1 Differentiation im Komplexen

Größe: px
Ab Seite anzeigen:

Download "1 Differentiation im Komplexen"

Transkript

1 1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation im R 2. Definition 1.1 Sei D C offen, z 0 D, f : D C. Die Funktion f eißt in z 0 komplex differenzierbar, wenn der Grenzwert 0 fz 0 + ) fz 0 ) in C existiert. Falls dieser Grenzwert existiert, nennen wir in Ableitung von f in z 0 und bezeicnen in mit f z 0 ). Ist f in jedem Punkt von D komplex differenzierbar, so eißt f olomorp auf D. Beispiele Wie im Reellen zeigt man, daß jede ganzrationale Funktion = Polynom) fz) = a n z n + a n 1 z n a 1 z + a 0, a i C auf C olomorp ist und dass für jeden Punkt z C gilt f z) = na n z n 1 + n 1)a n 1 z n a 2 z + a 1. Dagegen ist die Funktion fz) = z = konjugiert komplexe Zal zu z) in keinem Punkt komplex differenzierbar. Der Ausdruck fz + ) fz) = z + z ist nämlic 1 für R\{0} und 1 für ir\{0} und besitzt daer keinen Grenzwert für 0. Auc die Funktionen fz) = Rez, fz) = Imz, fz) = z sind nirgends komplex differenzierbar. Wie im Reellen beweist man, dass mit zwei Funktionen f,g auc deren Summe und deren Produkt in einem Punkt z D komplex differenzierbar bzw. auf D olomorp sind und dass = f ± g) z) = f z) ± g z), fg) z) = f z)gz) + fz)g z). Ist außerdem gz) 0 auf D, so ist auc f/g olomorp, und es gilt f/g ) z) = f z)gz) fz)g z) gz) 2. 3

2 Sind scließlic f und g auf D bzw. D olomorpe Funktionen und ist fd) D, so ist g f auf D olomorp, und es gilt die Kettenregel g f) z) = g fz) ) f z). Die komplexe Differenzierbarkeit läßt sic auc über eine Zerlegungsformel carakterisieren: f ist in z 0 D komplex differenzierbar genau dann, wenn ein α C r) und eine Funktion r mit 0 = 0 existieren so, dass fz 0 + ) = fz 0 ) + α + r) für alle aus Umgebung von 0. Mit dieser Zerlegungsformel siet man, dass die komplexe Differenzierbarkeit die Stetigkeit impliziert. 1.2 Die Caucy-Riemannscen Differentialgleicungen Sei z = x + iy und fz) = uz) + ivz) = ux,y) + ivx,y). Wir stellen einen Zusammenang zwiscen der komplexen Differenzierbarkeit von f in z und der Differenzierbarkeit von u und v in x,y) er. Satz 1.2 a) Ist f in z 0 D komplex differenzierbar, so sind u und v in x 0,y 0 ) partiell differenzierbar, und es gelten in diesem Punkt die Caucy-Riemannscen Differentialgleicungen u x = v y, u y = v x. 1.1) b) Sind u und v in z differenzierbare reelle Funktionen und gelten in x,y) ˆ=z D die Caucy-Riemannscen Differentialgleicungen 1.1), so ist die Funktion fz) = ux, y) + ivx, y) in z komplex-differenzierbar, und es gilt: f z) = u x x,y) + iv x x,y) = i u y x,y) + iv y x,y) ). 1.2) Beweis Sei f in z 0 D komplex differenzierbar, d.. der Grenzwert fz 0 + ) fz 0 ) 0 =: f z 0 ) 4

3 soll existieren. Lassen wir entlang der reellen Acse gegen 0 streben, d.. wälen wir = t R\{0}, so folgt f fz 0 + t) fz 0 ) z 0 ) ux 0 + t,y 0 ) + ivx 0 + t,y 0 ) ux0,y 0 ) + ivx 0,y 0 ) ) t 0 t ux0 + t,y 0 ) ux 0,y 0 ) + i vx ) 0 + t,y 0 ) vx 0,y 0 ) t ux 0 + t,y 0 ) ux 0,y 0 ) vx 0 + t,y 0 ) vx 0,y 0 ) + i ux 0 + t,y 0 ) ux 0,y 0 ) vx 0 + t,y 0 ) vx 0,y 0 ) + i = u x x 0,y 0 ) + iv x x 0,y 0 ) man beacte, dass eine Folge in C genau dann konvergiert, wenn die Folgen irer Real- und Imaginärteile in R konvergieren). Lassen wir dagegen entlang der imaginären Acse gegen 0 streben, d.. wälen wir = it mit t R\{0}, so folgt analog f fz 0 + it) fz 0 ) z 0 ) t 0 it ux 0,y 0 + t) + ivx 0,y 0 + t) ux0,y 0 ) + ivx 0,y 0 ) ) t 0 it = 1 i ux0,y 0 + t) ux 0,y 0 ) + i vx ) 0,y 0 + t) vx 0,y 0 ) t = 1 i uy x 0,y 0 ) + iv y x 0,y 0 ) ) = v y x 0,y 0 ) iu y x 0,y 0 ). Ein Vergleic der Real- bzw. Imaginärteile in den beiden letzten Bezieungen zeigt, dass u x = v y und u y = v x in z 0. b) Differenzierbarkeit von u und v in z eißt: es gibt Funktionen r und s mit,g) 0 r, g),g) = 0,,g) 0 s, g),g) = 0, so dass mit z = x,y) ux +,y + g) ux,y) = u x z),u y z) ) ) + r,g), g vx +,y + g) vx,y) = v x z),v y z) ) ) + s,g). g Wir multiplizieren die zweite Gleicung mit i, addieren sie zur ersten Gleicung und beacten dabei die Caucy-Riemannscen Differentialgleicungen: f z + + ig) ) fz) = u x z) + u y z)g + iv x z) + iv y z)g + r,g) + is,g) = u x z) + ig) + iv x z) + ig) + r,g) + is,g). 5

4 Also ist f z + + ig) ) fz) + ig Die Beauptung folgt nun aus r,g) +ig 0 + ig = u x z) + iv x z) + r,g) + ig + is,g) + ig.,g) 0 und der entsprecenden Bezieung für s. r, g),g) = 0, Beispiel Für die Funktion fz) = fx + iy) := x 3 y 2 + ix 2 y 3 gelten die Caucy- Riemannscen Differentialgleicungen im Punkt z 0 = x 0 + iy 0 genau dann, wenn u x x 0,y 0 ) = 3x 2 0y 2 0! = 3x 2 0y 2 0 = v y x 0,y 0 ) und u y x 0,y 0 ) = 2x 3 0y 0! = 2x 0 y 3 0 = v x x 0,y 0 ), d.. genau dann, wenn x 0 y 0 x y 2 0) = 0, d.. genau dann, wenn x 0 = 0 oder y 0 = 0. Die Funktion f ist also genau dann in z 0 C komplex differenzierbar, wenn z 0 auf der reellen oder imaginären Acse liegt. Insbesondere ist f auf keiner offenen Teilmenge von C olomorp. Folgerung 1.3 Sei D C ein Gebiet. Dann sind folgende Aussagen für eine Funktion f : D C äquivalent: a) f ist konstant auf D. b) f ist olomorp auf D und f z) = 0 z D. Beweis Wir zeigen nur die Implikation b) a). Aus f = 0 auf D und aus den Bezieungen 1.2) d.. f = u x + iv x = iu y + iv y ) ) folgt u x z) = u y z) = v x z) = v y z) = 0 für alle z D. Wie wir aus der reellen Analysis wissen, müssen u und v und somit auc f konstante Funktionen sein. Als weitere Anwendung der Caucy-Riemannscen Differentialgleicungen zeigen wir Satz 1.4 Eine komplexe Potenzreie ist im Inneren ires Konvergenzkreises olomorp. Beweis Sei fz) = k=0 a kz k eine Potenzreie mit Konvergenzradius R > 0, und sei f n z) := n k=0 a kz k ire n. Partialsumme. Die Real- und Imaginärteile von f bzw. f n seien u,v bzw. u n,v n. Offenbar ist f nz) = n k=1 ka kz k 1, und wir wissen bereits, dass die Reien k=0 a kz k und k=1 ka kz k 1 den gleicen 6

5 Konvergenzradius R besitzen. Folglic konvergieren die Funktionen f n bzw. f n auf jedem Kreis {z : z r} mit r < R gleicmäßig gegen die Funktion f : z k=0 a kz k bzw. gegen z k=1 ka kz k 1. Dann konvergieren aber auc die Realund Imaginärteile u n,v n,u nx,v ny,v nx,v ny dieser Funktionen auf {z : z r} gleicmäßig. Hieraus folgt, dass die Funktionen u, v für z < r differenzierbar sind und dass gilt u nx u x, u ny u y, v nx v x, v ny v y gleicmäßig. Das Besteen der Caucy-Riemannscen Differentialgleicungen für die Funktionen f n ziet daer das Besteen dieser Differentialgleicungen für die Funktion f nac sic: u x z) n u nx z) n v ny z) = v y z) und analog u y z) = v x z) für alle z < r. Scließlic ist wieder wegen der gleicmäßigen Konvergenz) die Funktion z k=1 ka kz k 1 und damit auc die Funktionen u x,u y,v x,v y stetig auf {z : z < r}. Da r < R beliebig war, eralten wir das Besteen der Caucy- Riemannscen Differentialgleicungen für f sowie die Stetigkeit der partiellen Ableitungen u x,...,v y in jedem Punkt z mit z < R. Nac Satz 1.2 ist f in {z : z < R} olomorp. Beispiel Insbesondere sind die durc e z := n=0 z n n!, sin z := 1) n 2n + 1)! z2n+1, cos z := n=0 n=0 1) n 2n)! z2n definierten Funktionen in der gesamten komplexen Ebene C olomorp. Solce Funktionen eißen auc ganze Funktionen. Weitere Beispiele für ganze Funktionen sind Polynome pz) = n k=0 a kz k und die Funktionen sin z := 1 2 ez e z ), cos z := 1 2 ez + e z ). Außerdem folgt aus dem Beweis von Satz 1.4, dass Regeln wie e z ) = e z, sin z = cos z, cos z = sin z auc im Sinne der komplexen Differentiation gültig bleiben. 1.3 Differenzierbarkeit im Reellen und im Komplexen Jede Funktion f : C C kann auc als Funktion f : R 2 R 2 betractet werden. Wir wollen uns den Unterscied zwiscen der Differenzierbarkeit der 7

6 Funktion f : R 2 R 2 im Punkt z R 2 und der komplexen Differenzierbarkeit von f : C C in z C klarmacen. Differenzierbarkeit von f : R 2 R 2 in z R 2 eißt, dass es eine lineare Abbildung A : R 2 R 2 genauer: eine R-lineare Abbildung) und eine Funktion r : R 2 R 2 r) mit 0 = 0 so gibt, dass fz + ) fz) = A + r) für alle aus Umgebung von 0 R ) Die Abbildung A wird dabei durc die reelle) Jacobimatrix ) ux z) u A ˆ= y z) v x z) v y z) 1.4) bescrieben. Komplexe Differenzierbarkeit von f : C C in z C können wir dagegen so deuten: Es gibt eine lineare Abbildung B : C C genauer: eine s) C-lineare Abbildung) und eine Funktion s : C C mit 0 = 0 so, dass fz + ) fz) = B + s) für alle aus Umgebung von 0 C. 1.5) Die Abbildung B wird dabei durc die komplexe) 1 1 Matrix f z) ) bzw. einfac durc die komplexe Zal f z) gegeben. Der wesentlice Unterscied zwiscen 1.3) und 1.5) bestet darin, dass wir in 1.3) durc eine R-lineare Abbildung A : R 2 R 2 und in 1.5) durc eine C-lineare Abbildung B : C C approximieren. ) a b Wir fragen uns nun, wann allgemein durc eine R-lineare Abbildung A = : c d R 2 R 2 eine C-lineare Abildung von C nac C induziert wird, wenn wir wie üblic x,y) T R 2 mit x + iy C identifizieren. Soll A C-linear sein, so gilt einerseits ) 0 Ai = A = 1 a b c d ) ) 0 = 1 und andererseits ) ) ) 1 a b 1 Ai = ia 1 = ia = i 0 c d 0 b d ) = b + id ) a = i = ia + ic) = c + ia. c Ein Vergleic von Real- ) und Imaginärteil liefert a = d und b = c. Nur Matrizen a b der Gestalt : R b a 2 R 2 liefern also C-lineare Abbildungen. Angewandt auf die Matrix 1.4) eißt das: 1.4) liefert nur dann eine C-lineare Abbildung, wenn u x z) = v y z) und u y z) = v x z), d.. wenn die Caucy-Riemannscen Differentialgleicungen erfüllt sind. Die Caucy-Riemannscen Differentialgleicungen sind also genau die Zusatzbedingung, die aus der Differenzierbarkeit im Reellen die komplexe Differenzierbarkeit mact. 8

7 1.4 Harmonisce Funktionen Die Caucy-Riemannscen Differentialgleicungen liefern eine ser einscränkende Bedingung dafür, wann eine im Reellen differenzierbare Funktion Realteil einer olomorpen Funktion ist. Satz 1.5 Ist f = u + iv in D olomorp und sind die Funktionen u,v zweimal stetig differenzierbar im Reellen), so gilt u xx + u yy = 0, v xx + v yy = 0 in D. Beweis Aus der Holomorpie von f folgt u x = v y und u y = v x. Erneutes Ableiten ergibt u xx = v yx, u xy = v yy, u yx = v xx, u yy = v xy und daer u xx + u yy = v yx v xy, v xx + v yy = u xy u yx. Nac dem Satz von H.A. Scwarz sind die recten Seiten dieser Identitäten gleic 0. Wir werden später seen, dass die geforderten Differenzierbarkeitseigenscaften von u und v bereits aus der Holomorpie von f folgen. Ist u eine reell) zweimal partiell differenzierbare Funktion, so erklärt man den Laplaceoperator durc u := u xx + u yy. Funktionen u mit der Eigenscaft u = 0 eißen armonisc oder Potentialfunktionen. Real- und Imaginärteil olomorper Funktionen sind also armonisce Funktionen wobei wir im Moment noc eine Zusatzbedingung fordern müssen). Beispielsweise sind armonisce Funktionen. Rez 2 ) = Rex + iy) 2 = x 2 y 2 =: ux,y) Ime z ) = Im e x cosy + i sin y) ) = e x sin y =: vx,y) 9

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

1 Holomorphe Funktionen

1 Holomorphe Funktionen $Id: olo.tex,v 1.2 2013/04/09 17:01:23 k Exp k $ 1 Holomorpe Funktionen In den ersten Kapiteln dieser Vorlesung werden wir uns mit der sogenannten Funktionenteorie bescäftigen, dies ist die Teorie der

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Die reellen Cauchy-Riemann Gleichungen Die Cauchy-Riemann Gleichung i f(x + iy = f(x + iy

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar

f heißt komplex differenzierbar oder holomorph auf Ω, wenn f in allen z Ω komplex differenzierbar 2 Komplexe Analysis n diesem Abschnitt wollen wir einen kurzen Ausflug in die komplexe Analysis die sogenannte Funktionentheorie unternehmen, und zwar wollen wir jetzt komplexe Kurvenintegrale betrachten.

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Komplexe Differenzierbarkeit und das Dirichlet-Problem

Komplexe Differenzierbarkeit und das Dirichlet-Problem RWTH Aachen Lehrstuhl A für Mathematik Komplexe Differenzierbarkeit und das Dirichlet-Problem Schriftliche Ausarbeitung im Rahmen des Seminars zur Fourieranalysis Betreuer: Prof. Dr. H. Führ Dipl.-Gyml.

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

FACHARBEIT. Fachbereich Mathematik. Max-Planck-Gymnasium Gelsenkirchen. Leistungskurs Mathematik 2012/13. Funktionentheorie

FACHARBEIT. Fachbereich Mathematik. Max-Planck-Gymnasium Gelsenkirchen. Leistungskurs Mathematik 2012/13. Funktionentheorie FACHARBEIT Fachbereich Mathematik Max-Planck-Gymnasium Gelsenkirchen Leistungskurs Mathematik 2012/13 Funktionentheorie Untersuchung komplexwertiger Funktionen auf komplexe Differenzierbarkeit und Holomorphie

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil

(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil 14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Komplexe Analysis D-ITET. Serie 3

Komplexe Analysis D-ITET. Serie 3 Prof. Dr. P. S. Jossen M. Wellershoff Frühlingssemester 8 Komplexe Analysis D-ITET Serie 3 ETH Zürich D-MATH Aufgabe 3. Einschreibung in Echo Wichtig: Bitte schreiben Sie sich auf echo.ethz.ch in die Übungsste,

Mehr

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu)

ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS. Komplexe Zahlen. (x, y) + (u, v) := (x + u, y + v) (x, y) (u, v) := (xu yv, xv + yu) ÜBUNGSBEISPIELE ZUR KOMPLEXEN ANALYSIS ARMIN RAINER Sommersemester 05 Komplexe Zahlen Sei z = i und w = 3 + 4i. Berechne: (a) z + w, zw, z w, w z, z 3, w. (b) z, z, w, w, z, w. Zeige, dass R mit der Addition

Mehr

Kapitel 22. Einführung in die Funktionentheorie

Kapitel 22. Einführung in die Funktionentheorie Kapitel 22 Einführung in die Funktionentheorie In Kapitel 17 wurde die Differentialrechnung von Funktionen f: R m R n mehrerer Veränderlicher besprochen. Der Ableitungsbegriff war dabei nicht als Verallgemeinerung

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

Höhere Mathematik Vorlesung 8

Höhere Mathematik Vorlesung 8 Höhere Mathematik Vorlesung 8 Mai 2017 ii In der Mathematik versteht man die Dinge nicht. Man gewöhnt sich nur an sie. John von Neumann 8 Funktionentheorie Komplexe Zahlen Jede komplexe Zahl besitzt eine

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

21 Komplexe Differentiation

21 Komplexe Differentiation 21 Komplexe Differentiation Wir wenden uns nun der (komplexen) Funktionentheorie zu und beschäftigen uns mit komplexwertigen Funktionen einer komplexen Veränderlichen Solche Funktionen lassen sich ebenfalls

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 (x 1, x 2,..., x n ) x 2... f 2 (x 1, x 2,..., x n )... x n f m (x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man:

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Á 5. Differenzierbarkeit

Á 5. Differenzierbarkeit Á. Differenzierbarkeit Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 . Differenzierbarkeit Zur Berecnung der Steigung

Mehr

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik Institut für Analysis SS 4 Prof. Dr. Roland Scnaubelt 8.7.4 Dipl.-Mat. Leonid Caicenets Höere Matematik II für die Facrictung Pysik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 68: Wir arbeiten den Folgenden

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n .. Lösung der Aufgabe. Neme an, wir ätten die Aufgabe, n Personen aus n n Personen auszuwälen. Dafür gibt es natürlic Möglickeiten. Wir können aber n auc wie folgt verfaren. Teilen wir die n Personen auf

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen

X. Funktionentheorie. Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen. 58. Cauchy-Formeln und Anwendungen 56 Integralsätze im Raum 273 X. Funktionentheorie Übersicht über den Inhalt von Kapitel X: 57. Holomorphe Funktionen 58. Cauchy-Formeln und Anwendungen 59. Laurent-Entwicklungen und Residuensatz 274 X.

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 31.1.2017 Definition 2.2 (uneigentliches Riemann-Integral) Sei I = [a, b) mit a < b. Die Funktion f : I R sei Riemann-integrierbar auf [a, b ] für alle b < b. Falls x lim x b a f(ξ)

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Konvergenz, Stetigkeit und Differenzierbarkeit 3 Konvergenz

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom Übungsaufgaben 11. Übung WS 15/16: Woche vom 4. 1. - 8. 1. 2016 Integralsatz von Gauß 23.1, 23.3, 23.5 (a,g), 23.6 (a) Integralsatz von Stokes 23.7, 23.8 (a), 23.10 Zusatzaufgabe zu Gauß + Stokes in 2D

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Der Hauptsatz der Differential und Integralrecnung Micael Karkulik, Stepan Scmeissl Präsentation für Logik als Arbeitssprace ê Präsentationstecnik 2 Inalt: 1.0 Zusammenfassung 2.0 Einleitung 3.0 Der Hauptsatz

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 203 Institut für Analysis 504203 Prof Dr Tobias Lamm Dr Patrick Breuning Aufgabe Höhere Mathematik II für die Fachrichtung Physik Übungsblatt Bestimmen Sie die

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Differenzierbarkeit im R n. Analysis III October 30, / 94

Differenzierbarkeit im R n. Analysis III October 30, / 94 Differenzierbarkeit im R n Analysis III October 30, 2018 36 / 94 Partielle Ableitungen Buch Kap. 5.5 Definition 5.23: (partielle Differenzierbarkeit) Sei die Funktion f : D R, D R n, wobei D eine offene

Mehr

Einführung in die Funktionentheorie. Modul E.KompAna. Studiengänge Bachelor Lehramt Mathematik: Kombi-Bachelor. SoSe 14 - apl. Prof. Dr. G.

Einführung in die Funktionentheorie. Modul E.KompAna. Studiengänge Bachelor Lehramt Mathematik: Kombi-Bachelor. SoSe 14 - apl. Prof. Dr. G. 1 Ausarbeitung der Vorlesung Einführung in die Funktionentheorie Modul E.KompAna Studiengänge Bachelor Lehramt Mathematik: Kombi-Bachelor SoSe 14 - apl. Prof. Dr. G. Herbort Bergische Universität Wuppertal

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

2. ELLIPTISCHE GLEICHUNGEN 57

2. ELLIPTISCHE GLEICHUNGEN 57 2 ELLIPTISCHE GLEICHUNGEN 57 2 Finite Differenzen für elliptisce Gleicungen Im Gegensatz zu yperboliscen Gleicungen aben elliptisce Gleicungen einen Glättungseffekt, d im Allgemeinen besitzen solce Gleicungen

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Matematik und Nanotecnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu Einleitung: vom Computer zum Halbleiterbauteil Herleitung

Mehr

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch Prmeterintegrle Integrle können uc von Prmetern bängen, denken wir nur n die Gmm-Funktion, die definiert ist für x > durc Γ(x) = t x e t dt Hier ist x der Prmeter, von dem der Integrnd und dmit uc ds Integrl

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 4 Differenzierbarkeit 16 4 Differenzierbarkeit Wir wollen nun Differenzierbarkeit von Funktionen mehrerer Veränderlicher definieren Dazu führen wir zunächst den Begriff der partiellen Ableitung ein Definition

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 207 Erinnerung Satz. (Zwischenwertsatz) Sei f : [a, b] R stetig mit f(a) f(b). Dann gibt es zu jedem

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen

Analysis I. Vorlesung 12. Stetige Funktionen. Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 12 Stetige Funktionen Den Abstand zwischen zwei reellen (oder komplexen) Zahlen x und x bezeichnen wir mit d(x,x ) := x x. Bei einer Funktion

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

3. VORLESUNG,

3. VORLESUNG, 1.3.9. Satz (Parametrisierung der Kreislinie). 3. VORLESUNG, 23.04.2009 (i) Die Abbildung p : R S 1, p(ϕ) = e iϕ = cosϕ+isinϕ ist ein Gruppenmorphismus der additiven Gruppe (R,+) auf die multiplikative

Mehr