Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Größe: px
Ab Seite anzeigen:

Download "Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben"

Transkript

1 Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum Graphen von f senkrecht verlaufen. a) Geben Sie zwei Gleichungen von verschiedenen Funktionen an, die diese Bedingung erfüllen. b) Stellen Sie Ihre graphisch dar. C.a).b) z. B. g ( ) = + h ( ) = + 3 f y g I II K h Aufgabe C Skizzieren Sie den Graphen einer streng monoton fallenden Funktion mit einer Nullstelle und einer Wendestelle. C. z. B.: y Januar 03

2 Aufgabe C 3 Gegeben ist eine Funktion f mit f (3) = 0, f (3) = 0 und f (3) =. Formulieren Sie zwei Eigenschaften der Funktion f, die aus den gegebenen Angaben geschlussfolgert werden können. C 3 3. z. B. Die Funktion f hat bei = 3 eine Nullstelle. Die Funktion f hat bei = 3 einen lokalen Tiefpunkt. I II K6 K Aufgabe C 4 Gegeben ist eine ganzrationale Funktion f mit dem Wendepunkt ( / f( ) ) Geben Sie die Aussagen an, die in jedem Fall zutreffend sind. (I) f ( ) = 0 (II) f ( ) = 0 (III) f ( ) = 0 W. (IV) Die Funktionswerte von f haben bei = einen Vorzeichenwechsel. C 4 4. (II) (IV) K I II Aufgabe C 5 Gegeben ist für R eine stetige und differenzierbare Funktion f mit den Eigenschaften: - f ist im gesamten Definitionsbereich streng monoton wachsend. - f hat keinen Wendepunkt. - f (3) = und f (3) = a) Skizzieren Sie einen möglichen Graphen. b) Geben Sie die Anzahl der möglichen Nullstellen von f an. C 5 5.a) y y I II K6 5.b) keine eine Nullstelle K Januar 03

3 3 Aufgabe C 6 Aus einem rechteckigen Blatt Papier (Länge 0 cm, Breite cm) kann auf zwei verschiedene Arten der Mantel eines Zylinders hergestellt werden. Peter behauptet: Weil die Flächeninhalte der Mantelflächen gleich sind, sind auch die Volumina der entstehenden Zylinder gleich. Hat Peter recht? Begründen Sie Ihre Entscheidung. (Hinweis: Die Herstellung des Zylindermantels soll ohne Überlappung erfolgen.) C 6 6. Peter hat nicht recht. 0 6 V = π cm cm V = π cm 0cm π π V = cm V = cm π π V V I II K K Aufgabe C 7 Aus einem rechteckigen Blatt Papier (Länge a, Breite b) kann auf zwei verschiedene Arten der Mantel eines Zylinders hergestellt werden. Peter behauptet: Weil die Flächeninhalte der Mantelflächen gleich sind, sind auch die Volumina der entstehenden Zylinder gleich. Hat Peter recht? Begründen Sie Ihre Entscheidung. (Hinweis: Die Herstellung des Zylindermantels soll ohne Überlappung erfolgen.) C 7 7. Peter hat nicht recht. a r = π b r = π a b V = π b V = π a π π V a b = 4 π b a V = 4 π V = V nur für a = b, sonst V V I II K K Januar 03

4 4 Aufgabe C 8 Gegeben ist die Funktion f durch f() = ( ). a) Zeichnen Sie den Graphen von f in einem geeigneten Intervall. b) Ermitteln Sie die Gleichung der Tangente an den Graphen von f an der Stelle. 4 c) Der Graph wird um v = verschoben. Geben Sie die zugehörige Funktionsgleichung 3 des neuen Graphen an. + C 8 8.a) 5 8.b) y = + 4 K 8.c) f() ( 6) = Aufgabe C 9 Gegeben sind die Funktionen ( R) (I) y = ( + ) (II) y = 3 (III) y = + 3 (IV) y 3 + y = a) Geben Sie die Funktion an, die keine lineare Funktion ist. b) Weisen Sie nach, dass zwei Funktionen identisch sind. c) Begründen Sie, dass die Graphen von zwei Funktionen zueinander parallel verlaufen, aber nicht identisch sind. d) Bestimmen Sie die Funktionen, die zueinander orthogonal sind. e) Zeichnen Sie den Graphen der Funktion (III) im Intervall 5. = (V) ( ) Januar 03

