4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

Größe: px
Ab Seite anzeigen:

Download "4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme"

Transkript

1 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6 /K pdv << U Gleichverteilungssatz der Thermodynamik: Jeder Freiheitsgrad f beansprucht die Energie kt/2 1

2 Beispiel: einatomiges ideales Gas Potentielle Energie: E pot 0 (keine Bindungskräfte zwischen den Atomen) Rotationsenergie: E rot = 1/2 m r 2 w 2 Kinetische Translationsenergie: E kin = 1/2 m v 2 U atom = 1/2 f k T = 3/2 k T U mol = N 1/2 f k T = 3/2 R T m Kern m Elektron z r Elektron r Kern v Kern v z r Kern r Elektron Elektron x v x v y y Wasserstoff-Atom 2

3 4.2 Spezifische Wärme von Gasen Spezifische Wärme: C = dq/dt Metalle: C v C p = du/dt Ideale Gase: C p - C v = R I II Einatomiges Gas: C v = 3/2 R; f = 3 Zweiatomiges Gas: C v = 5/2 R; f = I II Dreiatomiges Gas: C v = 6 R; f = III 3 v

4 C v 7/2 R Spez. Wärme eines 2-atomigen Gases 5/2 R 3/2 R 1/2 R Ionisation Dissoziation Schwingungsfreiheitsgrade Rotationsfreiheitsgrade Translationsfreiheitsgrade T r T s T d T i T Spezifische Wärme hängt nur von der Zahl der Atome bzw. Molekühle und der Zahl der angeregten Freiheitsgrade ab. Die Freiheitsgrade werden mit zunehmender Temperatur angeregt. 4

5 4.3 Harmonischer Oszillator Wechselwirkung der Teilchen Potentielle Energie Harmonische Kraft F = - f x = de pot /dx E pot F Potentielle Energie: E pot = 1/2 f x 2 x 5

6 Gesamtenergie: E = E pot + E kin = 1/2 f x 2 + 1/2 m v 2 = konst. E pot = max E E kin = min v = p/ m E kin f = m w 2 E pot H = 1 2m p2 + mw 2 2 x 2 E kin = max E pot = min Endlage Ruhelage Momentane -x = A Position x = A x Bei Systemen mit makroskopischer Masse gibt jeder Punkt auf der Parabel einen möglichen Energiezustand kontinuierliches Energiespektrum 6

7 4.4 Energieeigenwerte des harmonischen Oszillators Substitution 2 p 2 = - h 2 x 2 Einführung der Wellenfunktion y y 2 Aufenthaltswahrscheinlichkeit Schrödinger-Gleichung: - h2 2m 2 y x f x 2 y = E n y 7

8 E 7 E 6 E 5 E 4 E 3 E 2 E 1 E o E Energieeigenwerte: Ê E n = n+ 1 ˆ Á h w Ë 2 n=0,1, 2,... Quantelung der Energiewerte D E µ hw µ m -1/ 2 T = 0 : E o = 1 2 hw x -x = A -x 3 -x 1 x 1 x 3 x = A Atom im Energiezustand Nullpunktsenergie! Unschärfe-Relation (Heisenberg) D x D p h/2 8

9 4.5 Energie der Gitterschwingungen Makroskopisches System: Besetzung der Energieniveaus nach der Boltzmann-Statistik f (E,T) µexp(-e /k B T) System identischer harmonischer Oszillatoren im thermischen Gleichgewicht N n +1 N n = exp(-e /k B T) mittlere Quantenzahl für die Anregung eines Oszillators n = n =  s  s s exp(-se /k B T) exp(-se /k B T) 1 exp(e /k B T) 9

10 Mikroskopisches System: Teilchen mit ganzzahligem Spin: Bosonen Bose-Einstein (Planck)-Statistik f (w,t) = 1 exp(hw /k B T) -1 Einstein-Modell: Mittlere thermische Energie E eines Oszillators der Frequenz w E = n hw Für N Oszillatoren mit 3 Freiheitsgraden und gleicher Frequenz: U = 3N n hw = 3Nhw exp(hw/k B T) -1 10

11 4.6 Phononen Die Energie der Gitterschwingungen im Kristall ist gequantelt. Elementaranregungen des Kristallgitters: Phononen K ±S ±S Longitudinale Phononen K Transversale Phononen 11

12 Sichtbarmachung von Phononen Ge-Einkristall: 1 cm 3 T = 1,9 K Anregung mit Laserpulsen 200 ns auf einer Seite Temperaturerhöhung auf der anderen Seite: K Identifizierung mit supraleitendem Bolometer 12

13 4.7 Spezifische Wärme der Phononen nach Einstein Spezifische Wärme: C = C V = du dt Energie der Einstein schen Oszillatoren der Frequenz w: U = 3N n hw = 3Nhw exp(hw /k B T) -1 Spezifische Wärme dieser Oszillatoren C V = du dt = 3Nk B Ê Á Ë hw k B T ˆ 2 exp(hw /k B T) ( exp(hw /k B T) -1) 2 13

14 T [K] R = 24.9 J/mol K Y k B T >> hw C V = 3 Nk B = 3 R (Dulong-Petit) C p, C, V [J/mol K] T/Q k B T << hw C V exp (hw/k B T) Abnahme der spez. Wärme zu tiefen Temperaturen: Beweis für die Quantisierung der thermisch anregbaren Energiezustände 14

15 4.8 Debye Modell Einstein: Alle Oszillatoren schwingen mit der gleichen Frequenz Debye: Abzählung der Eigenschwingungen in einem Kontinuum Wellenlänge der Phononen >> Gitterkonstante Born: Analytische Bestimmung der Zustandsdichte für einen Kristall Abzählung der Eigenschwingungen: Energie U G harmonischer Oszillatoren unterschiedlicher Frequenz w k : U G = Ân k hw, E k = hw k 15

16 E max Ú 0 U G = E f (E,T) g(e) de Zustandsdichte Verteilungsfunktion Energie einer Mode Thermisches Gleichgewicht: hw k k B T Quantenphysikalische Rechnung Bose-Einstein Verteilungsfunktion: f (E,T) = 1 exp(e /k B T) -1 Zustandsdichte in der Debye-Approximation: l 2a: Grenzfall: l = 2a Debyefrequenz: 3 w D = 6p 2 v 3 s N /V Debyetemperatur: Q = hv s 3 6p 2 N /V k B g(w) = Vw2 2pv s 16

17 4.9 Spezifische Wärme nach Debye Annahme: lineare Dispersionsrelation: w = v s k C V (T) = w Ú D 0 3V h 2 w 4 exp(hw /k B T) 2p 2 v 3 s k B T 2 exp(hw /k B T) -1 ( ) 2 dw Lösung für Grenzfälle: T << Q D : C v = A T 3 T >> Q D : C v = 3 R Im Debye-Modell unterscheiden sich verschiedene Materialien nur durch die Debye Temperatur Q D Beispiele: Hg: 72 K; Cu: 343 K; Fe: 467 K; K: 91K; Ge: 370 K; Si: 640 K Pb: 105 K; W: 400 K; C: 2230 K 17

18 C v 3r N k V C = V 3R Nach Debye ist die spezifische Wärme der Phononen universell, Wenn sie auf die reduzierte Temperatur T/Q bezogen wird. Bei Temperaturen T < < Q wird ein C v ~ T 3 Gesetz beobachtet Bei T > Q wird der Dulong-Petit sche Grenzwert erreicht. T Q T << Q: Nur Phononen mit hw k B T angeregt. Ihre Energie k B T. Volumen der angeregten Zustände: (K/K D ) 3 ~ (T/Q D ) 3. Zahl der angeregten Phononen: N(T/Q) 3. Innere Energie: U ~ Nk B T(T/Q) 3, spez. Wärme ~ k B (T/Q) 3. 18

19 Spezifische Wärme von festem Argon T [K] C v [mj/mol K] Ar Debye-Modell T 3 [K 3 ] 19

20 4.10 Zustandsdichte der Phononen g(w) g(w) w D w w Debye-Modell: g(w) w 2 Realer Kristall van Hove Singularitäten bei V g = dw/dk = 0 Erste Brioullin-Zone 20

21 E max E E i w D g(e) g D (E) Besetzung der diskreten Energieniveaus E i bei Unterschiedlichen Temperaturen T 2 > T 1 Grundzustand T 1 T 2 > T 1 f (E,T) 0 g, f g(w) Si Debye-Näherung Mit inelastischer Neutronenstreuung gemessene Zustandsdichte von reinem Si; w/2π w D 21

22 4.11 Inelastische Neutronenstreuung an Phononen Wechselwirkung Neutronen-Atomkerne Inelastische Streuung: Änderung der Energie des Neutrons nach dem Stoßprozeß 22

23 Erhaltungssatz für Wellenvektoren: k K j : k = k k : : K = 2k sin(j /2) : Erhaltungssatz der Energie: k' = k + G ± K k k' G K Wellenvektor des gestreuten Neutrons Wellenvektor des einfallenden Neutrons reziproker Gittervektor Wellenvektor des erzeugten (-) oder absorbierten (+) Phonons h 2 k 2 = h 2 k 2 ± hw K 2M n 2M n M n : Neutronenmasse E kin = p 2 /2M n = h 2 k 2 /2M n Experimentelle Bestimmung des Energieverlusts der gestreuten Neutronen als Funktion der Streurichtung k - k Dispersionsrelation w(k) Zustandsdichte g(w) 23

24 4.12 Thermische Expansion Wärmeausdehnung des Gitters: Beschreibung der interatomaren Wechselwirkung durch Lennard-Jones Potential: U( R ) = 4e' È Ê Í Á Î Í Ë s' R ˆ 12 Ê -Á s' Ë R ˆ abstoßender Term anziehender Term Das LJ-Potential beschreibt U R o R(E 1 ) R R o : Gleichgewichtsabstand U o : Bindungsenergie U o +E 1 U o =E E 1 R(E) 24

25 Linearer Ausdehnungskoeffizient: a 1 R R T Entwicklung von U(R) um R o nach einer Taylor-Reihe Abbruch nach dem Glied dritter Ordnung in R = R - R o È R = R o Í 1-7 Î 27 e' a = T Ê Á Ë R - R o R o ( U o + E) ; ˆ = 7 27 k B E' E = k B T E = J, a = 10-4 K -1 Cs: a = 97, K -1 Pb: a = 28, K -1 Fe: a = 11, K -1 Ni: a = 12, K -1 W: a = 4, K -1 25

26 Anisotropie des Potentials U(R) Anisotropie der Wärmeausdehnung a Beispiel: Monoklines Selen a I = - 1, K -1 a II = 84, K -1 a III = 63, K -1 Volumen-Ausdehnungskoeffizient: b = 3 Â i=1 a i Grüneisen-Beziehung: Zusammenhang zwischnen spez. Wärme C V und thermischer Ausdehnung b ß = g G C V k V g G : Grüneisen-Konstante 1 < g G < 3 k: isotherme Kompressibilität R - R o ª U = U o + E Ê C V = U ˆ Á Ë T V 26

27 Anisotrope Ausdehnung in Zn a [10-6/K] [10-6/K] Zn 20 berechnet beobachtet 0 a T [K] Invar Legierungen: Fe70±5Ni30±5: Kleiner thermischer Ausdehnungskoeffizient 27

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Thermische Eigenschaften des Kristallgitters

Thermische Eigenschaften des Kristallgitters Kapitel 6 Thermische Eigenschaften des Kristallgitters Wir wollen uns in diesem Kapitel mit den thermischen Eigenschaften des Kristallgitters beschäftigen. Dabei werden wir nur die mit den Phononen verbundenen

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 2010. Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern

Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 2010. Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 010 Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern Inhalt 1. Theoretische Grundlagen 1 1.1. Die Regel von Petit und Dulong 1 1..

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung reales Gas, Lennard-Jones-Potenzial Zustandsgleichung des realen Gases (van der Waals-Gleichung) Kondensation kritischer Punkt Freiheitsgrade

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Thermodynamik. Vorlesung 1. Nicolas Thomas

Thermodynamik. Vorlesung 1. Nicolas Thomas Thermodynamik Vorlesung 1 Thermodynamik ist nur ein bisschen schwerig. Geschichtlicher Hintergrund! Im 19. Jahrhundert Zunahme an Mechanisierung durch Konstruktion von Maschinen und Motoren.! Besonders

Mehr

4 Gitterschwingungen und Phononen

4 Gitterschwingungen und Phononen Die Struktur eines Festkörpers ist dadurch definiert, dass die Atome sich an der Stelle befinden, welche die Gesamtenergie der Anordnung minimiert. Dies ist deshalb die Position, die sie - abgesehen von

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Inelastische Lichtstreuung. Ramanspektroskopie

Inelastische Lichtstreuung. Ramanspektroskopie Inelastische Lichtstreuung Ramanspektroskopie Geschichte / Historisches 1920er Forschung von Wechselwirkung der Materie mit Elektromagnetischer-Strahlung 1923 Compton Effekt (Röntgen Photonen) Hypothese

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Wahrscheinlichkeit/Zerfall......... 2 1.2 Photoelektrischer Effekt.......... 2 1.3 De-Broglie-Wellenlänge.......... 3 1.4 Compton-Effekt.............. 3 1.5 Polarisation................

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ.

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ. Wärmelehre Betrachten wir mehrere Körper, die sich in einem Wärmebad befinden, so sagt uns die Erfahrung, dass sie alle dieselbe Temperatur haben werden. Verbinden wir einen heißen Körper mit einem kalten

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Thermische Bewegung, Temperatur und Wärme

Thermische Bewegung, Temperatur und Wärme hermische Bewegung, emperatur und Wärme Im heorieteil haben Sie die ersten Begriffe der statistischen Mechanik wie Boltzmann- Verteilung, emperatur oder Wärme kennengelernt. Wir wollen nun einige experimentelle

Mehr

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch.

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch. Institut für Eisen- und Stahl Technologie Seminar 2 Binäre Systeme Fe-C-Diagramm Dipl.-Ing. Ch. Schröder 1 Literatur V. Läpple, Wärmebehandlung des Stahls, 2003, ISBN 3-8085-1308-X H. Klemm, Die Gefüge

Mehr

Messgrößen und Messprinzip

Messgrößen und Messprinzip Kapitel 2 Messgrößen und Messprinzip In diesem Kapitel wird zunächst auf die Begriffe der thermischen Ausdehnung und der Magnetostriktion eingegangen und anschließend die zu deren Bestimmung in dieser

Mehr

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121

3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3.1 Allgemeine Eigenschaften des He 3.1.1. p-t-phasenübergang 121 3. Helium Im Sommersemester befassen wir uns generell mit Tieftemperaturphysik. Beginnen wollen wir mit einer Temperaturskala (Fig. 3.1),

Mehr

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph,

Mehr

Bandstrukturen II: NFE-Ansatz

Bandstrukturen II: NFE-Ansatz Bandstrukturen II: NFE-Ansatz Quantenchemische Rechenmethoden: Grundlagen und Anwendungen Caroline Röhr, Universität Freiburg M+K-Kurs, 4.2011 Teilchen im Kasten, potentialfrei (Wdh. 1. Woche) Teilchen

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Versuch 1.6: Franck-Hertz-Versuch

Versuch 1.6: Franck-Hertz-Versuch Physikalisches Praktikum für Fortgeschrittene TU Darmstadt Abteilung A: Angewandte Physik Versuch 1.6: Franck-Hertz-Versuch Stefan A. Gärtner Durchgeführt mit: Christian Klose Betreut von: Dr. Rainer Spehr

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

4.2 Wärmeleitung 4.2.1. Isolatoren 180

4.2 Wärmeleitung 4.2.1. Isolatoren 180 4. Wärmeleitung 4..1. Isolatoren 180 4. Wärmeleitung 4..1 Isolatoren Allgemein gilt für die Wärmeleitfähigkeit (vgl. Kap. 3..5): 1 κ = Cvl 3 dabei ist: C: Wärmekapazität v: Teilchengeschwindigkeit ( Schallgeschwindigkeit

Mehr

Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html

Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Angewandte Quantenmechanik (132.070) Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Übersicht Grundlagen 1) Grenzen der klassischen Physik und Entdeckung

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor:

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Prof. Dr. Sophie Kröger Prof. Dr. Gebhard von Oppen Priv. Doz. Dr. Frank Melchert Dr. Thorsten Ludwig Cand.-Phys. Andreas Kochan A. Kräfte und Bewegungsgleichungen (19 Punkte) 1. Was besagen die drei Newtonschen

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Elektronen in Festkörpern

Elektronen in Festkörpern 6 Elektronen in Festkörpern Anhand des Modells des fast freien Elektronengases kann eine Anzahl wichtiger physikalischer Eigenschaften von Metallen erklärt werden. Nach diesem Modell bewegen sich die am

Mehr

Molekülaufbau und Spektroskopie - Spezies Bestimmung. H.-J. Koß, C. Pauls (LTFD - RWTH Aachen) CES - Physikalische Messtechnik SS 2007 124 / 189

Molekülaufbau und Spektroskopie - Spezies Bestimmung. H.-J. Koß, C. Pauls (LTFD - RWTH Aachen) CES - Physikalische Messtechnik SS 2007 124 / 189 Molekülaufbau und Spektroskopie - Spezies Bestimmung H.-J. Koß, C. Pauls (LTFD - RWTH Aachen) CES - Physikalische Messtechnik SS 2007 124 / 189 Gliederung 1 Einführung Messtechniken 2 Particle Image Velocimetry

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n 1 1. Was sind Orbitale? Wie sehen die verschiedenen Orbital-Typen aus? Bereiche mit einer bestimmten Aufenthaltswahrscheinlichkeit eines Elektrons werden als Orbitale bezeichnet. Orbitale sind keine messbaren

Mehr

3. Struktur des Festkörpers

3. Struktur des Festkörpers 3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Klausur zur Physikalischen Chemie II

Klausur zur Physikalischen Chemie II Klausur zur Physikalischen Chemie II Aufbau der Materie und physikalische Grundlagen der Spektroskopie WS 2004/2005, Dienstag, den 08.02.2005, 10:00 h Name: Matrikelnummer: Geburtsdatum: Assistent: Hinweis:

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein.

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. Aufgabe A1 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. 1.1 Beim rutherfordschen Atommodell nimmt man einen Kern an, der Sitz der positiven Ladung und nahezu der gesamten

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2014 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 1. Vorlesung, 6. 3. 2014 Wie groß sind Atome? Atomare Einheiten, Welle / Teilchen

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

Dynamik des Kristallgitters

Dynamik des Kristallgitters Kapitel 5 Dynamik des Kristallgitters Im vorangegangenen Kapitel haben wir die Reaktion des Kristallgitters auf eine von außen wirkende Kraft diskutiert. Dabei haben wir das Gitter als ein Kontinuum behandelt,

Mehr

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten.

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten. Erkläre den Begriff Anregung eines Atoms Unter Anregung eines Atoms versteht man die Zufuhr von Energie an ein Atom, welche dieses vom Grundzustand in einen höheren Energiezustand, auf ein höheres Energieniveau,

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Fotoeffekt 1. Fotoeffekt. auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt

Fotoeffekt 1. Fotoeffekt. auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt Fotoeffekt 1 Versuch: Fotoeffekt auch: äußerer lichtelektrischer Effekt, äußerer Fotoeffekt Vorbereitung: Platte gut abschmirgeln Mit Ladungslöffel negativ aufladen. Durchführungen: 1. Licht einer Quecksilberdampflampe

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

Welche wichtigen Begriffe gibt es?

Welche wichtigen Begriffe gibt es? Welche wichtigen Begriffe gibt es? Moleküle Beispiel: Kohlendioxid CO 2 bestehen aus Protonen (+) bestehen aus Atomkerne Chemische Elemente bestehen aus Atome bestehen aus Neutronen Beispiele: Kohlenstoff

Mehr

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft 4. Die Energiebilanz 4.1. Mechanische Formen der Energie 4.1.1 Energie und Arbeit Arbeit einer Kraft Die auf dem Weg von 1 nach 2 geleistete Arbeit berechnet sich durch Integration entlang der Bahnkurve

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

3. Inelastische Lichtstreuung: Der Raman-Effekt

3. Inelastische Lichtstreuung: Der Raman-Effekt 3. Inelastische Lichtstreuung: Der Raman-Effekt Nachdem im vorangegangenen Abschnitt der Einfluß der Gestalt eines Probenvolumens auf sein Streuverhalten betrachtet wurde, wird im folgenden die Lichtstreuung

Mehr

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger Vorlesung Chemie Fakultät für Maschinenbau Dozenten Prof. Dr. Pettinger Folie Nr. 1 Gliederung der Vorlesung Folie Nr. 2 1 Literaturempfehlungen Guido Kickelbick, Chemie für Ingenieure, 2008, Verlag Pearson

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse

4.2 Metallkristalle. 4.2.1 Bindungsverhältnisse 4.2 Metallkristalle - 75 % aller Elemente sind Metalle - hohe thermische und elektrische Leitfähigkeit - metallischer Glanz - Duktilität (Zähigkeit, Verformungsvermögen): Fähigkeit eines Werkstoffs, sich

Mehr

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern Kernhysik I Kernmodelle: ermigas-modell Neutronenstern ermigas-modell Kerne im Grundzustand können als entartetes ermigassysteme aus Nukleonen, mit hoher Dichte (,1 Nukleonen/fm ) betrachtet werden. Die

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

Physik 2 (B.Sc. EIT) 7. Übungsblatt

Physik 2 (B.Sc. EIT) 7. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof. Dr. H. Baugärtner Übungen: Dr.-Ing. Tanja Stipel-Lindner,

Mehr

THERMISCHE AUSDEHNUNG

THERMISCHE AUSDEHNUNG INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 THERMISCHE AUSDEHNUNG Unter thermischer Ausdehnung versteht man

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Innere Energie eines Gases

Innere Energie eines Gases Innere Energie eines Gases Die innere Energie U eines Gases im Volumen V setzt sich zusammen aus der gesamten Energie (Translationsenergie, Rotationsenergie und Schwingungsenergie) seiner N Moleküle. Der

Mehr