MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN"

Transkript

1 MÖGLICHKEITEN UND GRENZEN DER VORHERSAGBARKEIT VON EPIDEMIEN IN FRÜHEN STADIEN Mario Ziller Friedrich-Loeffler-Institut Bundesforschungsinstitut für Tiergesundheit Institut für Epidemiologie Seestr. 55, D Wusterhausen Germany

2 VORHERSAGE VON EPIDEMIEN IN FRÜHEN STADIEN Einführung Unsicherheit Daten Modelle Ergebnisse

3 VORHERSAGE VON EPIDEMIEN - Einführung Motivation Beispiel der Dynamik einer Epidemie

4 VORHERSAGE VON EPIDEMIEN - Einführung Vorhersageziele - Anfangsphase der Epidemie Zeitpunkt des Ausbruchs Frühwarnung - Höhepunkt der Epidemie Wendepunkt R 0 =1 - Endphase der Epidemie Gesamtanzahl der Fälle Resourcenplanung für Bekämpfung

5 VORHERSAGE VON EPIDEMIEN - Einführung Vorhersage theoriebasiert datenbasiert - Modell bekannt - erhebe Daten zur Vorhersage - Beispiele (vorwiegend) : Physik, Astronomie... Wetter - Daten gegeben - wähle Modell zur Vorhersage - Beispiele (vorwiegend) : Biologie, Medizin Wirtschaft, Börse Epidemiologie, Risikoanalyse

6 VORHERSAGE VON EPIDEMIEN - Einführung Modellwahl - Dilemma

7 VORHERSAGE VON EPIDEMIEN - Einführung Unsicherheiten bei datenbasierter Vorhersage Schätzung Modell - Validität - zufällige Stichproben - Verzerrung - optimiert in der Daten-Region - unkontrolliert außerhalb - Varianz des Schätzers - angemessenes Verhältnis von Anpassungsfehler zu Vorhersagefehler erforderlich

8 VORHERSAGE VON EPIDEMIEN - Unsicherheit Prinzipien der Vorhersage Problem formulieren Informationen einholen Methoden auswählen Methoden ausführen Ungewißheiten abschätzen Vorhersageintervalle schätzen Methoden bewerten Vorhersagen anwenden

9 VORHERSAGE VON EPIDEMIEN - Unsicherheit Vorhersage - Genauigkeit absolut relativ - Konfidenzintervall punktweise oder simultan - Vorhersageintervall punktweise oder simultan Verhältnis zwischen - Anpassungsfehler und - Vorhersagefehler

10 VORHERSAGE VON EPIDEMIEN - Unsicherheit Modellwahl - Kriterien Anpassung Vorhersage - Anpassungsfehler, Konfidenzintervall SSE, σ - log-likelihood Anpassung AIC Akaike BIC - Schwartz - Vergleich mit bekannter Streuung C p Mallows - Vorhersagefehler, Vorhersageintervall ω,( τ - Informationsverlust, Vorhersage / Anpassung LIC - Vergleich Vorhersage mit Anpassung, CVC ), pr Φ pr Ψ

11 VORHERSAGE VON EPIDEMIEN - Unsicherheit Informationsverlust LIC = n(logω logσ ) + p = n log Ψ pr + p σ τ ω - Varianz der Anpassungsfehler - Varianz des Schätzers - Varianz der Vorhersagefehler n - Anzahl der Datenpunkte p - Anzahl der Parameter Relative Genauigkeit Φ pr Ψ pr = τ σ σ = ω

12 VORHERSAGE VON EPIDEMIEN - Unsicherheit Varianz - Vergleich CVC = = n n ω ( σ Φ 1) + pr + p p = n τ σ + p σ τ ω - Varianz der Anpassungsfehler - Varianz des Schätzers - Varianz der Vorhersagefehler n - Anzahl der Datenpunkte p - Anzahl der Parameter Relative Genauigkeit Φ pr Ψ pr = τ σ σ = ω

13 VORHERSAGE VON EPIDEMIEN - Unsicherheit Modellwahl Anpassungsgüte absolute and relative Vorhersage-Genauigkeit optimale Anpassung optimale Vorhersage

14 VORHERSAGE VON EPIDEMIEN - Daten Quellen World Animal Health Information Database (WAHID) Interface Copyright World Organisation for Animal Health (OIE) 007

15 VORHERSAGE VON EPIDEMIEN - Daten Auswahl Krankheit Region Jahr Anzahl Tage Fälle Blauzungenkrankheit Deutschland Blauzungenkrankheit Italien Blauzungenkrankheit Belgien Equine Influenza Australien Newcastle-Krankheit Rumänien (153) 144

16 VORHERSAGE VON EPIDEMIEN - Daten

17 VORHERSAGE VON EPIDEMIEN - Daten

18 VORHERSAGE VON EPIDEMIEN - Daten

19 VORHERSAGE VON EPIDEMIEN - Modelle Modellbewertung Anpassungsgüte ME, MAE, RMSE, se Konfidenzinterval absolute Vorhersage-Genauigkeit ME, MAE, RMSE (festes Intervall) Vorhersageinterval relative Vorhersage-Genauigkeit MAE(Vorhersage) / MAE(Anpassung), pr Φ pr Ψ R.7.0

20 VORHERSAGE VON EPIDEMIEN - Modelle Globale Modelle - exponentielle Funktion F( t) = a + b e c t - logistische Funktion F( t) = 1+ a b e c t - Arkustangens F( t) = a + b arctan( c ( t d))

21 VORHERSAGE VON EPIDEMIEN - Modelle Exponentielle Glättung - einfache exponentielle Glättung (SES) - lineare exponentielle Glättung (Holt) ( ) 1, 1 + = + i F Y F F i i i i α ( )( ) ( ) ( ) 1, 1 1, = + + = i b F F b i b F Y F i i i i i i i i β β α α

22 VORHERSAGE VON EPIDEMIEN - Modelle Autoregressive Modelle - gewichteter gleitender Mittelwert (ARr) r = 1 α j= 1 Fi + jyi j+ 1, i >= r - gewichteter gleitender Mittelwert der Differenzen (ARr-Iq) D q r = 1 α j= 1 q ( Fi + ) jd ( Yi j+ 1), i >= q + r - verwendete Modelle: r= and r=3 q=1 (Fälle je Tag), q= (Fälle gesamt)

23 VORHERSAGE VON EPIDEMIEN - Modelle Lokale Regression - gewichtete polynomiale Regression (LOESS) linear, quadratisch - trikubischer Kern K( x) = ( ) 3 1 x 3 für x sonst < 1

24 VORHERSAGE VON EPIDEMIEN - Modelle Beispiel Newcastle-Krankheit - Rumänien - 006

25 VORHERSAGE VON EPIDEMIEN - Ergebnisse Vorläufiges Fazit (1) exponentielles Modell - generell nicht geeignet lokale Regression - moderat geeignet logistische Funktion, Arkustangens - akzeptabel nach dem Wendepunkt

26 VORHERSAGE VON EPIDEMIEN - Ergebnisse Logistisches Modell Equine Influenza - Australien - 007

27 VORHERSAGE VON EPIDEMIEN - Ergebnisse Logistisches Modell Equine Influenza - Australien - 007

28 VORHERSAGE VON EPIDEMIEN - Ergebnisse Logistisches Modell Equine Influenza - Australien - 007

29 VORHERSAGE VON EPIDEMIEN - Ergebnisse Vorläufiges Fazit () Autoregressives Modell - bestes Modell - universell - gute Vorhersagegenauigkeit - besonders gute Anpassungsgüte - schlechte relative Vorhersage-Genauigkeit - Kurzzeitvorhersage

30 VORHERSAGE VON EPIDEMIEN - Ergebnisse Autoregressives Modell Blauzungenkrankheit - Italien - 006

31 VORHERSAGE VON EPIDEMIEN - Ergebnisse Autoregressives Modell Blauzungenkrankheit - Italien - 006

32 VORHERSAGE VON EPIDEMIEN - Ergebnisse Autoregressives Modell Blauzungenkrankheit - Italien - 006

33 VORHERSAGE VON EPIDEMIEN - Ergebnisse Vorläufiges Fazit (3) Ausbruch der Epidemie - Zeitpunkt mit (sporadischen) Fallzahlen nicht vorhersagbar - Ähnlichkeit zu Test-Situation - zurückweisen der Hypothese kein Ausbruch - Signal: tatsächliche Fallzahlen außerhalb des Vorhersageintervalls

34 VORHERSAGE VON EPIDEMIEN - Ergebnisse Zeitpunkt des Ausbruchs Blauzungenkrankheit - Belgien - 007

35 VORHERSAGE VON EPIDEMIEN - Ergebnisse Zeitpunkt des Ausbruchs Blauzungenkrankheit - Belgien - 007

36 VORHERSAGE VON EPIDEMIEN - Ergebnisse Vorläufiges Fazit (4) Beispiel der Dynamik einer Epidemie

37 VORHERSAGE VON EPIDEMIEN - Ergebnisse Ausblick multivariate Modelle - mehr Information - zusätzliche Variablen - spezielle Monitoringsysteme - verbesserte Vorhersage - Frühwarn-Indikatoren

Risikoadjustierte Daten der Prävalenzmessung Dekubitus Kinder 2013. Dirk Richter

Risikoadjustierte Daten der Prävalenzmessung Dekubitus Kinder 2013. Dirk Richter Risikoadjustierte Daten der Prävalenzmessung Dekubitus Kinder 2013 Dirk Richter Berner Angewandte Fachhochschule Forschung Haute & Entwicklung/ école spécialisée Dienstleistung bernoise Pflege, Bern University

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Karl Mosler Friedrich Schmid Wahrscheinlichkeitsrechnung und schließende Statistik Vierte, verbesserte Auflage Springer Inhaltsverzeichnis 0 Einführung 1 1 Zufalls Vorgänge und Wahrscheinlichkeiten 5 1.1

Mehr

Statistisches Lernen

Statistisches Lernen Statistisches Lernen Einheit 12: Modellwahl und Regularisierung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 28

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

1 Prognoseverfahren F H

1 Prognoseverfahren F H 1 Prognoseverfahren 1.1 Zielsetzung 1.2 Bedarfsverlauf von Verbrauchsfaktoren 1.3 Prognose bei regelmäßigen Bedarf 1.4 Prognosemodelle in Standard-ERP-Software 1.5 Ausblick Herrmann, Frank: Operative Planung

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

JMP 10 Student Edition Quick Guide

JMP 10 Student Edition Quick Guide JMP 10 Student Edition Quick Guide Voraussetzung für die Befehle sind eine geöffnete Datentabelle, Standard Voreinstellungen und nutzerdefinierte Variablen mit geeigneter Typisierung. RMC = Rechter Mausklick

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen.

Kapitel 5. Prognose. Zeitreihenanalyse wird aus drei Gründen betrieben: Beschreibung des Verlaufs von Zeitreihen. Kapitel 5 Prognose Josef Leydold c 2006 Mathematische Methoden V Prognose 1 / 14 Lernziele Aufgabe der Prognose Problemtypen Ablauf einer Prognoseaufgabe Zeitreihe Josef Leydold c 2006 Mathematische Methoden

Mehr

Thilo Moseler Bern,

Thilo Moseler Bern, Bern, 15.11.2013 (Verallgemeinerte) Lineare Modelle Stärken Schwächen Fazit und persönliche Erfahrung 2 i-te Beobachtung der zu erklärenden Variablen Yi ist gegeben durch Linearkombination von n erklärenden

Mehr

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren

Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Institut für Arbeitsmarkt- und Berufsforschung Folie 1 Regionale Arbeitslosenprognosen: Die Leistungsfähigkeit ausgewählter Zeitreihenverfahren Katharina Hampel Marcus Kunz Norbert Schanne Antje Weyh Dr.

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2014 Mehrdimensionale Datensätze: Multivariate Statistik Multivariate Statistik Mehrdimensionale Datensätze:

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur... Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage Statistik Einführung in die com putergestützte Daten an alyse von Prof. Dr. Karlheinz Zwerenz 4., überarbeitete Auflage B 366740 Oldenbourg Verlag München Inhalt Vorwort XI Hinweise zu EXCEL und SPSS XII

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Heteroskedastie. Test auf Heteroskedastie. Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist.

Heteroskedastie. Test auf Heteroskedastie. Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist. Heteroskedastie Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist. Beispiele: Bei Zeitreihendaten : Ansteigen der Varianz über die Zeit, Anstieg der Varianz mit

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Aktuelle Probleme der experimentellen Teilchenphysik (Modul P23.1.2b) Statistische Methoden der Datenanalyse Ulrich Husemann Humboldt-Universität zu Berlin Wintersemester 2010/2011 Vorstellung Vorlesung:

Mehr

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013

QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 QUANTITATIVE STATISTICAL METHODS: REGRESSION AND FORECASTING JOHANNES LEDOLTER VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS ADMINISTRATION SPRING 2013 ZEITREIHEN 1 Viele Beobachtungen in den Wirtschaftswissenschaften

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY23) Herbstsemester 207 Olaf Steinkamp 36-J-05 olafs@physik.uzh.ch 044 63 55763 Vorlesungsprogramm Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen. Axel Werwatz Technische Universität Berlin

Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen. Axel Werwatz Technische Universität Berlin Wie hängen Löhne von Bildung ab? - Eine Einführung in die statistische Analyse von Zusammenhängen Axel Werwatz Technische Universität Berlin Einleitung Löhne sind unsere wichtigste Einkommensquelle. Geringer

Mehr

Lineare Regression und Varianzanalyse

Lineare Regression und Varianzanalyse Lineare Regression und Varianzanalyse Von Prof. Dr. Fritz Pokropp Universität der Bundeswehr Hamburg R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Grundstruktur linearer Modelle

Mehr

Vorlesung 4: Spezifikation der unabhängigen Variablen

Vorlesung 4: Spezifikation der unabhängigen Variablen Vorlesung 4: Spezifikation der unabhängigen Variablen. Fehlspezifikation der unabhängigen Variablen. Auswirkungen einer Fehlspezifikation a. auf die Erwartungstreue der Schätzung b. auf die Effizienz der

Mehr

Statistik zwischen. Jens Möhring. Dipl.-Ing. Elektrotechnik Privatanleger Schwerpunkte: Indikatoren, Mathematische Marktmodellierung

Statistik zwischen. Jens Möhring. Dipl.-Ing. Elektrotechnik Privatanleger Schwerpunkte: Indikatoren, Mathematische Marktmodellierung Statistik zwischen Euphorie und Panik Jens Möhring Dipl.-Ing. Elektrotechnik Privatanleger Schwerpunkte: Indikatoren, Mathematische Marktmodellierung VTAD Award VTAD Frühjahrskonferenz März 29 in Frankfurt

Mehr

Mehrfache und polynomiale Regression

Mehrfache und polynomiale Regression Mehrfache und polynomiale Regression Kriteria für die Durchführung einer Regression Jonathan Harrington Bitte datasets.zip (unter 5.5, Tabellarische Daten) neu herunterladen und in pfad auspacken Einfache

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Inhaltsverzeichnis. Vorwort. 1 Einführung in die multivariate Datenanalyse 1

Inhaltsverzeichnis. Vorwort. 1 Einführung in die multivariate Datenanalyse 1 V Inhaltsverzeichnis Vorwort XI 1 Einführung in die multivariate Datenanalyse 1 1.1 Was ist multivariate Datenanalyse? 1 1.2 Datensätze in der multivariaten Datenanalyse 4 1.3 Ziele der multivariaten Datenanalyse

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr.

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr. Statistik für Wirtschaftswissenschaftler von Prof. Dr. Josef Bleymüller und Prof. Dr. Rafael Weißbach sowie Dr. Günther Gehlert und Prof. Dr. Herbert Gülicher bei früheren Auflagen 17., überarbeitete Auflage

Mehr

Analyse von Querschnittsdaten. Signifikanztests II Advanced Stuff

Analyse von Querschnittsdaten. Signifikanztests II Advanced Stuff Analyse von Querschnittsdaten Signifikanztests II Advanced Stuff Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum..4..4 7..4..4..4 7..4 4..4..4

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Strukturgleichungsmodellierung

Strukturgleichungsmodellierung Strukturgleichungsmodellierung FoV Methodenlehre FSU-Jena Dipl.-Psych. Norman Rose Parameterschätzung, Modelltest & Fit Indizes bei SEM Forschungsorientierte Vertiefung - Methodenlehre Dipl.-Psych. Norman

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Ähnlichkeits- und Distanzmaße

Ähnlichkeits- und Distanzmaße Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8-1 - Ähnlichkeits- und Distanzmaße Jörg Rahnenführer, Multivariate Verfahren, WS89, TU Dortmund 11.1.8 -

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

4 Statistik normalverteilter Daten

4 Statistik normalverteilter Daten 4 Statistik normalverteilter Daten 4.1 Eine Stichprobe a Die drei Grundfragen. Die schliessende Statistik bildet die Brücke zwischen den Wahrscheinlichkeitsmodellen, die unser Denken strukturieren, und

Mehr

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen

Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signalklassen Gütebewertung und Performanceanalyse von Prognosealgorithmen bei unterschiedlichen Signallassen Diplomverteidigung Yongrui Qiao 25. 06. 2009 1/33 Gliederung Motivation und Problemstellung Testverfahren

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Wirtschaftsstatistik für Studienanfänger

Wirtschaftsstatistik für Studienanfänger Günter Deweß / Helga Hartwig Wirtschaftsstatistik für Studienanfänger Begriffe - Aufgaben - Lösungen EAG. LE Edition am Gutenbergplatz Leipzig Inhalt Beschreibende Statistik: Daten und Maßzahlen 1 Grundgesamtheiten,

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation

Zeitreihenanalyse. Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Zeitreihenanalyse Zerlegung von Zeitreihen Saisonindex, saisonbereinigte Zeitreihe Trend und zyklische Komponente Prognose Autokorrelation Beispiel für Zeitreihe Andere Anwendungen Inventarmanagment Produktionsplanung

Mehr

Über die Autoren 9. Widmung von Roberto 9 Danksagung von Roberto 10. Einleitung 21

Über die Autoren 9. Widmung von Roberto 9 Danksagung von Roberto 10. Einleitung 21 Inhaltsverzeichnis Über die Autoren 9 Widmung von Roberto 9 Danksagung von Roberto 10 Einleitung 21 Über dieses Buch 21 Törichte Annahmen über den Leser... 22 Symbole, die in diesem Buch verwendet werden

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Algorithms for Regression and Classification

Algorithms for Regression and Classification Fakultät für Informatik Effiziente Algorithmen und Komplexitätstheorie Algorithms for Regression and Classification Robust Regression and Genetic Association Studies Robin Nunkesser Fakultät für Informatik

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr