4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme"

Transkript

1 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6 /K pdv << U Gleichverteilungssatz der Thermodynamik: Jeder Freiheitsgrad f beansprucht die Energie kt/2 1

2 Beispiel: einatomiges ideales Gas Potentielle Energie: E pot 0 (keine Bindungskräfte zwischen den Atomen) Rotationsenergie: E rot = 1/2 m r 2 w 2 Kinetische Translationsenergie: E kin = 1/2 m v 2 U atom = 1/2 f k T = 3/2 k T U mol = N 1/2 f k T = 3/2 R T m Kern m Elektron z r Elektron r Kern v Kern v z r Kern r Elektron Elektron x v x v y y Wasserstoff-Atom 2

3 4.2 Spezifische Wärme von Gasen Spezifische Wärme: C = dq/dt Metalle: C v C p = du/dt Ideale Gase: C p - C v = R I II Einatomiges Gas: C v = 3/2 R; f = 3 Zweiatomiges Gas: C v = 5/2 R; f = I II Dreiatomiges Gas: C v = 6 R; f = III 3 v

4 C v 7/2 R Spez. Wärme eines 2-atomigen Gases 5/2 R 3/2 R 1/2 R Ionisation Dissoziation Schwingungsfreiheitsgrade Rotationsfreiheitsgrade Translationsfreiheitsgrade T r T s T d T i T Spezifische Wärme hängt nur von der Zahl der Atome bzw. Molekühle und der Zahl der angeregten Freiheitsgrade ab. Die Freiheitsgrade werden mit zunehmender Temperatur angeregt. 4

5 4.3 Harmonischer Oszillator Wechselwirkung der Teilchen Potentielle Energie Harmonische Kraft F = - f x = de pot /dx E pot F Potentielle Energie: E pot = 1/2 f x 2 x 5

6 Gesamtenergie: E = E pot + E kin = 1/2 f x 2 + 1/2 m v 2 = konst. E pot = max E E kin = min v = p/ m E kin f = m w 2 E pot H = 1 2m p2 + mw 2 2 x 2 E kin = max E pot = min Endlage Ruhelage Momentane -x = A Position x = A x Bei Systemen mit makroskopischer Masse gibt jeder Punkt auf der Parabel einen möglichen Energiezustand kontinuierliches Energiespektrum 6

7 4.4 Energieeigenwerte des harmonischen Oszillators Substitution 2 p 2 = - h 2 x 2 Einführung der Wellenfunktion y y 2 Aufenthaltswahrscheinlichkeit Schrödinger-Gleichung: - h2 2m 2 y x f x 2 y = E n y 7

8 E 7 E 6 E 5 E 4 E 3 E 2 E 1 E o E Energieeigenwerte: Ê E n = n+ 1 ˆ Á h w Ë 2 n=0,1, 2,... Quantelung der Energiewerte D E µ hw µ m -1/ 2 T = 0 : E o = 1 2 hw x -x = A -x 3 -x 1 x 1 x 3 x = A Atom im Energiezustand Nullpunktsenergie! Unschärfe-Relation (Heisenberg) D x D p h/2 8

9 4.5 Energie der Gitterschwingungen Makroskopisches System: Besetzung der Energieniveaus nach der Boltzmann-Statistik f (E,T) µexp(-e /k B T) System identischer harmonischer Oszillatoren im thermischen Gleichgewicht N n +1 N n = exp(-e /k B T) mittlere Quantenzahl für die Anregung eines Oszillators n = n =  s  s s exp(-se /k B T) exp(-se /k B T) 1 exp(e /k B T) 9

10 Mikroskopisches System: Teilchen mit ganzzahligem Spin: Bosonen Bose-Einstein (Planck)-Statistik f (w,t) = 1 exp(hw /k B T) -1 Einstein-Modell: Mittlere thermische Energie E eines Oszillators der Frequenz w E = n hw Für N Oszillatoren mit 3 Freiheitsgraden und gleicher Frequenz: U = 3N n hw = 3Nhw exp(hw/k B T) -1 10

11 4.6 Phononen Die Energie der Gitterschwingungen im Kristall ist gequantelt. Elementaranregungen des Kristallgitters: Phononen K ±S ±S Longitudinale Phononen K Transversale Phononen 11

12 Sichtbarmachung von Phononen Ge-Einkristall: 1 cm 3 T = 1,9 K Anregung mit Laserpulsen 200 ns auf einer Seite Temperaturerhöhung auf der anderen Seite: K Identifizierung mit supraleitendem Bolometer 12

13 4.7 Spezifische Wärme der Phononen nach Einstein Spezifische Wärme: C = C V = du dt Energie der Einstein schen Oszillatoren der Frequenz w: U = 3N n hw = 3Nhw exp(hw /k B T) -1 Spezifische Wärme dieser Oszillatoren C V = du dt = 3Nk B Ê Á Ë hw k B T ˆ 2 exp(hw /k B T) ( exp(hw /k B T) -1) 2 13

14 T [K] R = 24.9 J/mol K Y k B T >> hw C V = 3 Nk B = 3 R (Dulong-Petit) C p, C, V [J/mol K] T/Q k B T << hw C V exp (hw/k B T) Abnahme der spez. Wärme zu tiefen Temperaturen: Beweis für die Quantisierung der thermisch anregbaren Energiezustände 14

15 4.8 Debye Modell Einstein: Alle Oszillatoren schwingen mit der gleichen Frequenz Debye: Abzählung der Eigenschwingungen in einem Kontinuum Wellenlänge der Phononen >> Gitterkonstante Born: Analytische Bestimmung der Zustandsdichte für einen Kristall Abzählung der Eigenschwingungen: Energie U G harmonischer Oszillatoren unterschiedlicher Frequenz w k : U G = Ân k hw, E k = hw k 15

16 E max Ú 0 U G = E f (E,T) g(e) de Zustandsdichte Verteilungsfunktion Energie einer Mode Thermisches Gleichgewicht: hw k k B T Quantenphysikalische Rechnung Bose-Einstein Verteilungsfunktion: f (E,T) = 1 exp(e /k B T) -1 Zustandsdichte in der Debye-Approximation: l 2a: Grenzfall: l = 2a Debyefrequenz: 3 w D = 6p 2 v 3 s N /V Debyetemperatur: Q = hv s 3 6p 2 N /V k B g(w) = Vw2 2pv s 16

17 4.9 Spezifische Wärme nach Debye Annahme: lineare Dispersionsrelation: w = v s k C V (T) = w Ú D 0 3V h 2 w 4 exp(hw /k B T) 2p 2 v 3 s k B T 2 exp(hw /k B T) -1 ( ) 2 dw Lösung für Grenzfälle: T << Q D : C v = A T 3 T >> Q D : C v = 3 R Im Debye-Modell unterscheiden sich verschiedene Materialien nur durch die Debye Temperatur Q D Beispiele: Hg: 72 K; Cu: 343 K; Fe: 467 K; K: 91K; Ge: 370 K; Si: 640 K Pb: 105 K; W: 400 K; C: 2230 K 17

18 C v 3r N k V C = V 3R Nach Debye ist die spezifische Wärme der Phononen universell, Wenn sie auf die reduzierte Temperatur T/Q bezogen wird. Bei Temperaturen T < < Q wird ein C v ~ T 3 Gesetz beobachtet Bei T > Q wird der Dulong-Petit sche Grenzwert erreicht. T Q T << Q: Nur Phononen mit hw k B T angeregt. Ihre Energie k B T. Volumen der angeregten Zustände: (K/K D ) 3 ~ (T/Q D ) 3. Zahl der angeregten Phononen: N(T/Q) 3. Innere Energie: U ~ Nk B T(T/Q) 3, spez. Wärme ~ k B (T/Q) 3. 18

19 Spezifische Wärme von festem Argon T [K] C v [mj/mol K] Ar Debye-Modell T 3 [K 3 ] 19

20 4.10 Zustandsdichte der Phononen g(w) g(w) w D w w Debye-Modell: g(w) w 2 Realer Kristall van Hove Singularitäten bei V g = dw/dk = 0 Erste Brioullin-Zone 20

21 E max E E i w D g(e) g D (E) Besetzung der diskreten Energieniveaus E i bei Unterschiedlichen Temperaturen T 2 > T 1 Grundzustand T 1 T 2 > T 1 f (E,T) 0 g, f g(w) Si Debye-Näherung Mit inelastischer Neutronenstreuung gemessene Zustandsdichte von reinem Si; w/2π w D 21

22 4.11 Inelastische Neutronenstreuung an Phononen Wechselwirkung Neutronen-Atomkerne Inelastische Streuung: Änderung der Energie des Neutrons nach dem Stoßprozeß 22

23 Erhaltungssatz für Wellenvektoren: k K j : k = k k : : K = 2k sin(j /2) : Erhaltungssatz der Energie: k' = k + G ± K k k' G K Wellenvektor des gestreuten Neutrons Wellenvektor des einfallenden Neutrons reziproker Gittervektor Wellenvektor des erzeugten (-) oder absorbierten (+) Phonons h 2 k 2 = h 2 k 2 ± hw K 2M n 2M n M n : Neutronenmasse E kin = p 2 /2M n = h 2 k 2 /2M n Experimentelle Bestimmung des Energieverlusts der gestreuten Neutronen als Funktion der Streurichtung k - k Dispersionsrelation w(k) Zustandsdichte g(w) 23

24 4.12 Thermische Expansion Wärmeausdehnung des Gitters: Beschreibung der interatomaren Wechselwirkung durch Lennard-Jones Potential: U( R ) = 4e' È Ê Í Á Î Í Ë s' R ˆ 12 Ê -Á s' Ë R ˆ abstoßender Term anziehender Term Das LJ-Potential beschreibt U R o R(E 1 ) R R o : Gleichgewichtsabstand U o : Bindungsenergie U o +E 1 U o =E E 1 R(E) 24

25 Linearer Ausdehnungskoeffizient: a 1 R R T Entwicklung von U(R) um R o nach einer Taylor-Reihe Abbruch nach dem Glied dritter Ordnung in R = R - R o È R = R o Í 1-7 Î 27 e' a = T Ê Á Ë R - R o R o ( U o + E) ; ˆ = 7 27 k B E' E = k B T E = J, a = 10-4 K -1 Cs: a = 97, K -1 Pb: a = 28, K -1 Fe: a = 11, K -1 Ni: a = 12, K -1 W: a = 4, K -1 25

26 Anisotropie des Potentials U(R) Anisotropie der Wärmeausdehnung a Beispiel: Monoklines Selen a I = - 1, K -1 a II = 84, K -1 a III = 63, K -1 Volumen-Ausdehnungskoeffizient: b = 3 Â i=1 a i Grüneisen-Beziehung: Zusammenhang zwischnen spez. Wärme C V und thermischer Ausdehnung b ß = g G C V k V g G : Grüneisen-Konstante 1 < g G < 3 k: isotherme Kompressibilität R - R o ª U = U o + E Ê C V = U ˆ Á Ë T V 26

27 Anisotrope Ausdehnung in Zn a [10-6/K] [10-6/K] Zn 20 berechnet beobachtet 0 a T [K] Invar Legierungen: Fe70±5Ni30±5: Kleiner thermischer Ausdehnungskoeffizient 27

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Thermische Eigenschaften des Kristallgitters

Thermische Eigenschaften des Kristallgitters Kapitel 6 Thermische Eigenschaften des Kristallgitters Wir wollen uns in diesem Kapitel mit den thermischen Eigenschaften des Kristallgitters beschäftigen. Dabei werden wir nur die mit den Phononen verbundenen

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie

5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie 5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie Elektrische Leitfähigkeit verschiedener Stoffe bei Raumtemperatur W -1 cm -1 10 6 10 3 1 10-3 10-6 10-9 10-12 10-15 10-18

Mehr

10. Thermische Eigenschaften fester Körper

10. Thermische Eigenschaften fester Körper 10. Thermische Eigenschaften fester Körper l T = l 0 1 + α T T 0 V T = V 0 1 + α V T T 0 α V 3α [ A. Melzer ] 1 Energie 10. Thermische Eigenschaften fester Harmonischer Oszillator Körper Ort Ort [ D. Suter

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 2010. Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern

Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 2010. Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern Versuch Nr. 5 W.-C. Pilgrim, F. Noll und M. Schäfer, April 010 Temperaturabhängigkeit der Spezifischen Wärme von Festkörpern Inhalt 1. Theoretische Grundlagen 1 1.1. Die Regel von Petit und Dulong 1 1..

Mehr

Opto-elektronische. Materialeigenschaften VL # 3

Opto-elektronische. Materialeigenschaften VL # 3 Opto-elektronische Materialeigenschaften VL # 3 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Kalorimetrie (Wärmelehre)

Kalorimetrie (Wärmelehre) Thermische Molekularbewegung Phasenübergänge Reaktionswärme Kalorimetrie (Wärmelehre) Gase Flüssigkeiten/Festkörper Ideales Gasgesetz Dulong-Petit-Gesetz 1 Thermodynamik Beschreibung der Zustände und deren

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Mode der Bewegung, Freiheitsgrade

Mode der Bewegung, Freiheitsgrade Mode der Bewegung, Freiheitsgrade Bewegungsmoden (normal modes of motion) : Jede UNABHÄNGIGE Bewegungsmöglichkeit der Atome (unabhängig: im quantenmechanischen Sinne durch orthogonale Wellenfunktionen

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die

der Periodendauer ist die Frequenz der Schwingung = ω 1 (Masse mal Beschleunigung). Die Lösung dieser Differentialgleichung führt auf die Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 9158 Erlangen orlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

6. Transporteigenschaften von Metallen

6. Transporteigenschaften von Metallen 6. Transporteigenschaften von Metallen 6. llgemeine Transportgleichung a) elektrische Leitung b) Wärmeleitung c) Diffusion llgemeine Transportgleichung: j C Φ j : C : Φ : Stromdichte Proportionalitätskonstante

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Versuch 30 Spezifische Wärme bei tiefer Temperatur

Versuch 30 Spezifische Wärme bei tiefer Temperatur Physikalisches Praktikum Versuch 30 Spezifische Wärme bei tiefer Temperatur Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 67.09.2006 Katharina Rabe Assistent:

Mehr

5 Anwendung der Dichtefunktionaltheorie

5 Anwendung der Dichtefunktionaltheorie 5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 8 Vladimir yakonov Lehrstuhl Experimentelle Physik VI VL5 4-6-8 el. 9/888 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 5. as freie Elektronengas 5.

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

5.4.2 Was man wissen muss

5.4.2 Was man wissen muss 5.4.2 Was man wissen muss Begriffe wie System, Ensemble mindestens die drei Beispiele (Gas, Kritall-Atome; Kristall-Elektronen) sollte man nachvollziehen können. Den Begriff des thermodynamischen Gleichgewichts.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Thermische Eigenschaften von Kristallgittern

Thermische Eigenschaften von Kristallgittern Kapitel 5 hermische Eigenschaften von Kristallgittern Wir haben gesehen, dass sich die 3rN Bewegungsgleichungen eines periodischen Festkörpers weitgehend entkoppeln lassen, wenn man die Kräfte harmonisch

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung reales Gas, Lennard-Jones-Potenzial Zustandsgleichung des realen Gases (van der Waals-Gleichung) Kondensation kritischer Punkt Freiheitsgrade

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

10. Thermische Eigenschaften fester Körper

10. Thermische Eigenschaften fester Körper 10. Thermische Eigenschaften fester Körper [ A. Melzer ] WS 2013/14 1 10.1 Zustandsgleichung und thermische Ausdehnung Grüneisenparameter γ WS 2013/14 2 Eduard Grüneisen (1877 1949) Grüneisen, E.: Theorie

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

Hier: Beschränkung auf die elektrische Eigenschaften

Hier: Beschränkung auf die elektrische Eigenschaften IV. Festkörperphysik Hier: Beschränkung auf die elektrische Eigenschaften 3 Aggregatzustände: fest, flüssig, gasförmig: Wechselspiel Anziehungskräfte der Teilchen gegen die thermische Energie kt. Zustand

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

10.Einführung in die Festkörperphysik

10.Einführung in die Festkörperphysik 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Messgrößen und Messprinzip

Messgrößen und Messprinzip Kapitel 2 Messgrößen und Messprinzip In diesem Kapitel wird zunächst auf die Begriffe der thermischen Ausdehnung und der Magnetostriktion eingegangen und anschließend die zu deren Bestimmung in dieser

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung

E2: Wärmelehre und Elektromagnetismus 3. Vorlesung E2: Wärmelehre und Elektromagnetismus 3. Vorlesung 16.04.2018 https://xkcd.com/1978/ Heute: - Gleichverteilungssatz - 1. Hauptsatz - Volumenarbeit - Wärmekapazität - Wärmekapazität des idealen Gases -

Mehr

Elektrische und Thermische Leitfähigkeit von Metallen

Elektrische und Thermische Leitfähigkeit von Metallen Elektrische und Thermische Leitfähigkeit von Metallen Virtueller Vortrag von Andreas Kautsch und Andreas Litschauer im Rahmen der VO Festkörperphysik Grundlagen Outline elektrische Leitfähigkeit Gründe

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Inelastische Lichtstreuung. Ramanspektroskopie

Inelastische Lichtstreuung. Ramanspektroskopie Inelastische Lichtstreuung Ramanspektroskopie Geschichte / Historisches 1920er Forschung von Wechselwirkung der Materie mit Elektromagnetischer-Strahlung 1923 Compton Effekt (Röntgen Photonen) Hypothese

Mehr

Thermodynamik. Vorlesung 1. Nicolas Thomas

Thermodynamik. Vorlesung 1. Nicolas Thomas Thermodynamik Vorlesung 1 Thermodynamik ist nur ein bisschen schwerig. Geschichtlicher Hintergrund! Im 19. Jahrhundert Zunahme an Mechanisierung durch Konstruktion von Maschinen und Motoren.! Besonders

Mehr

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5

Inhaltsverzeichnis. Experimentalphysik III WS 2013/2014. 1 Grundlagen 2. 3 Wasserstoffatom 7. 4 Größere Atome 9. 2 Quantenmechanik 5 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Wahrscheinlichkeit/Zerfall......... 2 1.2 Photoelektrischer Effekt.......... 2 1.3 De-Broglie-Wellenlänge.......... 3 1.4 Compton-Effekt.............. 3 1.5 Polarisation................

Mehr

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch.

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch. Institut für Eisen- und Stahl Technologie Seminar 2 Binäre Systeme Fe-C-Diagramm Dipl.-Ing. Ch. Schröder 1 Literatur V. Läpple, Wärmebehandlung des Stahls, 2003, ISBN 3-8085-1308-X H. Klemm, Die Gefüge

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

4 Gitterschwingungen und Phononen

4 Gitterschwingungen und Phononen Die Struktur eines Festkörpers ist dadurch definiert, dass die Atome sich an der Stelle befinden, welche die Gesamtenergie der Anordnung minimiert. Dies ist deshalb die Position, die sie - abgesehen von

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3

Kristallstruktur 1 Tetraederwinkel Die Millerschen Indizes Die hcp-struktur Bravais-Gitter 3 In ha Itsverzeichn is Vorwort V 1 ALl Al.2 A1.3 Al.4 Al.5 Al.6 Al.7 Al.8 Kristallstruktur 1 Tetraederwinkel.............................................................. 1 Die Millerschen Indizes......................................................

Mehr

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n

Die Nebenquantenzahl oder Bahndrehimpulsquantenzahl l kann ganzzahlige Werte von 0 bis n - 1 annehmen. Jede Hauptschale unterteilt sich demnach in n 1 1. Was sind Orbitale? Wie sehen die verschiedenen Orbital-Typen aus? Bereiche mit einer bestimmten Aufenthaltswahrscheinlichkeit eines Elektrons werden als Orbitale bezeichnet. Orbitale sind keine messbaren

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Einführung in die Neutronenstreuung Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Literatur Sehr empfehlenswert: Neutron scattering: A Primer by Roger Pynn Los Alamos Science

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

Festkörperphysik. Aufgaben und Lösun

Festkörperphysik. Aufgaben und Lösun Festkörperphysik. Aufgaben und Lösun von Prof. Dr. Rudolf Gross Dr. Achim Marx Priv.-Doz. Dr. Dietrich Einzel Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Kristallstruktur 1 ALI Tetraederwinkel

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr