Grundlagen der Technischen Informatik. 3. Übung

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Technischen Informatik. 3. Übung"

Transkript

1 Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

2 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Zahlendarstellungen Zahlendarstellungen, Zahlenkonversion Zahlenkonversion Zahlensysteme, Zahlenkonversion

3 3. Übungsblatt Aufgabe 1 a) Beschreiben Sie den allgemeinen Aufbau einer Zahl N in einem polyadischen Zahlensystem. N = d n * R n + + d 1 * R 1 + d 0 * R 0 R: Basis R i : Wertigkeit d i : Ziffer der Stelle i Z: 0,, R-1

4 3. Übungsblatt Aufgabe 1 b) Welche ist die größte mit n Bits darstellbare Dezimalzahl? 2 n - 1

5 3. Übungsblatt Aufgabe 1 c) Geben Sie den Wertebereich einer m Bit breiten Zahl R = r m-1 r m-2 r 1 r 0 in (I) Binär-, (II) Einserkomplement- und (III) Zweierkomplementdarstellung an und nennen Sie die Formel für die Berechnung des Zahlenwertes. Darstellung Wertebereich Zahlenwert I +/- (2 m-1-1) II [-2 m-1 + 1, 2 m-1-1] III [-2 m-1, 2 m-1-1] r rm 1 ( 1) m 2 i 0 i r 2 m 2 m 1 i m 1 ( rm 1 2 ) ri 2 i 0 m 2 m 1 i 1 2 ) i 2 i 0 ( r m r i

6 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (I) 1er-Komplement: 1. Umwandeln der Dezimalzahl in Binärzahl 2. Führende 0 an den Beginn der Binärzahl 3. Falls Dezimalzahl < 0 invertieren der Bits der Binärzahl

7 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (I) 1er-Komplement: 2 10 = 2 1 = = 2 6 = = = = = => = = 2 5 = => =

8 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (II) 2er-Komplement: 1. Dezimalzahl > 0: 2er-Komplement = 1er-Komplement 2. Dezimalzahl < 0: 2er-Komplement = 1er-Komplement + 1

9 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (II) 2er-Komplement: 2 10 = 2 1 = = 2 6 = = = = = => = => = = 2 5 = => = => =

10 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (III) Vorzeichen / Betragsdarstellung: 1. Umwandeln der Dezimalzahl in Binärzahl 2. Dezimalzahl < 0: Voranstellen einer 1 3. Dezimalzahl > 0: Voranstellen einer 0

11 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar (III) Vorzeichen / Betragsdarstellung: 2 10 = 2 1 = (0) = 2 6 = (0) = = (0) = = (0) => = (1) = 2 5 = (0) => = (1)

12 3. Übungsblatt Aufgabe 2 Gegeben seien die Zahlen: 2 10, 64 10, , , Stellen Sie diese Zahlen in der (I) 1er-Komplement, (II) 2er-Komplement Und (III) Vorzeichen / Betragsdarstellung dar Dezimal 1er-Komplement 2er-Komplement Vorzeichen/Betrag (0) (0) (0) (1) (1)

13 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (I) Hexadezimal 1. Erweitern der Binärzahlen auf 4er-Blöcken 2. Zusammenfassen der 4er-Blöcke

14 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (I) Hexadezimal 10 2 = = = = = = 3F = = = = FF = = FE 16

15 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (II) Oktalzahl 1. Erweitern der Binärzahlen auf 3er-Blöcken 2. Zusammenfassen der 3-Blöcke

16 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (II) Oktalzahl 10 2 = = = = = = = = = = = = 376 8

17 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (III) BCD-Zahl 1. Umwandeln der Binärzahlen in Dezimalzahlen 2. Umwandeln der Dezimalziffern zu 4er-Blöcken

18 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. (III) BCD-Zahl 10 2 = 2 1 = 2 10 = (0010) BCD = = = ( ) BCD = = = ( ) BCD = 2 6 = = ( ) BCD = = = = ( ) BCD = = = = ( ) BCD

19 3. Übungsblatt Aufgabe 3 Gegeben seien die positiven Binärzahlen: 10 2, , , , , Stellen Sie diese Zahlen als (I) Hexadezimalzahl, (II) Oktalzahl und (III) BCD-Zahl dar. Binär Hexadezimal Oktal BCD F FF FE

20 3. Übungsblatt Aufgabe 4 a) Konvertieren Sie die folgende Hexadezimalzahl mit sukzessiver Division unter ausschließlicher Verwendung der angegebenen Zahlensysteme ins Binär- bzw. Ternärsystem: (A03) 16 = (?) 2 (A03) 16 = (?) 3 Anmerkungen: I. Konvertierung von großem auf kleines Zahlensystem: sukzessive Division II. Konvertierung von kleinem auf großes Zahlensystem: Horner-Schema oder sukzessive Division bei sukzessiver Division: Umwandlung der großen Basis in kleines Zahlensystem

21 3. Übungsblatt Aufgabe 4 a) (A03) 16 = (?) 2 A03 : 2 = A : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = A : 2 = A0 : 2 = : 2 = : 2 = : 2 = 0A + 0 (A03) 16 = ( ) 2

22 3. Übungsblatt Aufgabe 4 a) (A03) 16 = (?) 3 A03 : 3 = : 3 = 11C C : 3 = 5E + 2 5E : 3 = 1F + 1 1F : 3 = 0A + 1 A : 3 = : 3 = : 3 = (A03) 16 = ( ) 3

23 3. Übungsblatt Aufgabe 4 b) Konvertieren Sie die folgende Binärzahl unter ausschließlicher Verwendung der angegebenen Zahlensysteme ins Oktal- bzw. Ternärsystem: ( ) 2 = (?) 8 ( ) 2 = (?) 3 Horner-Schema: von links nach rechts

24 3. Übungsblatt Aufgabe 4 b) ( ) 2 = (?) 8 1 * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = = = 347 8

25 3. Übungsblatt Aufgabe 4 b) ( ) 2 = (?) 3 1 * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = * 2 = = =

26 3. Übungsblatt Aufgabe 4 b) ( ) 2 = (?) : 11 2 = R : 11 2 = R : 11 2 = R : 11 2 = 10 2 R : 11 2 = 0 2 R =

27 3. Übungsblatt Aufgabe 4 c) Gegeben sind 2 Zahlen zu den Basen B und B+1. Bestimmen Sie B so, dass folgende Gleichung wahr ist: 122 B+1 = 222 B 1 * (B+1) * (B+1) * (B+1) 0 = 2 * B * B * B 0 B 2 + 2B B = 2B 2 + 2B + 2 B 2-2B 3 = ( 3) 16 B1 / => B = 3 Test: = = 26

28 3. Übungsblatt Aufgabe 4 d) Berechnen Sie * (-13) 10 im Binärsystem. (Ergebnis im 2er-Komplement) = = * er er

29 3. Übungsblatt Aufgabe 4 e) Konvertieren Sie die Dezimalzahl 234, ins Binärformat. Verwenden Sie für die Nachkommadarstellung maximal 8 Bits. 234 : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = : 2 = =

30 3. Übungsblatt Aufgabe 4 e) Konvertieren Sie die Dezimalzahl 234, ins Binärformat. Verwenden Sie für die Nachkommadarstellung maximal 8 Bits. 0, * 2 = 0, , * 2 = 1, , * 2 = 1, , * 2 = 0, , * 2 = 1, , * 2 = 1, , * 2 = 0, , * 2 = 1, , ,

31 3. Übungsblatt Aufgabe 4 e) Konvertieren Sie die Dezimalzahl 234, ins Binärformat. Verwenden Sie für die Nachkommadarstellung maximal 8 Bits. 234, ,

32 3. Übungsblatt Danke für die Aufmerksamkeit

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit

Grundlagen der Technischen Informatik. 3. Übung. Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Grundlagen der Technischen Informatik. 3. Übung

Grundlagen der Technischen Informatik. 3. Übung Grundlagen der Technischen Informatik 3. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 3. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Zahlendarstellungen

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

GTI ÜBUNG 3 ZAHLENDARSTELLUNG, ZAHLENKONVERSION UND ARITHMETIK

GTI ÜBUNG 3 ZAHLENDARSTELLUNG, ZAHLENKONVERSION UND ARITHMETIK 1 GTI ÜBUNG 3 ZAHLENDARSTELLUNG, ZAHLENKONVERSION UND ARITHMETIK Aufgabe 1 Zahlendarstellungen 2 Beschreiben Sie den allgemeinen Aufbau einer Zahl N in einem polyadischen Zahlensystem. Hinweis: Sei 1001100

Mehr

, 2014W Übungstermin: Fr.,

, 2014W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2014W Übungstermin: Fr., 17.10.2014 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

, 2015S Übungstermin: Mi.,

, 2015S Übungstermin: Mi., VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Zwischenklausur Informatik, WS 2014/15

Zwischenklausur Informatik, WS 2014/15 Zwischenklausur Informatik, WS /5.. Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg mit an! Alle Aufgaben/Fragen sind unmittelbar

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

, 2017S Übungstermin: Di.,

, 2017S Übungstermin: Di., VU Technische Grundlagen der Informatik Übung 1: Zahlendarstellungen, Numerik 183.579, 2017S Übungstermin: Di., 14.03.2017 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Zahlensysteme

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Übung - Nutzung des Windows-Rechners zur Bestimmung von Netzwerkadressen

Übung - Nutzung des Windows-Rechners zur Bestimmung von Netzwerkadressen Übung - Nutzung des Windows-Rechners zur Bestimmung von Netzwerkadressen Lernziele Teil 1: Öffnen des Windows-Rechners Teil 2: Umwandeln zwischen Zahlensystemen Teil 3: Umwandeln von IPv4-Host-Adressen

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. Informatik 1 / Kapitel 2: Grundlagen 2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich im Dezimalsystem, d.h.

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Allgemeine Informationen zum Praktikum

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Allgemeine Informationen zum Praktikum Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 1 Besprechung: 23. 27.10.2017 (KW 43) Allgemeine

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19. Allgemeine Informationen zum Praktikum

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19. Allgemeine Informationen zum Praktikum Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2018/19 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 1 Besprechung: 22. 26.10.2018 (KW 43) Allgemeine

Mehr

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. 2.5 Logische Funktionen

Inhalt. 2.1 Darstellung von Zahlen. 2.2 Darstellung von Zeichen. 2.3 Boolesche Algebra. 2.4 Aussagenlogik. 2.5 Logische Funktionen 2. Grundlagen Inhalt 2.1 Darstellung von Zahlen 2.2 Darstellung von Zeichen 2.3 Boolesche Algebra 2.4 Aussagenlogik 2.5 Logische Funktionen 2 2.1 Darstellung von Zahlen Im Alltag rechnen wir gewöhnlich

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Zahlensysteme Dezimal-System

Zahlensysteme Dezimal-System Zahlensysteme Dezimal-System Zahlenvorrat: 0,1,2,3,4,5,6,7,8,9 Mögliche unterschiedliche Zeichen pro Stelle:10 Basis: 10 Kennzeichnung: Index 10 oder D (dezimal) Wertigkeit 10 5 10 4 10 3 10 2 10 1 10

Mehr

Computergrundlagen Zahlensysteme

Computergrundlagen Zahlensysteme Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren

Mehr

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 1 AM 04.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Lösung 2. Übungsblatt

Lösung 2. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985

Mehr

Digitaltechnik Grundlagen 2. Zahlensysteme

Digitaltechnik Grundlagen 2. Zahlensysteme 2. Zahlensysteme Version 1.0 von 02/2018 Unterschiedliche Zahlensysteme [Quelle: http://www.rechenhilfsmittel.de/zahlen.htm] Zahlensystem der Maya [Quelle: https://www.kindernetz.de] Altäqyptisches Zahlensystem

Mehr

(eindimensionaler) Paritätscode: Codes (8a)

(eindimensionaler) Paritätscode: Codes (8a) (eindimensionaler) Paritätscode: Codes (8a) Cyclic Redundancy Check (CRC) view data bits, D, as a binary number choose r+ bit pattern (generator), G goal: choose r CRC bits, R, such that exactly

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Technische Informatik I SS 2005

Technische Informatik I SS 2005 Übungen zur Vorlesung Technische Informatik I SS 2005 Hauck, Schmied, De Melis, Guenkova-Luy Übungsblatt 4 Zahlendarstellung und Rechenarithmetik 1 Zahlenumwandlung Zahlendarstellung Binär wird zur Zahlenumwandlung

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Zahlendarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Zahlensysteme und

Mehr

Digitaltechnik FHDW 1.Q 2007

Digitaltechnik FHDW 1.Q 2007 Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen

Mehr

Zahlensysteme Das 10er-System

Zahlensysteme Das 10er-System Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Grundlagen der Wirtschaftsinformatik. Übung. Lösungen zu den Hausaufgaben

Grundlagen der Wirtschaftsinformatik. Übung. Lösungen zu den Hausaufgaben Grundlagen der Wirtschaftsinformatik Übung Lösungen u den Hausaufgaben Studiengang Wirtschaftsingenieurwesen Wintersemester 015/016 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Informatik II SS Überlick. Polyadische Zahlensysteme (1/2) Polyadische Zahlensysteme (2/2)

Informatik II SS Überlick. Polyadische Zahlensysteme (1/2) Polyadische Zahlensysteme (2/2) Überlick Informatik II SS 2 Information und Informationsdarstellung Zahlensysteme Rechnerarithmetik Logische Schaltungen oolesche Algebra Kombinierte logische Schaltungen Dipl.-Inform. Michael Ebner Lehrstuhl

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 1 am 05.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54)

Zahlensysteme. Formale Methoden der Informatik WiSe 2008/2009 Folie 1 (von 54) Zahlensysteme Formale Methoden der Informatik WiSe 28/29 Folie (von 54) Teil I: Zahlensysteme. Einführung und Zahlensysteme 2. Zahlensysteme / Algorithmik 3. Zahlendarstellung im Rechner Franz-Josef Radermacher,

Mehr

Algorithmen & Programmierung. Zahlensysteme Bits und Bytes

Algorithmen & Programmierung. Zahlensysteme Bits und Bytes Algorithmen & Programmierung Zahlensysteme Bits und Bytes Zahlensysteme Positionssystem Bei sogenannten Positionssystemen bestimmt (im Gegensatz zu additiven Systemen wie dem römischen Zahlensystem) die

Mehr

ÜBUNG 6 ZUR EINFÜHRUNG IN DIE PROGRAMMIERUNG FÜR COMPUTERLINGUISTEN. Leonie Weißweiler

ÜBUNG 6 ZUR EINFÜHRUNG IN DIE PROGRAMMIERUNG FÜR COMPUTERLINGUISTEN. Leonie Weißweiler ÜBUNG 6 ZUR EINFÜHRUNG IN DIE PROGRAMMIERUNG FÜR COMPUTERLINGUISTEN 1 ZAHLENSYSTEME Normalerweise schreibt man Zahlen im sog. Dezimalsystem 4 2 6 9 2 ZAHLENSYSTEME 4 2 6 9 x100 x100 x10 x1 3 ZAHLENSYSTEME

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

Abschlussklausur Informatik, SS 2012

Abschlussklausur Informatik, SS 2012 Abschlussklausur Informatik, SS 202 09.07.202 Name, Vorname: Matr.-Nr.: Unterschrift: Zugelassene Hilfsmittel: außer Stift und Papier keine Hinweis: Geben Sie bei allen Berechnungen den vollständigen Rechenweg

Mehr

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2

Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2 Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16. Vorbereitende Aufgaben. Präsenzaufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2015/16 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Marcel Preuß, Iman Kamehkhosh, Marc Bury, Diana Howey Übungsblatt

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dr-Ing Markus Kowarschik Numerisches Programmieren, Übungen Musterlösung

Mehr

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1

B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Z = a 0 B 0 + a 1 B 1 + a 2 B a n-1 B n-1 Polyadisches Zahlensystem B: Basis des Zahlensystems 0 a i < B a i є N 0 B є (N > 1) Ganze Zahlen: n-1 Z= a i B i i=0 Z = a 0 B 0 + a 1 B 1 + a 2 B 2 +... + a n-1 B n-1 Rationale Zahlen: n-1 Z= a i B i

Mehr

Numerisches Programmieren

Numerisches Programmieren Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 1 Jürgen Bräckle, Christoph Riesinger 2. Mai 2013 Tutorübung 1, 2. Mai 2013 1 Einführung in die Binärzahlen Zahlendarstellung im

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WS 03/0 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung Übungsblatt:

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10

Zum Nachdenken. Wenn die Zahl (123) hat, was könnte dann (123,45) 10 TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Wenn die Zahl (123) 10 den Wert 1. 10 2 +2. 10 1 +3. 10 0 hat, was könnte dann (123,45) 10 bedeuten? Wenn Sie beliebige reelle Zahlenwerte

Mehr

{0,1,...,b-1} Die Ziffern (Digits) werden der Eindeutigkeit wegen häufig mit Bezeichnungen belegt, aus denen die Basis b erkennbar wird:

{0,1,...,b-1} Die Ziffern (Digits) werden der Eindeutigkeit wegen häufig mit Bezeichnungen belegt, aus denen die Basis b erkennbar wird: 2. Zahlendarstellung 2.1. Positionssysteme Was muß man sich merken? Basis {2,3,...} Zahl z = d d...d d.d d...d m-1 m-2 1 0-1 -2 -n mit Ziffer (Digit) d auf Position und d {0,1,...,-1} Die Ziffern (Digits)

Mehr

Kapitel 5: Daten und Operationen

Kapitel 5: Daten und Operationen Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter

Mehr

Grundlagen der Wirtschaftsinformatik. Übung. Lösungen zu den Hausaufgaben

Grundlagen der Wirtschaftsinformatik. Übung. Lösungen zu den Hausaufgaben Grundlagen der Wirtschaftsinformatik Übung Lösungen u den Hausaufgaben Studiengang Wirtschaftsingenieurwesen Wintersemester 013/014 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich

Mehr

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme

Grundlagen der Informatik Übungen 1. Termin Zahlensysteme Grundlagen der Informatik Übungen 1. Termin Zahlensysteme M. Sc. Yevgen Dorozhko dorozhko@hlrs.de Kurzvorstellung M. Sc. Yevgen Dorozhko Ausbildung: 2008: M. Sc. Systemprogrammieren, Nationale technische

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 21 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, dh Y = f (X

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Grundlagen der Informatik Übungen 1.Termin

Grundlagen der Informatik Übungen 1.Termin : : : : : : : : : : : : : : : : : : : : : : Grundlagen der Informatik Übungen 1.Termin Dipl.-Phys. Christoph Niethammer Grundlagen der Informatik 2012 1 : : : : : : : : : : : : : : : : : : : : : : Kontakt

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Zahlensysteme und ihre Anwendung

Zahlensysteme und ihre Anwendung ASCII, ANSI und Unicode belegen übereinstimmend die Positionen 48 bis 57 mit den Ziffern '0'... '9'. 48 57 sind hierbei die Kennziffern von Schriftzeichen. Der Wechsel von arithmetischen Schriftzeichen

Mehr

Technische Fachhochschule Berlin Fachbereich VIII

Technische Fachhochschule Berlin Fachbereich VIII Technische Fachhochschule Berlin Fachbereich VIII Ergänzungen Seite von LOGIKPEGEL Logik-Familien sind elektronische Schaltkreise, die binäre Zustände verarbeiten und als logische Verknüpfungen aufgebaut

Mehr

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de

BSZ für Elektrotechnik Dresden. Zahlenformate. Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de BSZ für Elektrotechnik Dresden Zahlenformate Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Überblick 2 Grundaufbau der Zahlensysteme 2.1 Dezimalzahlen 2.2 Binärzahlen = Dualzahlen

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Informatik Vorkurs - Vorlesung 2

Informatik Vorkurs - Vorlesung 2 Informatik Vorkurs - Vorlesung 2 Variablen, Arrays, Zahlensysteme Torben Achilles, 9. Oktober 2018 Inhalt Variablen & Datentypen Arrays Zahlensysteme 9. Oktober 2018 Torben Achilles Informatik Vorkurs

Mehr

Informatik I Übung, Woche 41

Informatik I Übung, Woche 41 Giuseppe Accaputo 8. Oktober, 2015 Plan für heute 1. Fragen & Nachbesprechung Übung 3 2. Zusammenfassung der bisherigen Vorlesungsslides 3. Tipps zur Übung 4 Informatik 1 (D-BAUG) Giuseppe Accaputo 2 Nachbesprechung

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler

Arithmetik: Vorzeichenregeln und Überlauf, Exponenten & Normalisierung, Umrechnungen. Architektur: - Rechnerarchitektur, Instruktionssatz, Assembler F. Zahlendarstellung und Rechnerarithmetik F.1. Einordnung & Inhalte Zahlendarstellungen: binär, BCD oder als ASCII-Text, Einer- und Zweierkomplement, Gleit- & Festkommazahlen. Arithmetik: Vorzeichenregeln

Mehr