5 5 C 9 9.a) (III) 9.b) Nachweis, dass (II) und (V) identisch sind K 9.c) Nachweis für (I) und (II) bzw. (V) gleicher Anstieg und unterschiedliches absolutes Glied 9.d) (I) und (II) bzw. (V) sind orthogonal zu (IV) K 9.e) y K Aufgabe C 0 Der Graph G f einer ganzrationalen Funktion f dritten Grades hat folgende Eigenschaften: I. G f hat im Ursprung einen lokalen Tiefpunkt. P 3; 0. II. G f schneidet die -Achse im Punkt ( ) III. G f und die -Achse begrenzen im Intervall [ ; 3] Fläche vollständig. Skizzieren Sie einen möglichen Verlauf des Graphen von f. 0 eine im I. Quadranten liegende C 0 0 K6 y Januar 03

6 6 Aufgabe C Der Graph G f einer ganzrationalen Funktion f dritten Grades hat folgende Eigenschaften: (I) G f hat im Ursprung einen lokalen Tiefpunkt. P 3; 0. (II) G f schneidet die -Achse im Punkt ( ) (III) G f und die -Achse begrenzen im Intervall [ ; 3] 0 eine im I. Quadranten liegende Fläche vollständig. Der Flächeninhalt dieser Fläche beträgt A = 9 FE. 4 Begründen Sie, dass sich aus diesen Bedingungen folgender Ansatz für die Bestimmung der Funktion f ergibt: 3 () a 0 + b 0 + c 0 + d = 0 () 3a 0 + b 0 + c = 0 (3) 7 a + 9b + 3c + d = 0 (4) 8 9 a + 9b + 9 c + 3 d = 4 4 C Ansatz: Begründung: f() = a 3 + b + c + d f () = 3a + b + c () f (0) = 0 () f (0) = 0 (3) f (3) = 0 (4) 3 f ()d = I II K K6 Aufgabe C Die Graphen einer Schar ganzrationaler Funktionen f t dritten Grades mit dem Parameter t haben folgende Eigenschaften: (I) Die Graphen besitzen einen lokalen Tiefpunkt im Ursprung. (II) Jeder Graph schneidet die -Achse im Punkt P( t; 0) mit t R; t > 0. (III) Jeder Graph und die -Achse begrenzen im Intervall [ 0 ; t] eine im I. Quadranten liegende Fläche vollständig. t Der Flächeninhalt dieser Fläche beträgt A = FE. 4 Stellen Sie einen sansatz zum Ermitteln der Gleichung dieser Funktionenschar auf. Hinweis: Die Angabe der Funktionsgleichung ist nicht erforderlich. C 3 Ansatz: f() = a + b + c + d f () = 3a + b + c () f (0) = 0 () f t (0) = 0 (3) f (t) = 0 (4) f ()d = 4 t 0 I II K6 K Januar 03

7 7 Aufgabe C 3 Bestimmen Sie anhand der gegebenen Graphen folgende Werte. a) f( ) b) Nullstelle von h c) Monotonie von h d) Schnittpunkte des Graphen der Funktion g mit den Koordinatenachsen e) Hochpunkt des Graphen der Funktion g f y g h -5 C 3 f = 3.a) ( ) 0 3.b) o =, 5 3.c) streng monoton fallend 3.d) ( 4; 0), ( ; 0), ( 0; ) P 3.e) ( ; 0) P P y H Januar 03

8 8 Aufgabe C 4 Geben Sie den Definitionsbereich und die smenge an. a) 5 = + b) 3 = c) = 4 C 4 4 a) R, ; L = { 3} L = { ; 5} L = { 0; } b) R c) R Aufgabe C 5 Gegeben ist ein Kreis mit einem Radius von 5 cm. Eine Sehne dieses Kreises ist 8 cm lang. Berechnen Sie den Abstand des Kreismittelpunktes von dieser Sehne. C 5 5 Ansatz über Satz des Pythagoras d =3 cm I II K Aufgabe C 6 a) Skizzieren Sie die Funktion f () = cos + in ein Koordinatensystem im Intervall 3 π π; R. b) Ermitteln Sie den Wertebereich der Funktion f(). c) Geben Sie die Gleichung der Funktion y f() = cos + = in der Form y sin( + c) + d = an. C 6 a) graphische Darstellung: y -π O,5π b) Wertebereich: 0 y ; y R K/ c) π Funktionsgleichung: y = sin + Januar 03

9 9 Aufgabe C 7 Der Erwartungswert der Zufallsgröße X mit folgender Wahrscheinlichkeitsverteilung beträgt,. X = i 0 3 ( X ) P = 0, p 0,3 q i Die Wahrscheinlichkeiten p und q sind gesucht. Geben Sie einen sansatz an. C 7 7 I p + q = 0,5 II p + 3q = 0,6 I II K Aufgabe C 8 C sind Eckpunkte der rechteckigen Grundfläche einer geraden Pyramide. Der Punkt S ist die Spitze der Pyramide. Die Höhe h beträgt 7 LE. Die Punkte A ( ; ; 0), B ( ; ; 0) und ( 5; ; 0) a) Ermitteln Sie den Punkt D der Grundfläche. b) Geben Sie die Punkte an, die Spitze dieser Pyramide sein könnten. S ( ; 0,5; ), S ( 3;,5; 7), S 3 ( 0,5;,5; 7), S 4 ( 3;,5; 7) c) Berechnen Sie das Volumen der Pyramide. C 8 8.a) ( 5; ; 0) D K 8.b) S, S 4 K I II 8.c) 8 V = 3 VE Januar 03

10 0 Aufgabe C 9 Geben Sie jeweils die Koordinaten eines Punktes in einem Koordinatensystem mit folgender Eigenschaft an: a) Der Punkt liegt in der y-z-ebene. b) Der Punkt liegt auf der z-achse. c) Der Punkt hat von der -z-ebene den Abstand LE. C 9 9.a), b), c) jeweils einen Punkt angeben K I II Aufgabe C 0 Gesucht ist die smenge der Gleichung 3 = 0 Bewerten Sie folgenden sweg. C =0 : =0 + = L={-;} ( R) G =. 0 Der sweg ist nicht korrekt. Mit dem ersten Umformungsschritt wäre eine Fallunterscheidung nötig, da die Division durch Null nicht erklärt ist. L = ; 0;. Die korrekte ist { } I II K,K Aufgabe C Ein Sportschütze trifft erfahrungsgemäß mit einem Schuss das Ziel mit einer Wahrscheinlichkeit von 90 %. Er feuert fünf Schüsse unter jeweils gleichen Bedingungen auf ein Ziel ab a) Interpretieren Sie in diesem Zusammenhang den Term 0,9 0, 0. b) Geben Sie die Werte an, die dem Term von Aufgabe a) nicht entsprechen können. Begründen Sie. ) p=,0035 ) p=-0, ) p=0, ) p=0,0000 C a) Mit dem Term wird die Wahrscheinlichkeit für mindestens einen Treffer berechnet. (Binomialverteilung mit der Kettenlänge n = 5, Trefferwahrscheinlichkeit p = 0,9; Wahrscheinlichkeit für Fehlschuss q = 0,) b) () und () wegen 0 P (4) ist Wahrscheinlichkeit für kein Treffer K3, K6 K Januar 03

11 Aufgabe C Gegeben ist der Graph der Funktion f() = 3sin. Zeichnen Sie ein Koordinatensystem ein und beschriften Sie die Achsen. C z. B.: y -π π π Aufgabe C 3 Entscheiden Sie, ob folgende Aussage wahr ist. Begründen Sie Ihre Entscheidung. Jedes Parallelogramm ist ein Drachenviereck. C 3 3 falsche Aussage Nur wenn die Diagonalen senkrecht aufeinander stehen, trifft es zu. Zeichnung möglich I II K K6 Januar 03

12 Aufgabe C 4 Entscheiden Sie, ob folgende Aussage wahr ist. Begründen Sie Ihre Entscheidung. Ein Rhombus (Raute) besitzt zwei stets gleich lange Diagonalen. C 4 4 falsche Aussage, gilt nur für Spezialfall Quadrat Zeichnung möglich I II K K6 Aufgabe C 5 Für eine Ausstellungsvitrine soll aus 0 m langem Draht ein Kantenmodell eines Quaders mit quadratischer Grundfläche gefertigt werden. Die Höhe des Körpers sei dreimal so groß wie eine Grundkante. Berechnen Sie die Längen der Kanten des Quaders. C 5 a Länge einer der quadratischen Grundkanten c Länge der Höhe Ansatz: 8 a + 4c = 0 m, c = 3a Ergebnis: a = 0,5 m; a = 0,5 m Die Grundkanten sind jeweils 0,5 m lang und die Höhe beträgt,5 m. I II K3 K Aufgabe C 6 Gegeben ist ein Kreis. Sein Flächeninhalt wird verhundertfacht. Erläutern Sie die Veränderung des zugehörigen Umfangs. C 6 Erläuterung, dass u = 0 u0 K/K6 Januar 03

13 3 Aufgabe C 7 Konrad hat zur Veranschaulichung der Anzahl der Geschwister seiner Mitschüler folgendes Diagramm erstellt. Bewerten Sie anhand des Diagramms, welche Aussagen wahr sind. a) Mindestens 5 der Mitschüler sind Einzelkinder. b) Mehr als die Hälfte der Mitschüler haben mindestens zwei Geschwister. c) Die Anzahl der Kinder mit vier Geschwistern ist genauso groß wie die mit drei Geschwistern. d) Es gibt viermal so viel Schüler mit einem Geschwisterkind wie mit drei Geschwistern. e) Höchstens 80 % der Schüler haben Geschwister. f) Mehr als 30 % haben ein Haustier. C 7 a) b) d) richtig mit Begründung K6 Aufgabe C 8 Ein Feld wird von acht Mähdreschern in sechs Stunden abgeerntet. Berechnen Sie die Zeitersparnis, wenn Mähdrescher im Einsatz sind. C 8 Zeitersparnis von Stunden K3 Januar 03

14 4 Aufgabe C 9 Geben Sie zur Berechnung des Flächeninhalts der Figur zwei unterschiedliche Terme an und weisen Sie deren Gleichwertigkeit nach. a b e f C 9 z. B.: ( a + b)( e + f) und a e + b e + a f + b f Nachweis, dass ( a + b)( e + f) = a e + b e + a f + b f I II K Aufgabe C 30 Beschreiben Sie die Fehler, die bei den Termumformungen gemacht wurden. a) ( + 4)( 5 + 7) = b) ( a + b)( a 4b) = a 4b C 30 a) b) Der Term 0 fehlt. Der Term -ab fehlt. K6/ / I II Aufgabe C 3 Geben Sie die Terme an, mit denen man den Flächeninhalt der Figur berechnen kann. 3 a b A A 3a + ( b a) A = 3b b a = ( ) = 3( a b) A = ( a + b) C 3 I, II, IV Januar 03

15 5 Aufgabe C 3 Vereinfachen Sie folgende Terme soweit wie möglich. a) 98 b) 00 + c) 3 ( 75 4 ) C 3 a) 4 b) c) 6 Aufgabe C 33 Ein PKW verbraucht etwa 8 Liter Benzin auf 00 km. Berechnen Sie den Benzinverbrauch für 70 Kilometer. C 33 5,6 Liter K3/ Aufgabe C 34 Zeigen Sie, dass f () = 0,5 für 0 > eine Umkehrfunktion von ( ) 0, 5 g () = ist. C 34 rechnerischer Nachweis oder durch graphische Darstellung I II K Aufgabe C 35 Zwei ideale Würfel mit den Augenzahlen,, 3, 4, 5, 6 werden geworfen. Berechnen Sie die Wahrscheinlichkeit dafür, dass die Summe der gewürfelten Augenzahl mindestens 0 beträgt. C 35 p = 6 36 K3 I II Januar 03

16 6 Aufgabe C 36 In einem Geschäft werden gefüllte Glückswürfel verkauft. In jedem fünften Glückswürfel befindet sich eine Tierfigur. Julia kauft zwei dieser Würfel. Berechnen Sie die Wahrscheinlichkeit dafür, dass Julia mindestens eine Tierfigur erhält. C 35 P(A) = 0,8 = 0,36 K3 Aufgabe C 37 Bei der Herstellung von Kaffeebechern werden erfahrungsgemäß 70 % fehlerfrei glasiert. Man entnimmt der laufenden Produktion rein zufällig 0 Kaffeebecher. a) Geben Sie einen Term für die Berechnung der Wahrscheinlichkeit des Ereignisses A an. A:= Von den entnommenen Bechern ist nur der 7. defekt. b) Beschreiben Sie verbal ein Ereignis B, dessen Wahrscheinlichkeit durch P(B) = 0,7 + 0,7 0,3 + 0,7 0,3 berechnet wird. C 37 a) 9 P(A) = 0,3 0,7 K3/ b) B:= Von den 0 entnommenen Bechern sind höchstens defekt. K6 Aufgabe C 38 c 4 Gegeben sind die Vektoren a = c und b =. 4 Bestimmen Sie c so, dass die Vektoren zueinander orthogonal sind. C 38 c = 6 Januar 03

17 7 Aufgabe C 39 A. Der Punkt A ist der Bildpunkt von A bei der Spiegelung an der -z-ebene. a) Beschreiben Sie die besondere Lage der Geraden, die durch die Punkte A und A verläuft. b) Geben Sie den Schnittpunkt der Geraden mit der -z-ebene an. Gegeben ist der Punkt ( ; 3;5) C 39 a) Beschreibung, z. B.: Gerade ist parallel zur y-achse K6 b) S ( ;0;5 ) K Aufgabe C 40 Untersuchen Sie die Vektoren Ergebnis geometrisch. 0 a = 0, b = 3, 4 C 40 z. B.: c = 3 7 a, b und c = 3 und Interpretation 4 7 auf lineare Abhängigkeit. Interpretieren Sie das I II K Aufgabe C 4 6 Gegeben sind die Geraden g mit = 6 + s (s R) und h mit 3 3 Entscheiden Sie, welche Aussage zutrifft. I Die Geraden verlaufen parallel. II Die Geraden schneiden sich senkrecht. III Die Geraden schneiden sich nicht senkrecht. IV Die Geraden verlaufen windschief. V Die Geraden sind identisch. 0 = 8 + t (t R). 0 3 C 4 III ist richtig K Januar 03

18 8 Aufgabe C 4 Zeigen Sie, dass die Punkte H( ;; ), S( 3;; ) und ( 0; ;6 ) Untersuchen Sie, ob das Dreieck rechtwinklig ist. V ein Dreieck bilden. C 4 Punktprobe Dreieck nicht rechtwinklig Aufgabe C 43 Geben Sie den Term an, der dem unbestimmten Integral A: ln + t B: ln + t C: ln d entspricht. D: ln + t ( t R) C 43 B: ln + t Aufgabe C 44 Begründen Sie, dass die Funktion f keine lokalen Etremwerte besitzen kann. a) f() = 8 0 b) f() = e + 3 f() = 5 d) f () = ln( + ) c) ( ) 3 C 44 Begründung, z. B. über das Monotonieverhalten der Funktion f K Aufgabe C 45 0;0;0 Die Punkte A ( ), B ( 4;5;0 ), C ( 0;6;0 ), D und ( ;3;6 ) S sind Eckpunkte einer vierseitigen Pyramide. a) Bestimmen Sie die Koordinaten des Punktes D so, dass das Viereck ABCD in dieser Reihenfolge ein Parallelogramm ergibt. b) Überprüfen Sie, ob dieses Parallelogramm ein Rhombus ist. c) Zeichnen Sie die Pyramide in ein Koordinatensystem. Januar 03

19 9 C 45 a) D( 4;;0 ) K b) Überprüfung mit der Entscheidung: kein Rhombus K/ c) Zeichnung I II Aufgabe C 46 Gegeben sind die Punkte A( 7;3) und B( 3;8). Der Punkt T teilt die Strecke AB im Verhältnis : 3. a) Bestimmen Sie die Gleichung der Geraden, die durch die Punkte A und B verläuft. b) Geben Sie die Schnittpunkte der Geraden mit den Koordinatenachsen an. c) Ermitteln Sie die Koordinaten des Punktes T. C 46 a) y = 0,5 + 6, 5 b) S ( 3;0), S y ( 0;6,5 ) c) T ( 4,5;4,5 ) Aufgabe C 47 Die Punkte A ( 5; ;), B ( 4;;3 ), C ( ;0;) und D( 9;5; ) sind die Eckpunkte eines ebenen Vierecks ABCD. Geben Sie die Koordinaten des Diagonalenschnittpunktes an. C 47 Angabe der Koordinaten des Punktes: M (6,5; 3; ) Januar 03

20 0 Aufgabe C 48 Gegeben sind die Punkte A( ;5; ), B( 3; 5;4) und ( 7; 5;a) C. Durch die Punkte A und B verläuft die Gerade g. Bestimmen Sie den Parameter a so, dass der Punkt C auf g liegt. C 48 Für t = 3 ist a = 6 K Aufgabe C 49 Gegeben sind die Punkte A ( 0;3;0), B ( 0;0;3) und C ( 0;3;3) Abstand des Punktes C von der Geraden g(ab).. Bestimmen Sie den C 49 a = 3 K Aufgabe C 50 Die Funktion f mit a) y = f() = a + b + b) y = f() = a e b hat an der Stelle 0 = den Anstieg und den Funktionswert. Ermitteln Sie die Werte für a und b. C 50 a) b) 7 a = ; b = a = ; b = e I II K K Januar 03

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Mathematikaufgaben. Matura Session

Mathematikaufgaben. Matura Session Mathematikaufgaben Matura 05. Session Angaben 05. Session 05. Session Problemstellung Ein Telefonanbieter sieht für Auslandgespräche eine Figebühr von 0 Euro monatlich und zusätzlich 0 Cent pro Gesprächsminute

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen 2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin Schriftliche Abiturprüfung Leistungskurs Mathematik - Nachtermin Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3

Mathematik. Zentrale schriftliche Abiturprüfung 2015. Grundkurs mit CAS Aufgabenvorschlag. Aufgabenstellung 1. Aufgabenstellung 2. Aufgabenstellung 3 Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2015 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit: Nachschlagewerk zur Rechtschreibung der deutschen Sprache

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Schriftliche Abiturprüfung. Mathematik. Ergänzungsheft. Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil

Schriftliche Abiturprüfung. Mathematik. Ergänzungsheft. Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil Freie und Hansestadt Hamburg Behörde für Schule und Ber ufsbildung Schriftliche Abiturprüfung Mathematik Ergänzungsheft Hinweise und Beispiele für den hilfsmittelfreien Prüfungsteil Impressum Herausgeber:

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2005 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 2005 Prüfungsdauer: 09:00-12:00 Uhr Hilfsmittel:

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

5. Lineare Funktionen

5. Lineare Funktionen 5. Lineare Funktionen Lernziele: -Eine lineare Funktion grafisch darstellen -Geradengleichung (Funktionsgleichung einer linearen Funktion) -Deutung von k- und d-wert -Grafische Lösung von Gleichungssystemen

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Gesamtschule Erweiterungskurs Allgemeine Arbeitshinweise

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Probematura Mathematik

Probematura Mathematik Probematura Mathematik Mai / Juni 2013 Seite 1 von 5 Probematura Mathematik VHS 21 / Sommertermin 2013 1. Tennis Tennisspieler trainieren häufig mit einer Ballwurfmaschine. Die hier beschriebene befindet

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Realschulabschluss Schuljahr 2006/2007. Mathematik

Realschulabschluss Schuljahr 2006/2007. Mathematik Prüfungstag: Mittwoch, 3. Juni 2007 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2006/2007 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 50 Minuten.

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5 1.1 Runden und Schätzen - Große Zahlen 1.2 Zahlen in Bildern Kapitel 2 Größen 2.1 Längen - Was sind 2.2 Zeit Größen? 2.3 Gewichte Kreuz und quer

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7 Lösungen zu delta Fit für die Oberstufe Lösungen zu den Seiten 6 und 7. a) 4 = ; 9 = 4; = 6 X G; L = { 6} b) ( 4) + 8 = ( + 4); 8 + 8 = 4; + 0 = ; 4 = ; = =, X G; L = {,} 4 c) + 7 = 0; + 7 = 0; = 7 G;

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr