Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R

Größe: px
Ab Seite anzeigen:

Download "Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R"

Transkript

1 Vektoren Aufgabe Berechnen Sie Aufgabe 2 Beweisen Sie das ausführlich das Assoziativgesetz der Vektoraddition + R n R n R n Sie dürfen dabei alle Gesetze der reellen Addition + R R R verwenden machen Sie aber deutlich an welcher Stelle Sie diese benutzen Aufgabe Berechnen Sie die skalare Multiplikation 2 Aufgabe 4 Beweisen Sie ausführlich, dass für alle a R und für alle x, y R n gilt a x + y = a x + a y Sie dürfen dabei alle Gesetze der reellen Arithmetik verwenden machen Sie aber deutlich an welcher Stelle Sie diese benutzen Aufgabe 5 Beweisen Sie ausführlich, dass für alle a, b R und für alle x R n gilt a + b x = a x + b x Sie dürfen dabei alle Gesetze der reellen Arithmetik verwenden machen Sie aber deutlich an welcher Stelle Sie diese benutzen Aufgabe 6 Beweisen Sie ausführlich, dass die Relation kollinear transitiv ist Aufgabe 7 Die Relation kollinear ist eine Äquivalenzrelation auf R n \ { 0} Sei x R n \ { 0} ein beliebig aber fest gewählter Vektor und K x die Äquivalenzklasse von x bzgl der Relation kollinear Interpretieren Sie die Elemente von K x als Ortsvektoren in einem n-dimensionalen Koordinatensystem Welche geometrische Form Kreis, Gerade, Fläche, hat die

2 Punktmenge, die durch diese Ortsvektoren beschrieben wird? Wenn Sie unsicher sind, berechnen Sie zunächst ein paar Elemente der Äquivalenzklasse von x = 2 und zeichnen Sie diese Vektoren in ein zweidimensionales Koordinatensystem ein Aufgabe 8 Berechnen Sie 2 4 Aufgabe 9 Ein etwas anderer grafisch intuitiverer Zugang zur Vektorrechnung, bei dem Sie Ihre Kenntnisse aus dem letzten Semester ausspielen können Zunächst wird definiert, was ein n-dimensionaler Pfeil ist nämlich ein Paar r, s R n R n Intuitiv ist r der Startpunkt, s der Endpunkt des Pfeils Zwei Pfeile r, s und u, v heißen äquivalent, wenn sie sich nur durch eine Verschiebung unterscheiden, dh wenn es ein t R n gibt, so dass u, v = r + t, s + t Die hier verwendete Addition auf R n ist gleich definiert wie unsere Vektor Addition So sind zb die Pfeile 2,,, 9 und, 5, 0, äquivalent Zeigen Sie, dass die so definierte Relation äquivalent eine Äquivalenzrelation auf der Menge aller Pfeile ist Ein Vektor wird nun definiert als Äquivalenzklasse eines Pfeils, oder anders ausgedrückt: Ein Vektor ist eine Menge von Pfeilen mit gleicher Länge und gleicher Richtung Anders herum ist ein Pfeil nichts anderes als ein Repräsentant eines Vektors Wenn man also einen Vektor durch einen Pfeil in einem Koordinatensystem visualisiert, zeichnet man in Wirklichkeit einen Repräsentanten des Vektors Verwendet man einen Vektor als Ortsvektor, wählt man in Wirklichkeit den Repräsentanten des Vektors, dessen erste Komponente 0, 0,, 0 ist, dh den Pfeil, der im Koordinatenursprung beginnt Versuchen Sie das nachzuvollziehen, Sie verstehen dann auch in wiefern man Vektoren verschieben darf bzw ob sie am Koordinatenursprung befestigt sind 2

3 Aufgabe 0 Berechnen Sie 2 5 Sind die beiden Vektoren kollinear bzw orthogonal? Aufgabe Zeichnen Sie zwei Vektoren in ein Koordinatensystem ein, die zueinander orthogonal sind Prüfen Sie Ihr Ergebnis, indem Sie das Skalarprodukt der beiden Vektoren berechnen Aufgabe 2 Beweisen Sie ausführlich, dass es keine zwei Vektoren gibt, die sowohl kollinear als auch orthogonal sind Mit anderen weniger Worten: kollinear orthogonal = Hinweis Formulieren Sie die Aussagen in der Sprache der Prädikatenlogik und formen Sie sie so lang äquivalent um, bis Sie bei der Aussage x, y R n kollinear x, y orthogonal x, y sind Nutzen Sie dann aus, dass x, y R n \ { 0} kollinear sind genau dann wenn y = a x für ein a R und orthogonal sind genau dann wenn x y = 0 Aufgabe Beweisen Sie ausführlich, dass a R x, y R n a x y = a x y Hinweis: Sie benötigen im Beweis sowohl das Assoziativgesetz als auch das Distributivgesetz auf den reellen Zahlen Aufgabe 4 Beweisen Sie ausführlich, dass wenn x und y orthogonal sind, auch a x und b y orthogonal sind für beliebige a, b R \ {0} Nutzen Sie im Beweis die Eigenschaften des Skalarprodukts Aufgabe 5 Finden Sie zwei kollineare Vektoren x und y so dass die normierten Richtungsvektoren von x und y ungleich sind Aufgabe 6 Beweisen Sie ausführlich: Wenn x, y R n \ { 0} und y = a x für ein a > 0, dann sind die normierten Richtungsvektor von x und y gleich Aufgabe 7 Berechnen Sie den Winkel zwischen den beiden Vektoren 2 x = und y = Zeichnen Sie die Vektoren in ein Koordinatensystem ein und prüfen Sie Ihr Ergebnis mit dem Geodreieck

4 Aufgabe 8 In Bild ist die Orthogonalprojektion eines Vektors y auf einen Vektor x dargestellt Zeigen Sie, dass man den Ergebnisvektor z durch die Formel z = y e x e x berechnen kann, wobei e x der normierte Richtungsvektor von x ist Hinweis: Schauen Sie sich dazu die Konstruktion an, mit der wir in der Vorlesung die Formel x y cosα = x y hergeleitet haben Das meiste davon können Sie übernehmen y x z Abbildung : Orthogonalprojektion von y auf x Aufgabe 9 Beweisen Sie ausführlich, dass der Winkel zwischen zwei kollinearen Vektoren entweder 0 Grad oder 80 Grad beträgt Aufgabe 20 Eine komplexe Zahl kann als zweidimensionaler Vektor z = x + jy z = x y interpretiert werden Multipliziert man eine komplexe Zahl mit e jϕ bedeutet dies geometrisch, dass sich der komplexe Zeiger um Winkel ϕ gegen den Uhrzeigersinn dreht Benutzen Sie Ihre Kenntnisse aus der Vektorrechnung um zu beweisen, dass für alle z C \ {0} und für alle Winkel ϕ zwischen 0 und 80 Grad der Winkel zwischen z und ze jϕ tatsächlich ϕ ist Hinweis: Sie müssen ze jϕ zuerst in kartesische Koordinaten umrechnen Aufgabe 2 Ein komplexer Vektor ist ein Vektor, dessen Komponenten komplexe Zahlen sind Alle Rechenoperationen, die Sie für reelle Vektoren 4

5 kennen, gelten genau so auch für komplexe Vektoren mit einer Ausnahme: dem Skalarprodukt Eine wichtige Eigenschaft des Skalarprodukts war ja die positive Definitheit, dh und x x 0 für alle x R n x x = 0 genau dann wenn x = 0 Diese Eigenschaft ist so nützlich, dass man sie gerne auf komplexe Vektoren übertragen würde Problematisch dabei ist, dass für zwei komplexe Vektoren das Skalarprodukt in der Regel eine komplexe Zahl liefern würde, und der Vergleich 0 gar nicht definiert wäre Die Lösung besteht darin, das komplexe Skalarprodukt für zwei Vektoren x, y C n wie folgt zu definieren: x y = x y + x 2 y x n y n wobei y i die konjugiert komplexe Zahl von y i ist Zeigen Sie, dass das so definierte komplexe Skalarprodukt tatsächlich positiv definit ist Zeigen Sie weiterhin, dass gilt x y = y x Das komplexe Skalarprodukt ist also nicht kommutativ! Aufgabe 22 Seien a, a 2 R m orthogonale und normierte Vektoren, und f R 2 R m durch f x = x a + x 2 a 2 definiert Zeigen Sie, dass dann für alle x R 2 f x = x Sie dürfen alle in der Vorlesung bewiesenen Eigenschaften des Skalarprodukts und der Euklidischen Norm verwenden 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n

8. Elemente der linearen Algebra 8.1 Der euklidische Raum R n 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3

Vektorrechnung. Wolfgang Kippels 27. Oktober Inhaltsverzeichnis. 1 Vorwort 2. 2 Grundlagen der Vektorrechnung 3 Vektorrechnung Wolfgang Kippels 7 Oktober 018 Inhaltsverzeichnis 1 Vorwort Grundlagen der Vektorrechnung Beispielaufgaben 1 Lineare Abhängigkeit und Komplanarität 11 Aufgabe 1 1 Aufgabe Winkel zwischen

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

1.12 Einführung in die Vektorrechung

1.12 Einführung in die Vektorrechung . Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Länge, Skalarprodukt, Geradengleichungen

Länge, Skalarprodukt, Geradengleichungen Länge, Skalarprodukt, Geradengleichungen Jörn Loviscach Versionsstand: 9. April 2010, 18:48 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Algebra 2.

Algebra 2. Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Teil

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

Definition, Grundbegriffe, Grundoperationen

Definition, Grundbegriffe, Grundoperationen Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

Münchner Volkshochschule. Planung. Tag 08

Münchner Volkshochschule. Planung. Tag 08 Planung Tag 08 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 181 Vektoren Analytische Darstellung: Jedem Punkt im Raum kann ein Ortsvektor zugeordnet werden. P: (6; 5) R 2 P(6; 5) a = OP = 6 5 a Vektoren

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist.

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist. Lineare Funktionen Aufgabe. Sei f R R definiert durch x f = x x + 3x. Beweisen Sie ausführlich, dass f linear ist. Aufgabe. Die Funktionen (nicht erschrecken sind definiert durch + ( (R n R m (R n R m

Mehr

Vektoren - Einführung

Vektoren - Einführung Vektoren - Einführung Grundlegendes Verwendete Nomenklatur: Handschriftlich ist es kein Problem, einen Vektor stets durch a zu kennzeichnen. In der Textverarbeitung ist die andere Variante, Fettdruck,

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

6. Vektor- und Koordinaten-Geometrie.

6. Vektor- und Koordinaten-Geometrie. 6. Vektor- und Koordinaten-Geometrie. Jeder endlichen Menge, etwa der Menge kann man durch M = {,,, }. R 4 (M) = { a 1 + a 2 + a 3 + a 4 a i R } die Menge der formalen Linearkombinationen zuordnen. Es

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind.

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. . Vektorräume.. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. Physikalische Beispiele fur Vektoren: Kraft, Geschwindigkeit, Beschleunigung,

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel)

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel) Vektorrechnung Oftmals möchte man in der Mathematik mit mehreren Zahlen auf einmal rechnen. Dafür werde geordnete Listen verwendet. Eine Liste besteht aus n reellen Zahlen und wird n-tupel genannt. Beispiele:

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt 2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

(0, 3, 4) (3, 3, 4) (3, 3, 0)

(0, 3, 4) (3, 3, 4) (3, 3, 0) Übungsmaterial 1 2 Vektoren im Raum 2.1 Das räumliche Koordinatensystem Abbildung 1 zeigt das Koordinatensystem im R 3, dem dreidimensionalen Raum, mit eingefügtem Quader. Die Koordinaten einiger Eckpunkte

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April 2016 1 / 32 Übersicht Ziel dieses Kapitels

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Physikalischer Raum. Euklidischer Raum

Physikalischer Raum. Euklidischer Raum Physikalischer Raum Aus unserer Erfahrung schreiben wir dem Raum intuitiv bestimmte Eigenschaften zu. Intuition ist aber nicht ausreichend zum Aufbau einer Theorie. Es bedarf vielmehr einer präzisen mathematischen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben

Mathematik-1, Wintersemester Vorlesungsplan, Übungen, Hausaufgaben Mathematik-1, Wintersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Dr. Wilhelm Mons, Lubov Vassilevskaya http://www.math-grain.de/ Inhaltsverzeichnis 1.

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0

Denition 6.1 Eine Gerade ist die Menge aller Losungen (x; y) einer linearen Gleichung. y = A B x + C B : Ax + By = C mit 6= 0 6 Der Vektorraum R n In den folgenden Wochen wenden wir uns der Linearen Algebra zu, die man als eine abstrakte Form des Rechnens mit Vektoren auassen kann. Ein zentrales Thema werden lineare Raume (=

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Teil 2. Metrik mit Skalarprodukt. Für moderne Geometrie-Kurse am Gymnasium. und für Realschulen in Bayern! (Prüfungsstoff!)

Teil 2. Metrik mit Skalarprodukt. Für moderne Geometrie-Kurse am Gymnasium. und für Realschulen in Bayern! (Prüfungsstoff!) Vektor-Geometrie für die Sekundarstufe 1 Teil 2 Metrik mit Skalarprodukt Für moderne Geometrie-Kurse am Gymnasium und für Realschulen in Bayern! (Prüfungsstoff!) Dieser Text setzt Kenntnisse der Trigonometrie

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr