Big Data Alter Wein in neuen Schläuchen? Josef Schmid M.A. Dynelytics AG

Größe: px
Ab Seite anzeigen:

Download "Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG"

Transkript

1 Big Data Alter Wein in neuen Schläuchen? Josef Schmid M.A. Dynelytics AG

2 2

3 Big Data Gartner prognostiziert, dass Unternehmen im laufenden Jahr für IT-Lösungen im Big-Data- Bereich 34 Milliarden Dollar ausgeben werden. Außerdem würden hier bis 2015 weltweit etwa 4,4 Millionen neue IT-Jobs entstehen, sagen die Analysten voraus.

4 Big Data bezeichnet große Datenmengen aus vielfältigen Quellen, die mit Hilfe neu entwickelter Methoden und Technologien erfasst, verteilt, gespeichert, durchsucht, analysiert und visualisiert werden können. Das Volumen dieser Datenmengen geht in die Terabytes, Petabytes und Exabytes. Quelle: Wikipedia

5 Auch Big Data... 5

6 Verteilt Speichern und Rechnen Hadoop Map Reduce In Memory Column based Grid Computing... Neuere Technologien, die den Umgang mit sehr grossen Datenmengen in kurzer Zeit ermöglichen. 6

7 Aber wofür das alles? Überlebensnotwendig für Firmen wie Google, ebay, Facebook etc. Speichern, was bisher kaum möglich war (z.b. Sensoren-Daten) Nutzen vor allem transaktionsorientiert Nutzen aus den Daten ziehen aus den Daten lernen the next Step 7

8 Aus Daten lernen: eine Formel für Bordeauxqualität? 8

9 Bordeauxqualität = x (Regenmenge im Winter) x (Durchschnittstemperatur in der Wachstumsperiode) x (Regenmenge in der Erntezeit) 9

10 Orley Ashenfelter, ein Ökonom aus Princeton, erschütterte die Weinkennerwelt mit dieser Formel in den späten 80ern. Jeder Zentimeter Regen im Winter erhöht den erwarteten Verkaufspreis um $ 10

11 Robert Parker, der Weinpapst, dazu: a Neanderthal way of looking at wine an absolute total shame It s so absurd as to be laughable. 11

12 Aber: Funktioniert! Tatbeweis erbracht Zeitvorsprung für Bordeauxinvestoren 12

13 Mehr dazu in SPSS (Schweiz) AG 13

14 Analysieren Ansatz Ausgangslage Statistik Hypothese Weinpreis hängt mit Temperatur während der Wachstumsphase zusammen Data Mining Fragestellung Wie kann ich mit den verschiedensten Indikatoren den Weinpreis am Besten schätzen? Big Data Daten Wo sind in meinem Datenberg unvermutete Zusammenhänge ( Korrelationen ), die Sinn machen?

15 Mythos Korrelation Auch Big Data braucht relevante Fragestellungen 15

16 Algorithmen sind dumm Lernen durch Erfahrung /= Kausalität und Relevanz

17 Vorgehen bei analytischem Projekt (CRISP) Business Understanding Data Understanding Data Preparation Modelling Evaluation Deployment Festlegung des gesch. Zieles Hintergründe Gesch. Erfolgskriterien Bewertung der Situation Übersicht Ressourcen Anforderungen, Annahmen und Beschränkungen Risiken und Gefahren Terminologie Kosten/Nutzen Bestimmung des DM- Ziels Data Mining Ziele Data Mining Erfolgskriterien Erstellung Projektplan Projektplan Erste Bestimmung von Methoden und Werkzeugen Anfängliche Datensammlung Datensammlungsbericht Datenbeschreibung Datenbeschreibungsbericht Datenexploration Datenexplorationsbericht Datenqualität Datenqualitätsbericht Datensatz Datensatzbeschreibung Datenauswahl Logiken für Ein-/ Ausschluß Datenbereinung Datenbereinigungsbericht Erstellen neuer Merkmale Abgeleitete Merkmale Erstellte Fälle Datenintegration Angereicherte Daten Datenformatierung Formatierte Daten Auswahl des Evaluierung der Modellierungsver-fahrens Ergebnisse Modellierungstechnik Modellannahmen Erstellung eines Testdesigns Testdesign Modellerstellung Parametereinstellun-gen im Modell Modelbeschreibung Modellbewertung Modelbewertung Veränderte Parametereinstellungen Bewertung der DM- Ergebnisse mit den geschäftl. Erfolgskriterien Bestätigte Modelle Prozessrückblick Prozessrückblick Festlegung nächster Schritte Liste mögl. Aktionen Entscheidung Plan für Verteilung Deployment-Plan Planung für Überwachung und Kontrolle Überwachungsund Kontrollplan Erstellung Abschlußbericht Abschlußbericht Abschlußpräsentation Projektrückblick Erfahrungen Dokumentation 17

18 18 Data Quality

19 Supervised dependent Variable Algorithmen Unsupervised no dependent Variable Associations Anwendbar für Nicht-Spezialisten... Automatic 19

20 Hochausgaben Nichtkäufer Gute Kunden Exceptions Gelegenheit in der Nachbarschaft Spontan Letzte Sekunde Grossgeschäfte Data Driven Segmentation Schnäppchen Gesundheit Schönheit 20

21 Fachwissen ist zentral 21

22 ... Und der Datenschutz? AGB s Daten das Erdöl der Zukunft? Daten(-handel) als Businessmodell? Mit Daten bezahlen? Nutzen vs Ausspionieren 20 Minuten,

23 23

24 24 Model

25 Zusammenfassung Big Data ist zur Zeit im wesentlichen eine Technologie zum Speichern und für den Zugriff auf sehr grosse Datenmengen. Analysetechniken für Big Data basieren noch weitgehend auf den Algorithmen aus den Bereichen Statistik / Artificial Intelligence / Data Mining. Zentral für analytischen Erfolg ist das Stellen der richtigen Fragen und die kreative und die saubere Aufbereitung der Daten. Algorithmen können auch von Nicht-Spezialisten sinnvoll verwendet werden. 25

26 Kontakt Dynelytics AG Josef Schmid Schneckenmannstrasse 25 CH-8044 Zürich Phone +41(44) , Fax

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Big & Smart Data. bernard.bekavac@htwchur.ch

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

BIG DATA - BIG OPPORTUNITIES

BIG DATA - BIG OPPORTUNITIES BIG DATA - BIG OPPORTUNITIES eday: 2014 Wien, 6. März 2014 EBA Executive Business Advice GmbH 1120 Wien, Am Euro Platz 2, Gebäude G Tel.: +43 1 71728 172 Email: office@eba-business.at www.eba-business.at

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining

Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining 1.22 Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining Raphael Hess WWF Schweiz 28. Oktober 2010 1 Agenda Worum es geht! Data Mining 2 2 WWF Worldwide 1961 Gründungsjahr +5,000

Mehr

Der CRISP-DM Prozess für Data Mining. CRISP-DM Standard CRISP-DM. Wozu einen standardisierten Prozess?

Der CRISP-DM Prozess für Data Mining. CRISP-DM Standard CRISP-DM. Wozu einen standardisierten Prozess? Wozu einen standardisierten Prozess? Der Prozess der Wissensentdeckung muss verlässlich und reproduzierbar sein auch für Menschen mit geringem Data Mining Hintergrundwissen. Der CRISP-DM Prozess für Data

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Business and Data Understanding. Business und Data Understanding

Business and Data Understanding. Business und Data Understanding Business und Data Understanding Gliederung 1. Grundlagen 2. Von Data Warehouse zu Data Mining 3. Das CRISP-DM Referenzmodell 4. Die Phasen Business- und Data Understanding 5. Überblick der weiteren Phasen

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Exkurs: Projektmanagement. OpenData - BigData. 2014 Rotenburg a.d.fulda Gerhard Heckmann. DSt-AKN,

Exkurs: Projektmanagement. OpenData - BigData. 2014 Rotenburg a.d.fulda Gerhard Heckmann. DSt-AKN, Exkurs: Projektmanagement OpenData - BigData 2014 Rotenburg a.d.fulda Gerhard Heckmann DSt-AKN, OpenData - BigData Open Data Big Data DSt-AKN, Seite 2 opendata - Definitionen Es geht um die Veröffentlichung

Mehr

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt

Was ist Big Data? Versuch einer Positionsbestimmung. Wolfgang Marquardt Was ist Big Data? Versuch einer Positionsbestimmung Wolfgang Marquardt Vorstandsvorsitzender des Forschungszentrum Jülich 02.06.2015 Jahrestagung des deutschen Ethikrates Ganz sicher auch ein Hype hohe

Mehr

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Big Data Wer gewinnt, wer verliert? Köln Revolvermänner AG

Big Data Wer gewinnt, wer verliert? Köln Revolvermänner AG Big Data Wer gewinnt, wer verliert? Düsseldorf 16.06.2015 Köln 10.09.2015 Bernd Fuhlert - Vorstand Revolvermänner AG Fast 10 Jahre Expertise in den Bereichen Online- Krisenkommunikation, IT-Sicherheit,

Mehr

Business Analytics in der Big Data-Welt

Business Analytics in der Big Data-Welt Business Analytics in der Big Data-Welt Frankfurt, Juni 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data-Analytik "The way I look at big data analytics is it's not a technology,

Mehr

Big Data zwischen Hype und Realität Perspektiven im Gesundheitswesen. Dr. Peter Grolimund, Senior Industry Consultant Life Sciences 26-Januar-2015

Big Data zwischen Hype und Realität Perspektiven im Gesundheitswesen. Dr. Peter Grolimund, Senior Industry Consultant Life Sciences 26-Januar-2015 Big Data zwischen Hype und Realität Perspektiven im Gesundheitswesen Dr. Peter Grolimund, Senior Industry Consultant Life Sciences 26-Januar-2015 Zur Diskussion DATEN Spenden kann Leben retten Analysieren

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Potentiale von Big Data in der öffentlichen Verwaltung

Potentiale von Big Data in der öffentlichen Verwaltung Potentiale von Big Data in der öffentlichen Verwaltung Jens Fromm (Fraunhofer FOKUS) Dr. Klaus-Peter Eckert (Fraunhofer FOKUS) Dr. Stephan Gauch (Fraunhofer FOKUS, TU Berlin) Wie groß ist Big? 3 6 9 12

Mehr

Big Data Das neue Versprechen der Allwissenheit

Big Data Das neue Versprechen der Allwissenheit Big Data Das neue Versprechen der Allwissenheit Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 IMPULS AM VORMITTAG Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 INHALTE Teradata? Wer sind denn die überhaupt? Big Data? Wirklich? Wo? Die vorgegebenen Impulsfragen: 1.

Mehr

Ab in den Himmel: Was kommt jenseits der Cloud? 20 R. Altenhöner Ab in den Himmel: Was kommt jenseits der Cloud? 04.6.2014 Bibliothekartag 2014

Ab in den Himmel: Was kommt jenseits der Cloud? 20 R. Altenhöner Ab in den Himmel: Was kommt jenseits der Cloud? 04.6.2014 Bibliothekartag 2014 Ab in den Himmel: Was kommt jenseits der Cloud? 1 20 R. Altenhöner Ab in den Himmel: Was kommt jenseits der Cloud? 04.6.2014 Bibliothekartag 2014 Inhalt 1. Einleitung / Motivation 2. Cloud ein bisschen

Mehr

3 MILLIARDEN GIGABYTE AM TAG ODER WELCHE KAPAZITÄTEN MÜSSEN NETZE TRAGEN?

3 MILLIARDEN GIGABYTE AM TAG ODER WELCHE KAPAZITÄTEN MÜSSEN NETZE TRAGEN? 3 MILLIARDEN GIGABYTE AM TAG ODER WELCHE KAPAZITÄTEN MÜSSEN NETZE TRAGEN? Udo Schaefer Berlin, den 10. November 2011 DIE NETZE UND IHRE NUTZUNG Berechnungsgrundlage 800 Millionen Facebook Nutzer Transport

Mehr

Open Data: Datenmanagement und Visualisierung Wie funktionieren Question / Answering Systeme?

Open Data: Datenmanagement und Visualisierung Wie funktionieren Question / Answering Systeme? Open Data: Datenmanagement und Visualisierung Wie funktionieren Question / Answering Systeme? Prof. Dr. Edy Portmann Universität Bern Institut für Wirtschaftsinformatik Informationsmanagement Assistenzprofessur

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Dr. Martin Hebach, Cebit 2015 Senior Solution Architect mhebach@informatica.com Abstract Für Business Intelligence Aufgaben

Mehr

Health Insurance Days Künstliche Intelligenz Relevanz für die Krankenversicherung? Otto Bitterli, CEO Sanitas Interlaken, 23.

Health Insurance Days Künstliche Intelligenz Relevanz für die Krankenversicherung? Otto Bitterli, CEO Sanitas Interlaken, 23. Health Insurance Days Künstliche Intelligenz Relevanz für die Krankenversicherung? Otto Bitterli, CEO Sanitas Interlaken, 23. April 2015 Agenda Was wir unter künstlicher Intelligenz 1 verstehen - Breites

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Big Data als Ökosystem datengetriebener Unternehmen

Big Data als Ökosystem datengetriebener Unternehmen Big Data als Ökosystem datengetriebener Unternehmen Präsentation im CINIQ Center for Data and Information Intelligence, Fraunhofer Heinrich-Hertz-Institut in Berlin 10.09.2013 von Dr. Peter Lauf Zur Person

Mehr

Big Data Fluch oder Segen für MDM? 5. Trendkongress net economy, Messe Karlsruhe, 16.05.2013

Big Data Fluch oder Segen für MDM? 5. Trendkongress net economy, Messe Karlsruhe, 16.05.2013 Big Data Fluch oder Segen für MDM? 5. Trendkongress net economy, Messe Karlsruhe, 16.05.2013 Big Data Fluch oder Segen für Master Data Management (MDM)? Agenda: 1. Aktuelle Herausforderungen 2. Definition

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014 Datenintegration, -qualität und Data Governance Hannover, 14.03.2014 Business Application Research Center Führendes europäisches Analystenhaus für Business Software mit Le CXP (F) objektiv und unabhängig

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Software AG Innovation Day 2014 Bonn, 2.7.2014 Dr. Carsten Bange, Geschäftsführer Business Application Research Center

Mehr

FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation.

FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation. FuturistGerd.com Die nächsten 5 Jahre in Business, Medien und Wirtschaft: Liechtenstein und die digitale Transformation @gleonhard Wenn wir die Zukunft besser verstehen - Vorausblick entwickeln - können

Mehr

Ratgeber Integration von Big Data

Ratgeber Integration von Big Data SEPTEMBER 2013 Ratgeber Integration von Big Data Gesponsert von Inhalt Einführung 1 Herausforderungen der Big-Data-Integration: Neues und Altes 1 Voraussetzungen für die Big-Data-Integration 3 Bevorzugte

Mehr

Big Data. Buzzword, Mythos & Realität. Worum geht es...? 24.07.15 K. Talk im Park, Erlangen, 21.07.2015

Big Data. Buzzword, Mythos & Realität. Worum geht es...? 24.07.15 K. Talk im Park, Erlangen, 21.07.2015 Big Data Buzzword, Mythos & Realität Talk im Park Erlangen-Tennenlohe, den 21.07.2015 Worum geht es...? (c) Daniela & Christian Alexande Graf, Qualitätssicherung & Statistik 1 Big Data 1997 Visualization

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Wo sind meine Daten? Ein Gesundheitscheck Ihrer Datenhaltung. KRM/Wildhaber Consulting, Zürich 2014

Wo sind meine Daten? Ein Gesundheitscheck Ihrer Datenhaltung. KRM/Wildhaber Consulting, Zürich 2014 Wo sind meine Daten? Ein Gesundheitscheck Ihrer Datenhaltung 1 KRM/Wildhaber Consulting, Zürich 2014 Kreditkartendaten gestohlen u Die Geheimdienste zapfen systematisch Rechner an u Cloud Lösungen sind

Mehr

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen HANSER Inhalt Vorwort XI 1 Management Summary 1 2 Was? 7 2.1 Mein klassisches Business ist konkurrenzlos,

Mehr

Grid Analytics. Informationsanforderungen und plattformen für Ihre Netze

Grid Analytics. Informationsanforderungen und plattformen für Ihre Netze Grid Analytics Informationsanforderungen und plattformen für Ihre Netze GAT / WAT IT Forum 2014 September 2014 Fichtner-Gruppe Gegründet 1922 und seither in Familienbesitz Deutschlands größtes unabhängiges

Mehr

Big Data. Neue rechtliche Herausforderungen?

Big Data. Neue rechtliche Herausforderungen? Big Data Neue rechtliche Herausforderungen? 17. September 2015 Big Data Tagung Information Center und IT Services Managers Forum Schweiz, HWZ Zürich Dirk Spacek, Rechtsanwalt, Dr.iur., LL.M. Einführung

Mehr

Was tun mit Big Data? Workshop-Angebote der PROFI AG

Was tun mit Big Data? Workshop-Angebote der PROFI AG Was tun mit Big Data? Workshop-Angebote der PROFI AG Jetzt anmelden! Die Teilnehmerzahl ist begrenzt. Was ist Big Data? 3 Herzlich willkommen. Die PROFI AG bietet Kunden ein breites Spektrum an Software-Lösungen,

Mehr

Social Monitoring. HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014

Social Monitoring. HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014 HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014 Abdul-Wahed Haiderzadah abdul-wahed.haiderzadah@haw-hamburg.de Betreuer:

Mehr

Big Data - Neue Wege zur Wissenserweiterung

Big Data - Neue Wege zur Wissenserweiterung Big Data - Neue Wege zur Wissenserweiterung oder reine Datenbulimie? Andreas Michels 19.12.2014 Eine Begriffsbestimmung Big Data Datenbulimie Wissenserweiterung Big Data eine (erste) Definition "Big Data

Mehr

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern gefördert durch die Indikatoren von Datenqualität Michael Nonnemacher

Mehr

Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data

Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data Die zentralen Erfolgsfaktoren für mehr Werberelevanz: Smart statt Big Data dmexco Night Talk Wolfhart Fröhlich 24.06.2014, Hamburg intelliad Media GmbH Daten gibt es wie Sand am Meer Bild: Alexandr Ozerov

Mehr

BIG DATA Herausforderungen für den Handel

BIG DATA Herausforderungen für den Handel BIG DATA Herausforderungen für den Handel RA Adrian Süess, LL.M., Zürich Bühlmann Rechtsanwälte AG www.br-legal.ch 1 2 1 Überblick Worum geht s. Big Data. Was ist Big Data. Beschaffung und Bearbeitung

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Operational Big Data effektiv nutzen TIBCO LogLogic. Martin Ulmer, Tibco LogLogic Deutschland

Operational Big Data effektiv nutzen TIBCO LogLogic. Martin Ulmer, Tibco LogLogic Deutschland Operational Big Data effektiv nutzen TIBCO LogLogic Martin Ulmer, Tibco LogLogic Deutschland LOGS HINTERLASSEN SPUREN? Wer hat wann was gemacht Halten wir interne und externe IT Richtlinien ein Ist die

Mehr

Revolution Analytics eine kommerzielle Erweiterung zu R

Revolution Analytics eine kommerzielle Erweiterung zu R Revolution Analytics eine kommerzielle Erweiterung zu R Webinar am 17.07.2014 F. Schuster (HMS) Dr. E. Nicklas (HMS) Von der Einzelplatzlösung zur strategischen Unternehmens- Software Zur Einführung Was

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Executive Briefing. Big Data und Business Analytics für Kunden und Unternehmen. In Zusammenarbeit mit. Executive Briefing. In Zusammenarbeit mit

Executive Briefing. Big Data und Business Analytics für Kunden und Unternehmen. In Zusammenarbeit mit. Executive Briefing. In Zusammenarbeit mit Big Data und Business Analytics für Kunden und Unternehmen Umfangreiche und ständig anwachsende Datenvolumen verändern die Art und Weise, wie in zahlreichen Branchen Geschäfte abgewickelt werden. Da immer

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

BIG DATA & E-Health Mehr Nutzen, mehr Gesundheit?

BIG DATA & E-Health Mehr Nutzen, mehr Gesundheit? Industrie- und Handelskammer zu Dortmund Bildquelle: Fotolia Prof. Dr. Ralf Kutsche BIG DATA & E-Health Mehr Nutzen, mehr Gesundheit? IHK Dortmund, 9. Februar 2015 BIG DATA Die neue Wunderwaffe im Gesundheitswesen?

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze INAUGURALDISSERTATION zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften an der Wirtschaftswissenschaftlichen

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

Big Data - Fluch oder Segen?

Big Data - Fluch oder Segen? mitp Professional Big Data - Fluch oder Segen? Unternehmen im Spiegel gesellschaftlichen Wandels von Ronald Bachmann, Guido Kemper, Thomas Gerzer 1. Auflage Big Data - Fluch oder Segen? Bachmann / Kemper

Mehr

BIG DATA. Herausforderungen für den Handel. RA Adrian Süess, LL.M., Zürich Bühlmann Rechtsanwälte AG www.br-legal.ch

BIG DATA. Herausforderungen für den Handel. RA Adrian Süess, LL.M., Zürich Bühlmann Rechtsanwälte AG www.br-legal.ch BIG DATA Herausforderungen für den Handel RA Adrian Süess, LL.M., Zürich Bühlmann Rechtsanwälte AG www.br-legal.ch 1 2 Überblick Worum geht s. Was ist Big Data. Beschaffung und Bearbeitung von Datensätzen.

Mehr

Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen. Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28.

Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen. Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28. Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28. November 2008 2007 TIQ Solutions GmbH All Rights Reserved. GIQMC Bad Soden,

Mehr

Trends in Business Intelligence

Trends in Business Intelligence Trends in Business Intelligence Dr. Carsten Bange Business Intelligence (BI) beschreibt die Erfassung, Sammlung und Darstellung von Information zur Planung, Steuerung und Kontrolle der Unternehmensleistung.

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

SELF-SERVICE ANALYTICS: SMART INTELLIGENCE MIT INFONEA IM KONTINUUM ZWISCHEN INTERAKTIVEN REPORTS, ANALYTICS FÜR FACHANWENDER UND DATA SCIENCE

SELF-SERVICE ANALYTICS: SMART INTELLIGENCE MIT INFONEA IM KONTINUUM ZWISCHEN INTERAKTIVEN REPORTS, ANALYTICS FÜR FACHANWENDER UND DATA SCIENCE SELF-SERVICE BUSINESS INTELLIGENCE / INFONEA FUNKTIONSÜBERSICHT / SELF-SERVICE ANALYTICS: SMART INTELLIGENCE MIT INFONEA IM KONTINUUM ZWISCHEN INTERAKTIVEN REPORTS, ANALYTICS FÜR FACHANWENDER UND DATA

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

EXASOL AG Zahlen & Fakten

EXASOL AG Zahlen & Fakten Big Data Management mit In-Memory-Technologie EXASOL AG Zahlen & Fakten Name: EXASOL AG Gründung: 2000 Tochterges.: Management: Produkte: Firmensitz: Niederlassung: EXASOL Cloud Computing GmbH Steffen

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

www.pwc.de Microsoft Synopsis Big Data Trusted Data Organisation: Erfolgsfaktor für Entscheidungssicherheit Mai 2014 Florian Buschbacher

www.pwc.de Microsoft Synopsis Big Data Trusted Data Organisation: Erfolgsfaktor für Entscheidungssicherheit Mai 2014 Florian Buschbacher www.pwc.de Microsoft Synopsis Big Data Trusted Data Organisation: Erfolgsfaktor für Entscheidungssicherheit Florian Buschbacher Kurzvorstellung Florian Buschbacher Senior Manager Advisory Big Data & Data

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

Data Mining in Datenbanksystemen. Hjalmar Hagen Data Mining Seminar der Universität Ulm, Abteilung SAI, in Zusammenarbeit mit DaimlerChrysler

Data Mining in Datenbanksystemen. Hjalmar Hagen Data Mining Seminar der Universität Ulm, Abteilung SAI, in Zusammenarbeit mit DaimlerChrysler Data Mining in Datenbanksystemen Hjalmar Hagen Data Mining Seminar der Universität Ulm, Abteilung SAI, in Zusammenarbeit mit DaimlerChrysler 19. Februar 2004 Inhaltsverzeichnis 1 Einleitung 2 2 CRoss Industry

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten von Jürgen Mauerer Foto: Avantum Consult AG Seite 1 von 21 Inhalt Mehrwert aufzeigen nach Analyse des Geschäftsmodells...

Mehr

Datenqualität erfolgreich steuern

Datenqualität erfolgreich steuern Edition TDWI Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte von Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, Christian Merighi 3., überarbeitete und erweiterte Auflage

Mehr

Wie wichtig ist Social Media Marketing für mein Google Ranking?

Wie wichtig ist Social Media Marketing für mein Google Ranking? Wie wichtig ist Social Media Marketing für mein Google Ranking? 1 Kurzvorstellung adisfaction Fullservice-Digital-Agentur Büros in Meerbusch und Zürich Gegründet 2002, 20 Mitarbeiter Searchmetrics Pionier

Mehr

Big Data in der Finanzdienstleistungsbranche Big Hype oder Big Impact?

Big Data in der Finanzdienstleistungsbranche Big Hype oder Big Impact? Podiumsdiskussion Big Data in der Finanzdienstleistungsbranche Big Hype oder Big Impact? 20. November 2013 Universität Augsburg Prof. Dr. Hans Ulrich Buhl Wissenschaftlicher Leiter Fraunhofer-Projektgruppe

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr