Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Größe: px
Ab Seite anzeigen:

Download "Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f)."

Transkript

1 Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, Der Rang einer Linearen Abbildung Auch in diesem Abschnitt sei K stets ein Körper Definition: Es seien V, W endlich-dimensionale K-Vektorräume und f : V W eine lineare Abbildung Dann definieren wir den Rang von f als Rang(f) := dim Bild(f) Für eine Matrix A Mat m n (K) setzen wir Rang(A) := Rang(φ A ) Satz: Es seien V, W endlich-dimensionale K-Vektorräume und f : V W eine lineare Abbildung Dann gilt: dim V = dim Kern(f) + Rang(f) Korollar: Eine Matrix A Mat n n (K) ist genau dann invertierbar, wenn gilt Rang(A) = n Satz: U (i) Es seien U, V, W endlich-dimensionale K-Vektorräume mit dim V = n und g V f W lineare Abbildungen Dann gilt: Rang(f) + Rang(g) n Rang(f g) min(rang(f), Rang(g)) (ii) Sind A Mat m n (K) und B Mat n k (K), dann gilt: Rang(A) + Rang(B) n Rang(AB) min(rang(a), Rang(B)) Satz: (i) Es seien V, W endlich-dimensionale K-Vektorräume und f, g Hom(V, W ) Dann gilt: Rang(f + g) Rang(f) + Rang(g) (ii) Für A, B Mat m n (K) gilt: Rang(A + B) Rang(A) + Rang(B) Satz: Es seien V, W endlich-dimensionale Vektorräume und f : V W eine lineare Abbildung Dann gibt es Basen B und C von V und W, so daß ( ) MC B r 0 (f) = r (n r) 0 (n r) r 0 (n r) (n r) (Wir schreiben hier 0 k l für die Nullmatrix in Mat k l (K))

2 Definition: Zwei Matrizen A, B Mat m n (K) heißen äquivalent, wenn es S GL n (K) und T GL m (K) gibt, so daß B = SAT Bemerkung: Man sieht leicht ein, daß die Äquivalenz tatsächlich eine Äquivalenzrelation auf Mat m n (K) definiert Korollar: Zwei Matrizen A, B Mat m n (K) sind genau dann äquivalent, wenn gilt Rang(A) = Rang(B) ( ) r 0 Definition: r (n r) heißt Normalform einer Matrix A mit Rang(A) = 0 (n r) r 0 (n r) (n r) r bezüglich Äquivalenz Definition: Die Transpositionsabbildung ist gegeben als Abbildung Mat m n (K) Mat n m (K), A A t, die die Rolle von Zeilen und Spalten vertauscht, dh für A = (α ij ) i m j n gilt: A t heißt dann die Transponierte von A A t = (α ji ) j n i m Man überzeugt sich leicht davon, daß die Transpositionsabbildung linear ist Weiterhin sind folgende Eigenschaften erfüllt: (i) Für alle A Mat m n (K) gilt: (A t ) t = A (ii) Für alle A Mat m k (K) und B Mat k n (K) gilt: (AB) t = B t A t (iii) Für A GL n (K) gilt: A t GL n (K) und (A t ) = (A ) t Definition: Es sei A Mat m n (K) mit Spaltenvektoren a,, a n Dann bezeichnen wir mit SRang(A) := dim a,, a n den Spaltenrang von A Der Zeilenrang von A ist gegeben durch ZRang(A) := SRang(A t ) Es folgt unmittelbar aus der Definition, daß gilt: SRang(A) = Rang(A) und ZRang(A) = Rang(A t ) Proposition: Es seien A Mat m n (K), S GL n (K), T GL m (K) Dann gilt: ZRang(S A T ) = ZRang(A) und SRang(S A T ) = SRang(A), sowie Bild(φ A t S t) = Bild(φ A t) und Bild(φ AT ) = Bild(φ A ) Satz: Es sei A Mat m n (K) Dann gilt: Rang(A) = SRang(A) = ZRang(A)

3 9 Der Gauß-Algorithmus Auch in diesem Abschnitt sei K ein Körper Im vorherigen Abschnitt haben wir Äquivalenz von Matrizen der Form B = SAT betrachtet, wobei A, B Mat m n (K), S GL m (K) und T GL n (K) Hier stellt sich die Frage, wie man etwas zu gegebenen A, B, die Matrizen S und T konkret berechnen kann Ein Hilfsmittel hierzu sind die sogenannten elementaren Zeilen- und Spaltentransformationen Elementare Zeilentransformationen Es sei eine Matrix A Mat m n (K) gegeben ) Multiplikation einer Zeile mit λ K : Für λ K und k m setzen wir: wenn i = j und i, j k, S k (λ) = (s ij ) i,j m, wobei s ij = λ wenn i = j = k, 0 sonst Also: S k (λ) = λ wobei λ als k-ter Diagonaleintrag auftaucht und alle nichtangegebenen Einträge gleich 0 sind Die Produktmatrix A = (α ij) := S k (λ)a hat dann Einträge α ij = { α ij wenn i k λα ij wenn i = k, dh die Einträge der k-ten Zeile von A werden mit λ multipliziert Man überlegt sich auch leicht, daß gilt: S k (λ)s k (λ ) = n, also gilt insbesondere, daß S k (λ) GL n (K) 2) Vertauschung zweier Zeilen:

4 Also: Für i j m setzen wir: wenn k = l und k / {i, j}, P ij = (p kl ) k,l m, wobei p ij = wenn {k, l} = {i, j}, 0 sonst P ij = wobei die von der Diagonalen abweichenden Elemente in der i-ten bzw j-ten Zeile liegen Diese Matrizen sind Spezialfälle der Permutationsmatrizen, die wir im vorherigen Abschnitt betrachtet haben Die Produktmatrix hat dann Einträge A = (α kl) := P ij A α kl wenn k / {i, j}, α kl = α jl wenn k = i, α il wenn k = j dh die Einträge der i-ten und j-ten Zeilen von A werden vertauscht Außerdem gilt: also gilt insbesondere, daß P ij GL n (K) P ij P ij = n, 3) Addition eines Vielfachen einer Zeile auf eine andere: Also: Für i j m und λ K setzen wir: wenn k = l, Q ij (λ) = (q kl ) k,l m, wobei q ij = λ wenn k = i und l = j, 0 sonst Q ij (λ) = λ

5 wobei also der einzige von 0 verschiedene Eintrag außerhalb der Diagonalen in der i-ten Zeile und j-ten Spalte mit Wert λ sitzt Die Produktmatrix A = (α kl) := Q ij (λ)a hat dann Einträge α kl = { α il + λα jl wenn k = i, α kl sonst dh die λ-fachen der Einträge der j-ten Zeile werden auf die i-ten Zeilen von A addiert Außerdem gilt: Q ij (λ)q ij ( λ) = n, also gilt insbesondere, daß Q ij (λ) GL n (K) Elementare Spaltentransformationen Analog zu den Zeilenoperationen können wir auch Spaltentransformationen definieren Dabei gilt folgendes: ) Multiplikation einer Spalte mit λ K : Wir definieren die Matrizen S k (λ) wie oben, allerdings diesesmal als n n-matrizen, also S k (λ) GL n (K) Die Multiplikation der k-ten Spalte von A mit λ entspricht dann einer Multiplikation von rechts mit S k (λ): AS k (λ) 2) Vertauschung zweier Spalten: Mit P ij wie oben mit i j n erhält man durch AP ij die Vertauschung der i-ten mit der j-ten Spalte 3) Addition eines Vielfachen einer Spalte auf eine andere: Mit AQ ij (λ) addiert man das λ-fache der i-ten Spalte auf die j-te Spalte Man beachte, daß hierbei die Rollen von i und j gegenüber der Zeilentransformation vertauscht sind Definition: Es sei A Mat m n (K) (i) A besitzt Zeilenstufenform (ZSF), falls es 0 r m und j < j 2 < < j r m gibt, so daß ) Für alle i r und j j i gilt: α ij = 0 2) Für alle r < i m und j n gilt: α ij = 0

6 3) Für alle i r gilt: α iji 0 Eine Matrix in ZSF hat also folgende Gestalt: 0 0 α j 0 0 α 2j2 0 0 α 3j3 α rjr (ii) Eine ZSF heißt reduziert, falls zusätzlich gilt: 4) Für alle i r gilt: a iji = 5) Für alle i r und k < i gilt: a kji = 0 Eine Matrix in reduzierter ZSF hat also folgende Gestalt: Satz: (i) Jede Matrix A Mat m n (K) läßt sich durch endlich viele elementare Zeilentransformationen in eine reduzierte ZFS überführen (ii) Jede Matrix A Mat m n (K) läßt sich durch endlich viele elementare Zeilen- und Spaltentransformationen in Normalform überführen Zu (i): Zunächst bringt man A in ZSF, indem wir folgende 4-schrittige Prozedur anwenden: Schritt : Durchlaufe die Spalten von A von links nach rechts und von oben nach unten, bis der erste Eintrag a i j 0 gefunden ist: α i j 0 0

7 Findet man kein solches a i j, dann ist A die Nullmatrix und wir sind fertig Schritt 2: Ist i, dann vertausche die Zeilen und i Schritt 3: Nun ist a,j 0, dann addieren wir für alle 2 k m das a kj a j -fache der ersten Zeile auf die k-te Zeile: 0 0 α j Schritt 4: Betrachte nun die Untermatrix A, die aus den Einträgen der Matrix A rechts unterhalb von α j besteht, dh A = (α ij ) 2 i m Hat A mindestens eine Zeile, dann fahre j <j n mit Schritt und A fort Man überführt also mit endlich vielen Iterationen der Schritte bis 4 die Matrix A in ZSF Um eine reduzierte ZSF zu erhalten, führen wir noch folgende Schritte durch: ) Für alle i r multiplizieren wir die i-te Zeile mit a ij i 2) Für alle i r und alle k < i addieren wir das ( a kj )-fache der i-ten Zeile zur k-ten Zeile Zu (ii): Um A in Normalform zu überführen, bringen wir A zunächst in reduzierte ZSF Es bleiben dann folgende Spaltentransformationen durchzuführen: ) Für alle i r und alle j j i n addiere das ( a ij )-fache der j i -ten Spalte auf die j-te Spalte Das Ergebnis sieht dann so aus: ) Durch Spaltenvertauschung können wir diese Matrix nun in die endgültige Form ( ) r 0 r (n r) überführen 0 (n r) r 0 (n r) (n r)

8 Bezeichnen wir Z := {P ij i m} {Q ij (λ) λ K, i j m} {S k (λ) λ K, k m} GL m (K), dann können wir eine endliche Abfolge von Zeilentransformationen als endliches Produkt von Matrizen auffassen: S s S s S A, wobei S,, S s Z Ebenso, mit S := {P ij i n} {Q ij (λ) λ K, i j n} {S k (λ) λ K, k n} GL n (K) können wir eine endliche Abfolge von Spaltentransformationen als endliches Produkt von Matrizen auffassen: AT T 2 T t, mit T,, T t S Überführen wir also eine Matrix in (reduzierte) ZSF oder Normalform, so bleibt auf jeden Fall der Rang der Matrix erhalten Wir erhalten sogar eine explizite Methode, um S und T zu berechnen, so daß SAT = Normalform, nämlich, mit S = S s S und T = T T t, wobei S i und T j die Zeilen- und Spaltentransformationen repräsentieren, die dazu durchzuführen sind Bemerkung: Wenn man sich obige algorithmische Beschreibung zur Überführung in die Normalform genauer anschaut, dann sieht man, daß sich nach Überführung in die ZSF die Anzahl der Zeilen durch die restlichen Zeilen- und Spaltentransformationen nicht mehr ändert Den Rang einer Matrix entspricht also der Anzahl der Nichtnullzeilen der ZSF Literatur-/Lesevorschläge Jedes beliebige Buch oder sonstige Quelle zur Linearen Algebra

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Dreizehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Dreizehnte Woche, 272014 9 Der Gauß-Algorithmus (Ende) estimmung des Inversen einer

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 26.11.2013 Alexander Lytchak 1 / 12 Wiederholung Ist B = (v 1,..., v n ) eine Basis eines Vektorraums V, so erhalten

Mehr

2.9. DER DUALRAUM 115

2.9. DER DUALRAUM 115 2.9. DER DUALRAUM 115 Abbildungsmatrizen und die duale Abbildung Seien nun V und W endlich-dimensionale K-Vektorräume. Wir fixieren Basen b 1,..., b n von V und c 1,...,c m von W. Seien X 1,..., X n und

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

5. Matrizen und Determinanten

5. Matrizen und Determinanten technische universität dortmund Dortmund, im Januar 01 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 1 und Matrizen und

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 9. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 9 1. [Aufgabe] Sei f : V W eine lineare Abbildung. Zeige: a) Die Abbildung f ist injektiv genau dann, wenn eine lineare Abbildung g :

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1 Matrixoperationen Einige spezielle Matrizen: 0 0... 0 Nullmatrix:....... 0 0... 0 1 0... 0 0 1... 0 n-te Einheitsmatrix: E n :=....... 0 0... 1 d 1 0... 0 0 d 2... 0 Diagonalmatrix: diag(d 1,..., d n)

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 2/3) Bernhard Hanke Universität Augsburg 20..202 Bernhard Hanke / 3 Matrizen und Lineare Abbildungen Es seien lineare Abbildungen, d.h. Matrizen gegeben. B = (b jk ) : R r R n, A

Mehr

Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix

Lösung Serie 10: Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix D-MATH/D-PHYS Lineare Algebra I HS 26 Dr. Meike Akveld Lösung Serie : Elementare Zeilenumformungen & Elementarmatrizen, Rang & Inverse einer Matrix. a) Sei w ImT + T 2 ), dann existiert ein v V, so dass

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Invertierung von Matrizen und Multilinearformen

TECHNISCHE UNIVERSITÄT MÜNCHEN. Invertierung von Matrizen und Multilinearformen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof Dr Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 2006/07 en Blatt 3 2902007 Invertierung von Matrizen und Multilinearformen Zentralübungsaufgaben

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Rang und Inverses einer Matrix

Rang und Inverses einer Matrix Rang und Inverses einer Matrix wgnedin@math.uni-koeln.de 29. April 2014 In dieser Notiz werden Methoden und Beispiele zur Berechnung des Rangs einer Matrix sowie der Inversen einer invertierbaren Matrix

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 5 9 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde Assistent: Sadegh

Mehr

6 Lineare Algebra. 6.1 Einführung

6 Lineare Algebra. 6.1 Einführung 6 Lineare Algebra 6.1 Einführung Die lineare Algebra ist für die Wirtschaftswissenschaften von zentraler Bedeutung. Einerseits liefert sie die theoretischen und praktischen Grundlagen für das Lösen linearer

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018

HM II Tutorium 5. Lucas Kunz. 22. Mai 2018 HM II Tutorium 5 Lucas Kunz 22. Mai 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Wiederholung Lineare Gleichungsysteme................... 2 1.2 Wiederholung: Kern einer Abbildung..................... 3 1.3

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Matrizen Matrizen

Matrizen Matrizen Matrizen 29 2 Matrizen Wir beschäftigen uns in diesem Kapitel mit Matrizen. Sie eignen sich insbesondere zur Darstellung von Gleichungssystemen und linearen Abbildungen. Wir führen eine Addition und eine

Mehr

2 Vektorräume und Gleichungssysteme

2 Vektorräume und Gleichungssysteme 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Definition Für n, k 2 N sei. R n k := R n R n R n =(R n ) k. die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix.

Definition Für n, k 2 N sei. R n k := R n R n R n =(R n ) k. die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix. .5 Matrizen 39 / Definition.8 Für n, k 2 N sei R n k := R n R n R n =(R n ) k die Menge der (n k)-matrizen. Ein Element M 2 R n k heißt (n k)-matrix. 40 / Bemerkung Eine (n k)-matrix hat n Zeilen und k

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Dreiecksmatrizen. Die Treppennormalform

Dreiecksmatrizen. Die Treppennormalform Dreiecksmatrizen. Die Treppennormalform Lineare Algebra I Kapitel 4-5 8. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt.

Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. 82 Kapitel III: Vektorräume und Lineare Abbildungen Beweis. Bei (a) handelt es sich um eine Umformulierung des ersten Teils von Satz 6.2, während (b) aus dem zweiten Teil des genannten Satzes folgt. Wir

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5

(c) x 2 + 3x 3 = 1 3x 1 + 6x 2 3x 3 = 2 6x 1 + 6x x 3 = 5 Musterlösungen zu Mathematik II (Elementare Lineare Algebra) Blatt Nathan Bowler A: Präsenzaufgaben. Zeilenstufenform und reduzierte Zeilenstufenform erkennen Welche der folgenden Matrizen sind in Zeilenstufenform?

Mehr

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus Kapitel III Matrizen und lineare Gleichungssysteme Inhalt: 10 Matrizen 11 Lineare Gleichungssysteme 12 Der Gauß-Algorithmus Wichtige Methoden beim Umgang mit Vektorräumen basieren auf der Matrizenrechnung

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr