005, Universität Potsdam) über kryptographische Hashfunktionen (Teil 2) iterative Hashfunktionen Holger Herrlich 22.Mai.2005 Grundlage: "Cryptography: Theory

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Das mathematische Modell der inversen Kinematik in der Computeranimation

Das mathematische Modell der inversen Kinematik in der Computeranimation Das mathematische Modell der inversen Kinematik in der Computeranimation 44551 Tobias Ebert HTW Aalen Seminar 44609 Mario Margarone Wintersemester 14/15 Vorwort Heutzutage ist die Kinematik aus den meisten

Mehr

CHARACTER ANIMATION in 3D Studio Max. Ulrike Martus

CHARACTER ANIMATION in 3D Studio Max. Ulrike Martus CHARACTER ANIMATION in 3D Studio Max Ulrike Martus Übersicht: 1. Aufbau von Charakteren 2. Animationsmethoden 3. Skelettanimation 4. Oberflächenanimation 2 1. Aufbau von Charakteren Aufbau von Charakteren

Mehr

Rendering: Lighting & Shading

Rendering: Lighting & Shading Hauptseminar How to make a Pixar Movie WS 2010 / 2011 Rendering: Lighting & Shading von Manuel Schmidt Gliederung: 1 Einführung 1.1 Rendering 1.2 Reflektionsmodelle 1.2.1. Diffuse Reflektion 1.2.2. Spieglende

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Seminarausarbeitung. Character Animation. Seminar: Intelligent Virtual Character SS 2006

Seminarausarbeitung. Character Animation. Seminar: Intelligent Virtual Character SS 2006 Seminarausarbeitung Character Animation Seminar: Intelligent Virtual Character SS 2006 Universität des Saarlandes German Research Center for Artificial Intelligence (DFKI) Saarbrücken, Germany Johannes

Mehr

Modernste 3D Größen- und Formanalysen für Labor und Prozess

Modernste 3D Größen- und Formanalysen für Labor und Prozess Modernste 3D Größen- und Formanalysen für Labor und Prozess Unter den dynamischen Bildanalysesystemen liefert die patentierte 3D Messverfahren des PartAn die genauesten Korngrößen- und Kornfomverteilungen.

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 30 April 2014 Elektrizitätslehre II Martin Loeser Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 1 Lernziele Bei diesem Versuch werden Einschaltvorgänge von Kondensatoren und Spulen

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Kapitel 1 Einführung B. Möller Universität Augsburg 20. April 2012 B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Begriffsdefinition Computergrafik: realistische Darstellung realer oder

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel

Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel Hinweise zur Kalibrierung von Kameras mit einer AICON Kalibriertafel AICON 3D Systems GmbH Celler Straße 32 D-38114 Braunschweig Telefon: +49 (0) 5 31 58 000 58 Fax: +49 (0) 5 31 58 000 60 Email: info@aicon.de

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar ADOBE AFTER EFFECTS 5 - CAMERA - RIG von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar Beim 5 - Camera - Rig wird mit Hilfe von 5 Kameras ein Fulldome

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln

Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln Universität Koblenz Institut für Computervisualistik Arbeitsgruppe Computergraphik Betreuer und Prüfer

Mehr