H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

Größe: px
Ab Seite anzeigen:

Download "H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen"

Transkript

1 H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

2 Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Von der Kurve zur Gleichung... Differenzieren... Gleichungslehre... 8 Aufstellen von Funktionen mit Randbedingungen... Graphische Differentiation... Kurvendiskussion und Interpretation von Kurven Allgemeines Verständnis von Funktionen... 9 Integralrechnung... 8 Extremwertaufgaben / Wachstumsprozesse... Transferaufgaben Analysis... Geometrie Rechnen mit Vektoren... 8 Geraden... Ebenen... Gegenseitige Lage von Geraden und Ebenen... 8 Gegenseitige Lage zweier Ebenen... Abstandsberechnungen... 8 Winkelberechnungen... 9 Spiegelungen... Transferaufgaben Geometrie... Stochastik Grundlegende Begriffe... 9 Berechnung von Wahrscheinlichkeiten... Kombinatorische Zählprobleme... Wahrscheinlichkeitsverteilung von Zufallsgrößen... 9 Binomialverteilung... 8 Hypothesentests... 8 Transferaufgaben Stochastik... 8

3 Inhaltsverzeichnis Tipps Lösungen... 9 Stichwortverzeichnis... 8

4 . Rechnen mit Vektoren Geometrie Grundkenntnisse zu Vektoren / Geraden / Ebenen U.a. Gleichungen von Ebenen und Geraden Skizze des Schaubilds einer Ebene bzw. Geraden im dreidimensionalen Koordinatensystem Auffinden einer entsprechenden Gleichung für Ebene bzw. Gerade, wenn Skizze gegeben Lagebeziehungen Gerade Gerade, Gerade Ebene, Ebene Ebene Wenn nicht anders angegeben gilt für alle Parameter: r, s, t,... IR Rechnen mit Vektoren Tipps ab Seite 9, Lösungen ab Seite In diesem Kapitel geht es darum, dass Sie mit Vektoren sicher rechnen können und grundlegende Begriffe sicher beherrschen. Einige Anwendungsaufgaben runden das Kapitel ab. Tipp: Schreiben Sie sich die grundlegenden Formeln und Begriffe auf Vokabelkärtchen; manche Dinge muss man auch in der Mathematik einfach auswendig lernen!. Addition und Subtraktion von Vektoren Gegeben sind die Vektoren a = und b = a) a + b b) a b c) a d) a e) a + b f) a b g) a h) b i) a + b. Berechnen Sie: 8

5 . Rechnen mit Vektoren. Orthogonalität von Vektoren Prüfen Sie, ob folgende Vektoren senkrecht (orthogonal) aufeinander stehen. a) a =, b = b) r =, n = c) z =, w =. Auffinden von orthogonalen Vektoren Geben Sie drei verschiedene Vektoren an, die zu n =. Orts- und Verbindungsvektoren Gegeben sind die Punkte A( ), B( ) und C( ). a) Bestimmen Sie die Ortsvektoren a, b, und c. b) Bestimmen Sie die Verbindungsvektoren AB, AC und BC. orthogonal sind. c) Ist jeder Verbindungsvektor ein Ortsvektor? Begründen Sie Ihre Antwort.. Verschiedene Aufgaben Tipp: Fertigen Sie eine Skizze an und stellen Sie Vektorketten auf. a) Prüfen Sie, ob das Dreieck ABC gleichschenklig ist: I) A( ), B( ), C( ) II) A( ), B( ), C( ) b) Prüfen Sie, ob das Dreieck ABC rechtwinklig ist: A( ), B( ), C( ) c) I) Bestimmen Sie den Mittelpunkt M von A( ) und B( ). II) Bestimmen Sie die Koordinaten des Punktes P so, dass B( ) der Mittelpunkt von A( ) und P ist. 9

6 . Rechnen mit Vektoren d) Bestimmen Sie jeweils den Schwerpunkt des Dreiecks: I) A( ), B( ), C( ) II) P( ), Q( ), R( ) e) Gegeben sind die Punkte A( ), B( 8 ) und C( ). I) Bestimmen Sie den Punkt D so, dass das Viereck ABCD ein Parallelogramm ist. II) Bestimmen Sie den Punkt D so, dass das Viereck ABD C ein Parallelogramm ist. III) Bestimmen Sie den Punkt D so, dass das Viereck AD BC ein Parallelogramm ist. f) Von einem Spat (Körper mit jeweils parallelen Kanten) sind die Punkte A( ), B( ), C( ) und F(9 ) gegeben. I) Bestimmen Sie die Koordinaten der übrigen Punkte des Spats. II) Berechnen Sie die Länge der Raumdiagonalen AG. g) Ein schiefes Dreiecksprisma ist gegeben durch die Punkte A( ), B( ), C( ) und D( ). Bestimmen Sie die Koordinaten der Punkte E und F sowie die Länge der Kante EF.

7 . Rechnen mit Vektoren. Lineare Abhängigkeit/ Unabhängigkeit Tipp: Zwei Vektoren prüft man auf lineare Abhängigkeit, drei Vektoren auf lineare Unabhängigkeit. a) Prüfen Sie, ob die beiden Vektoren linear abhängig oder unabhängig sind: I) a =, b = II) a =, b = III) a =, b = IV) a =, b = 9 9 b) Prüfen Sie, ob die drei angegebenen Vektoren linear abhängig oder unabhängig sind: I) a =, b =, c = II) a =, b =, c = III) a =, b =, c =

8 Tipps. Rechnen mit Vektoren Geometrie Rechnen mit Vektoren. Addition und Subtraktion von Vektoren Für das Rechnen mit Vektoren gelten folgende Gesetze: a x b x a x + b x Addition: a y + b y = a y + b y, Subtraktion: a z b z a z + b z Skalare Multiplikation: s Skalarprodukt: a x a y a z Betrag bzw. Länge: a x a y a z a x a y a z b x b y b z = s a x s a y s a z a x a y a z b x b y b z (Zahl Vektor = Vektor) für s I R. = a x b x + a y b y + a z b z (Vektor Vektor = Zahl), = a x + a y + a z.. Orthogonalität von Vektoren = a x b x a y b y a z b z Zwei Vektoren stehen genau dann senkrecht aufeinander, wenn das Skalarprodukt gleich Null ist. Ist das Skalarprodukt ungleich Null, dann sind die beiden Vektoren nicht orthogonal.. Auffinden von orthogonalen Vektoren Es sind Vektoren zu suchen, deren Skalarprodukt mit n Null ergibt.. Orts- und Verbindungsvektoren Ortsvektoren setzen am Ursprung ( ) an. Verbindungsvektoren zwischen zwei Punkten erhält man mit Hilfe der Ortsvektoren.. Verschiedene Aufgaben a) Stellen Sie drei Verbindungsvektoren zwischen je zwei Punkten auf und berechnen Sie deren Länge. b) Die Orthogonalität lässt sich mit dem Skalarprodukt überprüfen. c) Tragen Sie in Ihre Skizze die gegebenen und gesuchten Punkte sowie den Ursprung O ein. Bestimmen Sie mit Hilfe einer Vektorkette den Ortsvektor des gesuchten Punktes. Geben Sie die Koordinaten des gesuchten Punktes an. 9

9 . Geraden Tipps ( d) Den Schwerpunkt S eines Dreiecks ABC erhalten Sie mit der Formel s = a + ) b+ c. e) Tragen Sie in Ihre Skizze die gegebenen und gesuchten Punkte sowie den Ursprung O ein. Achten Sie dabei auf die Reihenfolge der Punkte (gegen den Uhrzeigersinn). Bestimmen Sie mit Hilfe einer Vektorkette den Ortsvektor des gesuchten Punktes. Geben Sie die Koordinaten des gesuchten Punktes an. f) Da je vier Kanten parallel sind, gilt: BF = CG = DH = AE, BC = AD = FG = EH und AB = EF = DC = HG. Bestimmen Sie mit Hilfe einer Vektorkette den Ortsvektor des gesuchten Punktes. Geben Sie die Koordinaten des gesuchten Punktes an. g) Tragen Sie in ihre Skizze die gegebenen und gesuchten Punkte sowie den Ursprung O ein. Bestimmen Sie mit Hilfe einer Vektorkette den Ortsvektor des gesuchten Punktes. Geben Sie die Koordinaten des gesuchten Punktes an. Die Länge einer Kante ist die Länge des Verbindungsvektors der beiden Eckpunkte.. Lineare Abhängigkeit/ Unabhängigkeit a) Wenn zwei Vektoren linear abhängig sind, dann ist der eine Vektor ein Vielfaches des anderen, d.h. sie müssen eine Zahl k finden, so dass gilt: k a = b; k I R. b) Wenn drei Vektoren linear unabhängig sind, so hat der Nullvektor eine eindeutige Darstellung als Linearkombination der drei Vektoren: Wählen Sie als Ansatz r a + s b + t c = und berechnen Sie r, s und t aus dem entstandenen Gleichungssystem. Ist die einzige Lösung r = s = t =, so sind a, b und c linear unabhängig. Geraden. Aufstellen von Geradengleichungen Verwenden Sie den Ortsvektor des einen Punktes als Stützvektor. Bilden Sie den Richtungsvektor, indem Sie den Verbindungsvektor zwischen den beiden Punkten aufstellen.. Punktprobe Setzen Sie den Ortsvektor des Punktes in die Geradengleichung ein und prüfen Sie, ob sich für alle drei Komponenten der gleiche Parameter ergibt.. Projektion von Geraden Die Projektionsgerade muss in der jeweiligen Ebene liegen. Also muss die Komponente der Geraden, die nicht in dieser Ebene liegt, gleich Null sein. Überlegen Sie dazu, welche Gleichung die jeweilige Koordinatenebene hat.

10 . Rechnen mit Vektoren Lösungen Geometrie Rechnen mit Vektoren. Addition und Subtraktion von Vektoren Gegeben sind die Vektoren a = und b =. a) a + b = d) a = b) a b = e) a+ b = c) a = 8 f) a b = ( ) + + = g) a = ( ) + + = + + = h) b = + + = i) a + b = = + + = 9 =. Orthogonalität von Vektoren a) a b = = ( ) + + = a steht nicht orthogonal auf b. b) r n = c) z w = = + ( ) + ( ) = r steht orthogonal auf n. = + ( ) + = z steht orthogonal auf w.

11 Lösungen. Rechnen mit Vektoren. Auffinden von orthogonalen Vektoren Es sind Vektoren zu bestimmen, deren Skalarprodukt mit n Null ergibt. Dazu kann man zwei Komponenten des Vektors frei wählen, die dritte ergibt sich dann, z.b.: a =, denn a n = = + ( ) + ( ) = = b = c =, denn b n =, denn c n = = + + ( ) = =. Orts- und Verbindungsvektoren Gegeben sind die Punkte A( ), B( ) und C( ). a) a =, b = b) AB = b a = AC = c a = BC = c b =, c = = = = + ( ) + ( ) = = = c) Nein, ein Verbindungsvektor verbindet zwei beliebige Punkte. Ein Ortsvektor geht immer vom Ursprung zu einem Punkt.

12 . Rechnen mit Vektoren Lösungen. Verschiedene Aufgaben a) I) AB =, AC = das Dreieck gleichschenklig. II) AB = b) AB =, AC =, BC =, BC = BC =, damit ist das Dreieck nicht gleichschenklig. AB AC = AB BC = AC BC =, AC = BC =, = + + = = = = + + =, es ist AB = AC =, damit ist, es ist AB = 8, AC = und Da das Skalarprodukt von AB und BC gleich Null ist, stehen diese beiden Vektoren senkrecht aufeinander, d.h. das Dreieck ABC hat bei B einen rechten Winkel. OM = OA + AB = + c) I) = 8 M( ) II) OP = OA+ AB = + P( ) 9 =

13 Lösungen. Rechnen mit Vektoren d) I) Den Schwerpunkt S des Dreiecks ABC mit A( ), B( ) und C( ) erhalten Sie mit der Formel: ( s = a + ) b+ c = + + = e) I) S( ). = II) Den Schwerpunkt S des Dreiecks PQR mit P( ), Q( ) und R( ) erhalten Sie mit der Formel: s = ( p + q+ r) = + + = = S( ). OD = OA + BC = D( ) = II) OD = OB + AC = D ( ) 8 + = III) OD = OA + CB = D ( 9 ) + 8 = 9 f) Es ergeben sich folgende mögliche Vektorketten: OD = OA + BC = OE = OA + BF = OG = OC + BF = = 9 = = D( ) E( ) G( )

14 . Rechnen mit Vektoren Lösungen OH = OD + BF = + = H( 9) 9 9 Die Länge der Raumdiagonalen AG ist die Länge des Verbindungsvektors AG: AG = AG = = = 8 g) Bei einem schiefen Dreiecksprisma sind folgende Kanten parallel: AD, BE und CF AD = BE = CF. Daher gilt: OE = OB + 8 AD = + = E(8 ) OF = OC + AD = + = F( ) Die Länge der Kante EF ist EF = = + + = LE.. Lineare Abhängigkeit/ Unabhängigkeit k = a) I) Der Ansatz k = führt zu k = und damit zu k =, k = d.h. a und b sind linear abhängig. II) Der Ansatz k = führt zu Widerspruch, d.h. a und b sind linear unabhängig. III) Der Ansatz k = führt zu 9 d.h. a und b sind linear abhängig. k = = k = k = k = 9k = und damit zu einem und damit zu k =,

15 Lösungen. Rechnen mit Vektoren IV) Der Ansatz k = 9 führt zu k = k = k = 9 und damit zu verschiedenen Werten für k, also sind a und b linear unabhängig. b) I) Der Ansatz r + s +t = I r + s + t = II r s + t = III r + s = führt zu Löst man das Gleichungssystem entsprechend Kapitel, so erhält man s =, r = und t =, d.h. a, b, und c sind linear unabhängig. II) Der Ansatz r + s +t = I r + s + t = II s + t = III r s t = führt zu Addiert man Gleichung I zum Zweifachen von Gleichung III, so ergibt sich: I r + s + t = II s + t = IIIa s t = Nun erkennt man, dass Gleichung II das ( )-fache von Gleichung IIIa ist, d.h. es gibt unendlich viele Lösungen, z.b. kann man t = wählen, so ergibt sich s = und r =. Damit gibt es Lösungen mit r, s und t, d.h. a, b, und c sind linear abhängig. III) Der Ansatz r + s +t = I r + s + t = II r + s t = III r + s t = führt zu Löst man das Gleichungssystem entsprechend Kapitel, so erhält man r =, s = und t =, d.h. a, b, und c sind linear unabhängig.

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Rechnen mit Vektoren

Rechnen mit Vektoren () Der Ortsvektor Definition: Der Ortsvektor beginnt im Koordinatenursprung und endet in einem beliebigen Punkt P. Die Koordinaten des Punktes stimmen mit den Koordinaten des Ortsvektors überein. Schreibweise:

Mehr

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 7 7. a) s = ; s = 5, 5, 5 Über den Satz des Pythagoras ist die Länge der Vektoren bestimmbar. Die Länge von = ist = + +. s 6,9 m und s 6,97

Mehr

Linearkombinationen in der Physik

Linearkombinationen in der Physik Linearkombinationen in der Physik Für die Überlagerung von Bewegungen gilt das Superpositionsprinzip. Es lautet: Führt ein Körper gleichzeitig mehrere Teilbewegungen aus, so überlagern sich diese Teilbewegungen

Mehr

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014

Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 2014 Beispielaufgaben zum Pflichtteil im Abitur Mathematik ab 04 Schwerpunkt: grundlegendes Anforderungsniveau 0 Inhaltsverzeichnis Inhaltsverzeichnis Seite Vorbemerkungen... Aufgabenvariationen und Ergänzungen

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 Inhaltsverzeichnis Vorbemerkungen

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra

Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neumann Erfolg im Mathe-Abi 213 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17. Aufgabensatz...

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

1. Koordinaten. 1.1 Koordinaten

1. Koordinaten. 1.1 Koordinaten Teil I Klasse 9 9 . Koordinaten Cogito ergo sum René Descartes. Koordinaten Koordinaten sind etwas, das man nach einigen Schuljahren als etwas ganz Banales wahrnimmt; dabei gehören sie, ebenso wie z.b.

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Musteraufgaben. für einen hilfsmittelfreien Prüfungsteil in der. schriftlichen Abiturprüfung Mathematik. erhöhtes Anforderungsniveau

Musteraufgaben. für einen hilfsmittelfreien Prüfungsteil in der. schriftlichen Abiturprüfung Mathematik. erhöhtes Anforderungsniveau Musteraufgaben für einen hilfsmittelfreien Prüfungsteil in der schriftlichen Abiturprüfung Mathematik erhöhtes Anforderungsniveau Freie und Hansestadt Hamburg Behörde für Schule und Berufsbildung Impressum

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Mathematik. Lernbaustein 6

Mathematik. Lernbaustein 6 BBS Gerolstein Mathematik Mathematik für die Berufsoberschule II Lernbaustein 6 Modellieren von Realsituationen mit Hilfe der Vektorrechnung www.p-merkelbach.de/bos/mathe/matheskript-bos- Lernbaustein

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der

Mehr

Leitprogramm Vektorgeometrie

Leitprogramm Vektorgeometrie Leitprogramm Vektorgeometrie Torsten Linnemann Pädagogische Hochschule FHNW Gymnasium Oberwil E-mail:torsten.linnemann@fhnw.ch 18. September 2011 Dank: Ich danke der Klasse 4aL, Kantonsschule Solothurn,

Mehr

Abiturprüfung Grundkurs 1995/96 und 1996/97

Abiturprüfung Grundkurs 1995/96 und 1996/97 Inhalt Vorwort............................................. Mecklenburg-Vorpommern 99/97....................... Aufgaben.................................... Erwartungsbilder.............................

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7 1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

3 Ziele und Aufgaben Klasse 12

3 Ziele und Aufgaben Klasse 12 118 Planungsvorschlag Klasse 1 3 Ziele und Aufgaben Klasse 1 3.1 Planungsvorschlag für die Klasse 1 Analytische Geometrie und Vektorrrechnung Vorbemerkungen: Im Vordergrund stehen die praktischen Bedeutungen

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken

Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren

Vektorgeometrie. mathenachhilfe.ch. Version: 28. Dezember 2007 (Bitte nur für den Eigengebrauch verwenden) 1. Mathematische Operationen für Vektoren Vektorgeometrie Version: 28. Dezemer 2007 Bitte nur für den Eigengerauch verwenden) mathenachhilfe.ch. Mathematische Operationen für Vektoren Addition + a + 3 = a + + + 3 + Sutraktion a 3 = a 3 Skalare

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6

Einführung in das mathematische Arbeiten im SS 2007. Vektoren. Evelina Erlacher 1 9. März 2007. 8 Winkel 5. 11 Ausblick 6 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Vektoren Evelina Erlacher 9. März 007 1 Pfeile und Vektoren im R und R 3 1 Der Betrag eines Vektors 3 Die Vektoraddition

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen

Mehr

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22. Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt 2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Markus' Formelsammlung für die Vektorgeometrie

Markus' Formelsammlung für die Vektorgeometrie Markus' Formelsammlung für die Vektorgeometrie Markus Dangl.4. Zusammenfassung Dieses Dokument soll eine Übersicht über die Vektorgeometrie für die Oberstufe am Gymnasium geben. Ich versuche hier möglichst

Mehr

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag.

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag. 49. Mathematik-Olympiade Regionalrunde Olympiadeklasse 6 c 2013 nausschuss des Mathematik-Olympiaden e.v. Barbara ist Kandidatin in einer mathematischen Quizshow und hat bis jetzt alle n richtig gelöst.

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Kapitel 13 Geometrie mit Geraden und Ebenen

Kapitel 13 Geometrie mit Geraden und Ebenen 13. Geometrie mit Geraden und Ebenen 13.1 Geraden- und Ebenengleichungen 13.1 Geradengleichungen Ist A ein Punkt des Anschauungsraumes mit Ortsvektor, dann ist eine Gerade g durch diesen Punkt bestimmt

Mehr

Qualifikationsphase Q1

Qualifikationsphase Q1 Schulinternes Curriculum Mathematik Gymnasium Nordenham Qualifikationsphase Q1 Ungefährer Inhalte Zeitbedarf grundlegendes erhöhtes Anmerkungen Methodische Hinweise 8 Wochen Kurvenanpassung Das Bestimmen

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Studiengänge) Beispiele

Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. DETERMINANTEN Determinanten

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr