Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Oracle OLAP 11g: Performance für das Oracle Data Warehouse"

Transkript

1 <Insert Picture Here> Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales

2 Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen Oracle OLAP im Oracle DWH Demo

3 Oracle OLAP 11g Performance in Oracle DWH Hängt von vielen Faktoren ab Kann mit mindestens genauso vielen Mitteln gelöst werden Unterschied: Datenbank langsam oder BI/Bericht langsam? Mögliche Ursachen auf den folgenden Slides

4 Datenmodell / Konfiguration / Features Datenmodell nicht für Abfrage ausgelegt Fehlerhafte Konfiguration der Datenbank-Parameter Keine oder falsche Nutzung der neuesten Funktionen der Datenbank Bitmap-Indices Materialized Views Star-Query Analytisches SQL Uvam Lösung: Beratung, Ausbildung

5 Unbalancierte Systeme DWH-Installationen müssen als Ganzes betrachtet werden Oft sind Komponenten nicht aufeinander abgestimmt CPU, RAM # Platten, Durchsatz, Controller Netzwerkverbindungen Lösungen: Beratung und Einsatz entsprechend abgestimmter Komponenten DWH Appliance Oracle Database Machine / Exadata

6 Die eigentliche Aufgabe: Verbesserung der Lieferung von umfangreichen Abfragen durch SQL-basierende BI Werkzeuge und - Applikationen Vereinfachter Zugriff auf analytische Berechnungen Schnelle Performance Nutzung des Investments in existierendes Oracle RDBMS

7 Data Warehouse Architektur Data Sources Security BI / PM Tools Syndicated/ External Staging Layer Unstructured Data Foundation Layer Master Data Temporary Loading Structures Process Neutral 3NF Model Access and Performance Layer Embedded Data Marts, MVs, Cubes, Views, CTAs Information Access Operational Systems Rejected Data Analysis Sandpit COTS BI Applications Data ETL, Messaging and Metadata

8 Data Warehouse Architektur Staging Layer Daten werden aus unterschiedlichen Quellen geladen Dient als Datenqualitäts- Firewall zwischen Quellen und anderen Schichten Kontrollierte Datenbewegung in nächste Schicht

9 Data Warehouse Architektur Foundation Layer Atomare Datenspeicherung 3NF Modellierung Geschäftsneutrales Datenmodell Keine Aggregate enthalten

10 Data Warehouse Architektur Access and Performance Layer Geschäftsorientierte Repräsentation der Daten Star -Design vereinfacht üblicherweise den Zugriff Enthält Verdichtungen / Summen, um Abfragegeschwindigkeit zu verbessern

11 Abfrage an ein Star-Schema Star-Query WITH sales_dense AS (SELECT [breakout columns] sales, SUM(sales) over(partition BY [breakout columns] ORDER BY [time column] ASC range BETWEEN unbounded preceding AND CURRENT ROW) AS sales_ytd FROM (SELECT [breakout columns] a.sales FROM (SELECT [breakout columns] SUM(f.sales) sales FROM [table list] WHERE [star join and other filters] GROUP BY [breakout columns) a PARTITION BY(breakout columns) RIGHT OUTER JOIN (-- need list of all time periods SELECT DISTINCT [time columns] FROM time_dim b ON([join on relevant time level])) ) Continued

12 Klassische Lösung für die Verwaltung von Aggregaten Materialized Views für bessere Performance BI Tool Materialized Views Region SQL Date Sales by Region Sales by Date Query Rewrite Sales Sales by Product Sales by Channel Product Relational Star Schema (tables) Channel

13 Viele unterschiedliche Abfragen = viele MVs = Umfangreich! More Time Star Schema Preparation Time Less Time Less Ad-Hoc Predictable Queries Simple Calculations More Ad-Hoc Unpredictable Query Patterns Sophisticated Calculations Ad-Hoc Nature of Application and Query Patterns

14 Aus STAR wird CUBE gleiche Logik, unterschiedliche Technik CUST REGION SALES FACT Product Sales Cube Time Geography Aggregation Rules Product: Sum Geography: Sum Time: Sum INVENTORY ITEM TIME Product Inventory Cube Time Aggregation Rules Product: Sum Time: Hierarchical Last

15 Viele unterschiedliche Abfragen = Ein Cube = Einfach! More Time Star Schema Preparation Time Multidimensional Data Types Less Time Less Ad-Hoc Predictable Queries Simple Calculations More Ad-Hoc Unpredictable Query Patterns Sophisticated Calculations Ad-Hoc Nature of Application and Query Patterns

16 Cube-based Materialized Views Breakthrough Manageability & Performance Ein einzelnen Cube liefert das Equivalent tausender Summen-Kombinationen Der 11g SQL Query Optimizer behandelt OLAP Cubes als MV s und schreibt die Abfragen entsprechend um Cube Refresh mit den Standard MV Prozeduren

17 Query Rewrite to Cube SQL Star Query example

18 Query Rewrite to Cube Database Query Optimizer automatically rewrites to cube Explain Plan After Before Query Time After Before Cube Access

19 Innovative, einmalige Funktion in Oracle Datenbank Cube-Organized Materialized Views BI Tool Materialized View Region SQL Date Query Rewrite Product Relational Star Schema (tables) Channel Automatic Refresh dbms_mview.refresh('cb$unit_cube','f')

20 Cube-based Materialized Views Nachteile Die analytischen Fähigkeiten von Oracle OLAP werden nur zum Teil genutzt! Re-Write nur auf Daten, die bereits relational vorhanden OLAP bietet umfangreiche Möglichkeiten, weitere Berechnungen zu definieren OLAP Cube Views Relationaler Zugriff auf OLAP Daten Kein Rewrite, sondern explizit!

21 OLAP Cubes Views SQL Query of Oracle Cubes Cube wird als Star-Schema in relationalen Views repräsentiert Dimensionen und Fakten-Views Detail- und Summen Faktenzeilen Analytische Faktenspalten OLAP Cube enthält Alle Summenebenen Analytische Berechnungen 21

22 Analytische Funktionen in OLAP alle per SQL erreichbar! Time-series Berechnete Elemente Finanz-Modelle Forecasting einfach Expertensystem Verteilungen Regressionen Eigene Funktionen und vieles mehr Auswahl an Funktionen

23 Abfrage an ein Star-Schema Vereinfachte Abfrage an OLAP Query With OLAP Cubes: SELECT [breakout columns], sales, sales_prior_year sales_ytd, sales_ytd_prior_year FROM sales_cube_view WHERE [star join] Query w/o OLAP Cubes: WITH sales_dense AS (SELECT [breakout columns] sales, SUM(sales) over(partition BY [breakout columns] ORDER BY [time column] ASC range BETWEEN unbounded preceding AND CURRENT ROW) AS sales_ytd FROM (SELECT [breakout columns] a.sales FROM (SELECT [breakout columns] SUM(f.sales) sales FROM [table list] WHERE [star join and other filters] GROUP BY [breakout columns) a PARTITION BY(breakout columns) RIGHT OUTER JOIN (-- need list of all time periods SELECT DISTINCT [time columns] FROM time_dim b ON([join on relevant time level])) ) Continued

24 Data Warehouse Architektur Oracle OLAP Powers Access & Performance Layer Würfel erweitern Inhalt für die BI Werkzeuge Einfache Definition und Abfrage des Geschäftmodells und von Berechnungen Metadaten und Regeln bleiben im Oracle Data Dictionary Summen aller Wert werden intelligent verwaltet extrem gute Antwortzeiten

25 Demo Analyzing Cubes

26 Oracle Database 11g: Embedded OLAP Vereinfachung heterogener Abfrageumgebungen Reporting & Analysis MS Office Dashboard Web Service Geschäftsregeln in der Oracle Datenbank Verfügbar im Data Dictionary Eine Definition, genutzt von allen Tools und Anwendungen Gesicherte Daten Berechnungskomplexität findet am optimalen Ort statt Vereinfacht Implementierung Liefert effiziente Berechnungen Reduziert Kosten 26

27 Data Warehouse Architektur Ergänzung durch Oracle Essbase Optimale Architektur, um separates OLAP zu unterstützen Fachbereichslösungen Planungsapplikationen

28 Oracle OLAP Zusammenfassung Maximizing Return on Investment Liefert wertvollen Inhalt schnell und einfach für Oracle Kunden mit bereits vorhandener (n): Datenbank BI Tools Oracle Kenntnissen Oracle OLAP Cubes

29 Mehr Infos? search.oracle.com Oracle OLAP Oracle Technology Network For demonstrations, white papers, tutorials and more, visit:

Datenbankstammtisch. Oracle's multidimensionale Lösungen: Oracle OLAP und Oracle Essbase. M. Fischer Dresden, 15.06.2011

Datenbankstammtisch. Oracle's multidimensionale Lösungen: Oracle OLAP und Oracle Essbase. M. Fischer Dresden, 15.06.2011 Datenbankstammtisch Oracle's multidimensionale Lösungen: Oracle OLAP und Oracle Essbase M. Fischer Dresden, 15.06.2011 Agenda Kurzvorstellung Robotron Oracle s multidimensionale Lösungen im Überblick Oracle

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Die Eckpfeiler eines ausbalancierten BI Systems. Maik Sandmann Systemberater,

Die Eckpfeiler eines ausbalancierten BI Systems. Maik Sandmann Systemberater, Die Eckpfeiler eines ausbalancierten BI Systems Maik Sandmann Systemberater, Maik.Sandmann@oracle.com Was ist ein balanciertes System? Agilität Ausbalanciertes System Risikoreduktion Effizienz Performanz

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

OLAP mit multidimensionale Datenanalysen zielgerichtet in Unternehmensdaten navigieren

OLAP mit multidimensionale Datenanalysen zielgerichtet in Unternehmensdaten navigieren 1 OLAP mit multidimensionale Datenanalysen zielgerichtet in Unternehmensdaten navigieren Detlef E. Schröder, Leitender Systemberater DWH & BI Oracle Deutschland B. V. & Co KG Agenda

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Analytic Views: Einsatzgebiete im Data Warehouse

Analytic Views: Einsatzgebiete im Data Warehouse Analytic Views: Einsatzgebiete im Data Warehouse Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Einleitung Analytic Views sind eine der wesentlichen Erweiterungen in Oracle 12c Release 2. Durch zusätzliche

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Exalytics - Deep dive with OBIEE, Timesten and Essbase

Exalytics - Deep dive with OBIEE, Timesten and Essbase Exalytics - Deep dive with OBIEE, Timesten and Essbase Renate Wendlik Senior DWH Consultant Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Agenda Einleitung Exalytics Konfiguration

Mehr

Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle. Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH

Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle. Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH Agenda Business Intelligence und die

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

Analytische Leistungsfähigkeit & Performance mit der Oracle OLAP Option

Analytische Leistungsfähigkeit & Performance mit der Oracle OLAP Option Analytische Leistungsfähigkeit & Performance mit der Oracle OLAP Option César Ortiz,Competence Center BI cesar.ortiz@oracle.com Tel. +49.511.95787161 Oracle Deutschland B.V. & Co. KG Der Beginn Wie sehen

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

Materialized Views. Jan-Peter Timmermann. DOAG Regiotreffen Hamburg: Materialized Views Seite 1

Materialized Views. Jan-Peter Timmermann. DOAG Regiotreffen Hamburg: Materialized Views Seite 1 Materialized Views Jan-Peter Timmermann DOAG Regiotreffen Hamburg: Materialized Views Seite 1 Klassische View Sind virtuelle Tabellen Erstellung nicht aufwendig, da nur ein Eintrag im Data Dictionary vorgenommen

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Oracle OLAP: Eine Übersicht

Oracle OLAP: Eine Übersicht Oracle OLAP: Eine Übersicht Marc Bastien Business Unit Datenbank Oracle Deutschland GmbH Decus IT Symposium, 22.04.2004 Oracle OLAP Übersicht Agenda Begriffe klären ROLAP, MOLAP etc. FrontEnd, Backend

Mehr

Business Intelligence & Reporting. Michael Cordes Holger Oehring Matthias Rein

Business Intelligence & Reporting. Michael Cordes Holger Oehring Matthias Rein Business Intelligence & Reporting Michael Cordes Holger Oehring Matthias Rein Ziele Einführung Business Intelligence / Front Room Online Analytical Processing (OLAP) Arten des Reporting & Nutzergruppen

Mehr

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration.

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration. Kurs Oracle 9i Einführung Performance Tuning Teil 12 Materialized Views Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 9 Seite 1 von 9 Agenda 1. Einführung Materialized Views 2. 3. Materialized View

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Andreas Emhart Geschäftsführer Alegri International Group

Andreas Emhart Geschäftsführer Alegri International Group Andreas Emhart Geschäftsführer Alegri International Group Agenda Vorstellung Alegri International Überblick Microsoft Business Intelligence Sharepoint Standard Business Intelligence Tool Excel Service

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Developing SQL Data Models MOC 20768

Developing SQL Data Models MOC 20768 Developing SQL Data Models MOC 20768 In diesem Kurs lernen Sie das Implementieren von multidimensionale Datenbanken mithilfe der SQL Server Analysis Services (SSAS) und durch das Erstellen von tabellarische

Mehr

Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013

Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013 Verwaltung von OBI Metadaten: XML-Integration die Lösung aller Probleme? DOAG Konferenz und Ausstellung 2013 Michael Weiler, PROMATIS software GmbH Nürnberg, 1 Gliederung OBIEE Metadatenverwaltung Einführung

Mehr

Scrum für Business Intelligence Projekte erfolgreich nutzen. Es begrüßt Sie Thomas Löchte

Scrum für Business Intelligence Projekte erfolgreich nutzen. Es begrüßt Sie Thomas Löchte Scrum für Business Intelligence Projekte erfolgreich nutzen Es begrüßt Sie Thomas Löchte Die Informationsfabrik Die Informationsfabrik macht erfolgreiche BI und DWH Projekte und hat zufriedene, referenzierbare

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Oracle In-Memory & Data Warehouse: Die perfekte Kombination?

Oracle In-Memory & Data Warehouse: Die perfekte Kombination? Oracle In-Memory & Data Warehouse: Die perfekte Kombination? Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Einleitung Als Larry Ellison in einer Keynote im Juni 2014 die Oracle In-Memory Option

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Obwohl mit der Verwendung von SAP HANA ein neuer semantischer Layer zum Einsatz kommt,

Mehr

Erfolg mit Oracle BI?

Erfolg mit Oracle BI? Erfolg mit Oracle BI? Typische Fehlerszenarien und deren Lösung Gerd Aiglstorfer G.A. itbs GmbH Das Thema 2 Oracle BI (OBIEE)? Das war eine Fehlentscheidung! Viel zu umständlich! Wenig Flexibilität & teure

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Wesentliche Eigenschaften von Hibernate Transparente Persistenz Transitive Persistenz (Persistenz

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Oracle Database 12c In-Memory Option 7/18/2014. Eckart Mader Oracle Deutschland B.V. & Co. KG. Karlsruhe, den

Oracle Database 12c In-Memory Option 7/18/2014. Eckart Mader Oracle Deutschland B.V. & Co. KG. Karlsruhe, den Oracle Database 12c In-Memory Option Eckart Mader Oracle Deutschland B.V. & Co. KG Karlsruhe, den 17.07.2014 2 1 Safe Harbor Statement The following is intended to outline our general product direction.

Mehr

Fortgeschrittene OLAP Analysemodelle

Fortgeschrittene OLAP Analysemodelle Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2004 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

Technologietag SharePoint 2010

Technologietag SharePoint 2010 Technologietag SharePoint 2010 Business Applications in SharePoint 2010 Marco Leithold, Thomas Lorenz conplement AG 2 conplement AG 2010. All Rights Reserved. Agenda Einführung Business Applications mit

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr

Infor PM 10 auf SAP. Bernhard Rummich Presales Manager PM. 9.30 10.15 Uhr Infor PM 10 auf SAP 9.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche zu vermeiden. Sie können

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan 2011 Agenda Was ist arcplan Edge? Komponenten von arcplan Edge arcplan Edge Roadmap Live Demo arcplan

Mehr

APEX: from past to present

APEX: from past to present APEX: from past to present Neues in APEX 4.2... und nützliche, kaum bekannte Features aus älteren Releases. Carsten Czarski ORACLE Deutschland B.V. & Co KG Anwendungsentwicklung Erwartungen...

Mehr

Model Klausel - Der Excel-Killer von Oracle?

Model Klausel - Der Excel-Killer von Oracle? Model Klausel - Der Excel-Killer von Oracle? Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Model Klausel, SQL, Data Warehousing, OLAP Zusammenfassung Ein Data Mart kann als ein Würfel mit

Mehr

Optimale Performance durch Constraints im Data Warehouse

Optimale Performance durch Constraints im Data Warehouse Optimale Performance durch Constraints im Data Warehouse DOAG Konferenz, 17. November 2016 Dani Schnider, Trivadis AG @dani_schnider BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENF HAMBURG

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

Oracle Data Integrator Ein Überblick

Oracle Data Integrator Ein Überblick Oracle Data Integrator Ein Überblick Uwe Barz Christoph Jansen Hamburg, 15.04.2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart Wien Agenda Überblick

Mehr

XML-Datenaustausch in der Praxis Projekt TOMIS bei der ThyssenKrupp Stahl AG

XML-Datenaustausch in der Praxis Projekt TOMIS bei der ThyssenKrupp Stahl AG Mittwoch, 9. November 2005 13h00, Bruno-Schmitz-Saal 18. Deutsche ORACLE-Anwenderkonferenz XML-Datenaustausch in der Praxis Projekt TOMIS bei der ThyssenKrupp Stahl AG Volker Husemann Thyssen Krupp Stahl

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

Implementing Data Models and Reports with Microsoft SQL Server MOC 20466

Implementing Data Models and Reports with Microsoft SQL Server MOC 20466 Implementing Data Models and Reports with Microsoft SQL Server MOC 20466 In dem fünftägigen Kurs Implementing Data Models and Reports with Microsoft SQL Server lernen Sie das Erstellen gesteuerter Enterprise

Mehr

Oracle In-Memory & Data Warehouse: Die perfekte Kombination?

Oracle In-Memory & Data Warehouse: Die perfekte Kombination? : Die perfekte Kombination? DOAG Konferenz, 16. November 2016 Dani Schnider, Trivadis AG @dani_schnider BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENF HAMBURG KOPENHAGEN LAUSANNE MÜNCHEN

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Laden von Data Marts auch mal komplex DOAG BI, 9. Juni 2016 Dani Schnider, Trivadis AG

Laden von Data Marts auch mal komplex DOAG BI, 9. Juni 2016 Dani Schnider, Trivadis AG Laden von Data Marts auch mal komplex DOAG BI, 9. Juni 2016 Dani Schnider, Trivadis AG BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 2 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Neues Geschäft mit Business Intelligence aus Office 365 und Azure

Neues Geschäft mit Business Intelligence aus Office 365 und Azure Neues Geschäft mit Business Intelligence aus Office 365 und Azure Kull AG Gegründet 1972 - Etablierte Informatik-Unternehmung - Kundenorientiert, lösungsbasiert, pragmatisch Tätigkeit - SW-Lösungen für

Mehr

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Master Thesis Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Konzeption von kolaborativen Projektleitstaenden mit integrierten Interpretationshilfen by Stefan Cholakov

Mehr

SQL Cockpit & SAP HANA Prüfen Sie Ihre SQL Abfragen auf HANA-Tauglichkeit

SQL Cockpit & SAP HANA Prüfen Sie Ihre SQL Abfragen auf HANA-Tauglichkeit SQL Cockpit & SAP HANA Prüfen Sie Ihre SQL Abfragen auf HANA-Tauglichkeit Johann Fößleitner Cadaxo GmbH email: johann.foessleitner@cadaxo.com Twitter: @foessleitnerj Agenda 1 SAP HANA Integrationsszenarien

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

ALM As-A-Service TFS zur hausinternen Cloud ausbauen

ALM As-A-Service TFS zur hausinternen Cloud ausbauen ALM As-A-Service TFS zur hausinternen Cloud ausbauen Sven Hubert AIT TeamSystemPro Team Das Unternehmen.NET Softwareentwicklung.NET Entwicklung.NET Software-Entwicklung Architektur Beratung Team Foundation

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition BI für Jedermann Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition Wolfgang Rütter Bereichsleiter Informationssysteme OPITZ CONSULTING Gummersbach GmbH 1 Warum BI für Jedermann? 1. Historie

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG SODA Die Datenbank als Document Store Rainer Willems Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG vs No Anforderungskonflikte Agile Entwicklung Häufige Schema-Änderungen Relationales

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

MySQL Performance Tuning für Entwickler

MySQL Performance Tuning für Entwickler MySQL Performance Tuning für Entwickler Cebit 2015, Hannover Oli Sennhauser Senior MySQL Consultant, FromDual GmbH oli.sennhauser@fromdual.com 1 / 18 FromDual GmbH Support Beratung remote-dba Schulung

Mehr

XML in der Oracle Datenbank "relational and beyond"

XML in der Oracle Datenbank relational and beyond XML in der Oracle Datenbank "relational and beyond" Ulrike Schwinn (Ulrike.Schwinn@oracle.com) Oracle Deutschland GmbH Oracle XML DB Ein Überblick 1-1 Agenda Warum XML in der Datenbank? Unterschiedliche

Mehr

SQL als ETL Tool. DOAG Konferenz Nürnberg 2014 Christian König, CGI Business Intelligence Expert 18. November CGI Group Inc.

SQL als ETL Tool. DOAG Konferenz Nürnberg 2014 Christian König, CGI Business Intelligence Expert 18. November CGI Group Inc. SQL als ETL Tool DOAG Konferenz Nürnberg 2014 Christian König, CGI Business Intelligence Expert 18. November 2014 CGI Group Inc. Referent: Christian König Business Intelligence Expert, CGI (Germany) GmbH

Mehr

DIMEX Data Import/Export

DIMEX Data Import/Export DIMEX Data Import/Export PROCOS Professional Controlling Systems AG Gewerbeweg 15 FL- 9490 Vaduz PROCOS Professional Controlling Systems AG Inhaltsverzeichnis 1 ALLGEMEIN...3 2 GRUNDLEGENDE FUNKTIONEN...4

Mehr

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002)

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Betrifft Autör: GROUPING_ID Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem Oracle9i Data Warehousing Guide und den Kursen New Features Oracle9i

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel ORM & OLAP Object-oriented Enterprise Application Programming Model for In-Memory Databases Sebastian Oergel Probleme 2 Datenbanken sind elementar für Business-Anwendungen Gängiges Datenbankparadigma:

Mehr

Datenkollektor für SAP Business Warehouse (BW) Status: 09.12.08

Datenkollektor für SAP Business Warehouse (BW) Status: 09.12.08 Datenkollektor für SAP Business Warehouse (BW) Status: 09.12.08 Inhaltsverzeichnis SAP BUSINESS WAREHOUSE (BW) DATENKOLLEKTOR 3 GRUNDSÄTZLICHES:...3 DER BW DATENKOLLEKTOR ÜBERWACHT DIE FOLGENDEN KERNPROZESSE

Mehr

POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser twitter.com/wstrasser

POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser twitter.com/wstrasser POWER BI DAS neue BI Tool von Microsoft!? Wolfgang Strasser wolfgang.strasser@gmx.at twitter.com/wstrasser Danke. About me Wolfgang Strasser Consultant Software, Business Intelligence and DWH SQL Server,

Mehr

Oracle9i Designer. Rainer Willems. Page 1. Leitender Systemberater Server Technology Competence Center Frankfurt Oracle Deutschland GmbH

Oracle9i Designer. Rainer Willems. Page 1. Leitender Systemberater Server Technology Competence Center Frankfurt Oracle Deutschland GmbH Oracle9i Designer Rainer Willems Leitender Systemberater Server Technology Competence Center Frankfurt Oracle Deutschland GmbH Page 1 1 Agenda 9i Designer & 9i SCM in 9i DS Design Server Generierung &

Mehr

So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT

So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT TPG Webinar-Serie 2016 zum PPM Paradise Thema 2.2 So erstellen Sie wichtige Berichte mit Microsoft Technologie Tipps für PMO und IT Mit Peter Huemayer Agenda Welche Berichte machen Sinn? Welche Daten haben

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

Milliarden in Sekunden: Demo zu PureData for Analytics. Marc Bastien Senior Technical Professional Big Data, IBM

Milliarden in Sekunden: Demo zu PureData for Analytics. Marc Bastien Senior Technical Professional Big Data, IBM Milliarden in Sekunden: Demo zu PureData for Analytics Marc Bastien Senior Technical Professional Big Data, IBM IBM PureData System Für die Herausforderungen von Big Data Schnell und Einfach! System for

Mehr

Explain verstehen. Hans-Jürgen Schönig.

Explain verstehen. Hans-Jürgen Schönig. Explain verstehen Zielsetzung EXPLAIN... Was versucht uns PostgreSQL zu sagen? Wie kann diese Information genutzt werden? Wie erkenne ich Probleme? Abfragen in PostgreSQL Mehrstufige Ausführung Parser:

Mehr

DOAG 2009 Copyright 2009, Oracle Corporation

DOAG 2009 Copyright 2009, Oracle Corporation Neue Human Workflow Features in Oracle SOA Suite 11g DOAG 2009 Konferenz + Ausstellung Vahit Tas Senior Principal Consultant Agenda Konzepte / Einsatzszenarien Komponenten Neue Features

Mehr

Einsatz des Microsoft SQL-Servers bei der KKH

Einsatz des Microsoft SQL-Servers bei der KKH Einsatz des Microsoft SQL-Servers bei der KKH Reporting Services und Analysis Services Kontaktdaten Detlef André Abteilungsleiter Data Warehouse E-Mail detlef.andre@kkh.de Telefon 0511 2802-5700 Dr. Reinhard

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #6. SQL (Teil 4)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #6. SQL (Teil 4) Vorlesung #6 SQL (Teil 4) Fahrplan Besprechung der Übungsaufgaben Einschub: Self Joins (relevant fürs Praktikum) Dynamische Intergritätsbedingungen, das Trigger - Konzept von Oracle Prozedurale Erweiterungen,

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

Nützliche Oracle 12c Features für Data Warehousing DOAG BI, 8. Juni 2016 Dani Schnider, Trivadis AG

Nützliche Oracle 12c Features für Data Warehousing DOAG BI, 8. Juni 2016 Dani Schnider, Trivadis AG Nützliche Oracle 12c Features für Data Warehousing DOAG BI, 8. Juni 2016 Dani Schnider, Trivadis AG BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr