3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

Größe: px
Ab Seite anzeigen:

Download "3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen"

Transkript

1 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die uns einen tiefeen Einblick in die Stuktu de Lösungen geben. Im esten Teil de Volesung weden wi uns mit statischen Poblemen beschäftigen, so dass wi uns zunächst nicht mit dem Poblem de Zeitabhängigkeit de Felde befassen müssen. Die Gesetze de Elektostatik gelten, wenn Felde zeitlich konstant sind d.h. t 0 keine Stöme fließen d.h. j = 0 Dann eduzieen sich die Maxwell Gleichungen zu E = ɛ 0 und E = Elektostatische Felde symmetische Ladungsveteilungen Fü symmetische Ladungsveteilungen ρ kann man das elektische Feld diekt aus den Maxwell- Gleichungen ableiten. Beispiel: Feld eine Punktladung Aus Symmetiegünden hängt das Feld eine Punktladung nu vom Abstand ab: E() = E(). Feldkomponente in e ϑ -Richtung: z ϑ ϑ + dϑ unendlich Aus E = 0 folgt mit Hilfe des Stokes schen Theoems: Schleife E dγ = 0 = ϑ ϑ+dϑ E ϑ ()dϑ + E ( )d + ϑ+dϑ ϑ E ϑ ( ) dϑ + E ( )d Die Beitäge de Wegstücke in -Richtung heben sich gegenseitig auf. Das Wegstück im Unendlichen tägt nicht bei, da E ϑ ( ) 0 (schnelle als ). E ϑ () = 0.

2 . Feldkomponente in e ϕ -Richtung: y ϕ + dϕ ϕ analog zu ϑ-komponente: Mit E = 0 0 = ϕ+dϕ ϕ sin ϑdϕe ϕ () + unendlich ϕ E ( )d + sin ϑdϕe ϕ ( ) + ϕ+dϕ x E ( )d Auch hie heben sich die Beitäge de Wegstücke in -Richtung gegenseitig auf und de Weg im Unendlichen liefet keinen Beitag. E ϕ () = 0 3. Feldkomponente in e -Richtung: Vewende Gauss sches Gesetz: EdV = E df = ρdv = Q V V ɛ 0 V ɛ 0 E df = E () dω = 4πE () V E () = Q V q V df E fällt also im Unendlichen wie ab. Insgesamt egibt sich also das bekannte Feld de Punktladung zu E() = Q. Beispiel : Zylindesymmetie Betachten Sie einen unendlich langen, zylindischen Leite mit Radius R, dessen Ladung zu Leiteobefläche gemäß { ρ0 exp( ρ() = R d ) 0 R () 0 0 > R Auch hie benutzt man das Faaday sche Gesetz ( E = 0), um zu zeigen, dass E ϕ = 0 = E z. Die Radialkomponente emittelt man mit Hilfe des Gauss schen Gesetzes:

3 . 0 R: Wähle konzentischen Zylinde im Innen des Leites als Gauss sches Volumen. Mantelfäche E ()df + Deckel E z()df Boden E z()df = h 0 dz π 0 dϕe () = 0 d h 0 dz π 0 dϕρ 0 exp( R d ) z R E ()πh = πhρ 0 d exp( R d ) [ ( d) exp( d ) + ] E () = ρ 0d exp( R d ) [ ( d) exp( d ) + ]. > R Weg fü E ϕ h Weg fü Ez Obeflächenintegal wie unte. Ladung esteckt sich nu bis = R E ()πh = πhρ 0 d exp( R d ) [ (R d) exp( R d ) + ] E () = ρ 0d exp( R d ) [ (R d) exp( R d ) + ] ρ () E () /R ρ() E ()

4 3. Elektostatisches Potential In Analogie zu mechanischen Abeit ( F s) definiet man das elektostatische Potential an einem Punkt (elativ zum Potential an einem Refeenzpunkt O) duch: φ() = O E dl Ist das eine nützliche Definition? Ja: E = 0 ( E) df = 0 any open suface S E df = 0 S Fü jeden Weg: E dl ist unabhängig vom Weg. O (Beweis: Wähle zwei unteschiedliche Wege von O nach. Man kombiniet sie zu einem geschlossenen Weg, indem man von nach O via Weg II zuückkeht. Dann: I E dl + II E d( l) = 0, i.e. I E dl = II E dl.) Andeeseits: φ(b) φ(a) = b = a b a φ dl E dl E = φ Das Potential genügt dem Supepositionspinzip. Beachte: Wi haben die Infomation, die in den dei Vektokomponenten von E in eine einzelnen skalaen Göße zusammengefaßt. Das entspicht natülich vollkommen de Aussage des Helmholtz-Theoems: Die Rotationsfeiheit von E zieht nach dem Helmholtz-Theoem die Dastellung des elektischen Feldes als nach sich. E = U Rolle des Refeenzpunkts: Nomaleweise wählt man O außehalb de Ladungsveteilung, d.h., im Allgemeinen ist das Unendliche dafü gut geeignet, da man fodet, daß φ( ) = 0 (siehe Helmholtz Theoem). Einheit des elektostatischen Potentials: [φ] = V = J/C. 3.. Laplace- und Poisson-Gleichung Aus de Kombination von Gauss schem Gesetz E = ɛ 0 ρ

5 und aus E = φ egibt sich als Bestimmungsgleichung fü das elektostatische Potential die sog. Poisson-Gleichung, φ = ρ. ɛ 0 Bei Abwesenheit von Ladungen (ρ = 0) geht die Poisson-Gleichung in die Laplace-Gleichung übe. 3.. Beechnung des Elektostatischen Potentials Zu Beechnung des elektostatischen Potentials stehen uns dei veschiedene Methoden zu Vefügung: a) φ() = O E dγ bei bekanntem Feld E. b) Lösung de Poisson-Gleichung c) Auswetung des Helmholtz-Integals. Im folgenden weden Beispiele fü diese Lösungsmethoden gegeben. Beechnung des Potentials eine Punktladung bei bekanntem elektischem Feld Wi haben gezeigt, daß das Feld eine Punktladung im Koodinatenuspung duch gegeben ist. Dann ist das Potential diese Punktladung duch φ() φ(o) = E = e O e dγ gegeben. Wählt man als Refeenzpunkt einen Punkt im Unendlichen, de mit duch einen Weg in -Richtung vebunden ist, so findet man das Potential de Punktladung als φ() = d =. Beechnung des Potentials duch diekte Lösung de Poisson-Gleichung Beispiel: Potential de homogen geladenen Kugel Aus de Symmetie de Ladungsveteilung folgt, daß das Potential de homogen geladenen Kugel nu vom Abstand vom Kugelmittelpunkt abhängt. In Kugelkoodinaten lautet die Poisson-Gleichung: φ() = d d ( d d ) φ() = ɛ 0 ρ(). Diese Diffeentialgleichung kann fü die Beeiche < R und > R getennt integiet weden: > R: ( φ ) = 0 φ() = C + C < R: ( φ ) = ρ 0 φ() = ρ 0 C 3 ɛ 0 6ɛ 0 + C 4 Im Unendlichen soll das Potential veschwinden C = 0.

6 De Tem C3 entspicht dem Potential eine Punktladung am Ot = 0, da = 4πδ(). Da die Ladungsveteilung keine solche Punktladung enthält, muss C 3 = 0 gelten. (Diese spuiose Lösung entstand duch Multiplikation beide Seiten de Poisson-Gleichung mit.) Damit egibt sich { C φ() = ( > R), C 4 Q 8πɛ 0R ( < R) 3 wobei die Gesamtladung de Kugel Q = 4π/3ρ 0 R 3 ist. Die vebleibenden Integationskonstanten egeben sich aus de Anschlußbedingung an das Potential bei = R: Die Ladungsveteilung zeigt bei = R einen Spung. Dementspechend muß auch die echte Seite de Poisson-Gleichung ein solches Spungvehalten aufweisen. Wenn ( φ ) einen Spung hat, dann hat ( φ ) einen Knick. Dem entspechend sind φ und φ stetig. Das spiegelt auch die Tatsache wide, dass elektische Felde an Genzflächen ohne Obeflächenladung stetig sind. Aus de Stetigkeitsbedingung folgt: C R = C 4 Q 8πɛ 0 R, und C R = Q R. Damit egibt sich das Potential de homogen geladenen Kugel zu φ() = { Q ( ( > R) ( < R) Q R ) 3 R. Beechnung des Potentials eine homogen geladenen Kugelschale mit Hilfe des Helmholtz-Integals Die Ladungsveteilung de homogen geladenen Kugelschale ist ρ() = σ 0 δ(r ). Nach dem Helmholtz-Theoem ist das elektostatische Potential dann duch U = φ() = σ 0 δ(r )dv gegeben. Bei kugelsymmetischen Poblemen kann man die z-achse so wählen, daß auf de z-achse zu liegen kommt. Dann ist = + cos ϑ. Die ϑ-integation liefet dann π 0 sin ϑdϑ = dx + x = +. Die ϕ-integation liefet nun nu noch einen Fakto π und die δ-distibution legt den Wet von = R fest. Die Falluntescheidung fü >< R wid aufgund des Tems R efodelich. Somit egibt sich das Potential zu: { σ0r ɛ φ() = 0 ( < R) 4πσ 0 R ɛ 0 = Q. ( > R) Beachte: Das Feld diese Ladungsveteilung weist bei = R einen Spung von σ ɛ 0 auf.

7 3.3 Elektostatische Enegie 3.3. Enegie eine Anodnung von Punktladungen Enegie fü die Bewegung eines Teilchens im elektischen Feldes Kaft auf eine Ladung q in einem elektostatischen Potential: F = qe Abeit, die veichtet wid, um die Ladung von a nach b zu bingen: W = b a ( F ) dl = q b a (E) dl = q(φ(b) φ(a)) Abeit, die Ladung aus dem Unendlichen an den Ot zu bingen: W = qφ() Enegie, die in eine Anodnung von Ladungen gespeichet ist q n fom infinity n- chages Abeit, die veichtet weden muß um die n-te Ladung q n Position zu bingen: W n = q n φ( n ) aus dem Unendlichen an ihe endgültige Potential, das von den n beeits vohandenen Ladungen am Ot n ezeugt wid: φ( n ) = n q i i n i Enegie, die in dem Ensemble von n Ladungen gespeichet ist: W = n W j = j n j= j q i q j j i i= = i j q i q j i j 3.3. Enegie, die in eine kontinuielichen Ladungsveteilung gespeichet ist Beachte: W = dv dv ρ()ρ( ) Hie kann man den Beitag, de von eine Ladung in ihem eigenen Potential stammt, =, nicht ausschließen. Man nennt diesen Beitag auch Selbstenegie. De Beitag de

8 Selbstenegie zu Gesamtenegie ist venachlässigba klein, wenn die Ladungsveteilung hineichend vedünnt ist. Mit kann die elektostatische Enegie auch als geschieben weden. φ() = W = dv ρ( ) dv ρ()φ() ρ = ɛ 0 E W = ɛ 0 dv ( E)φ (Eφ) = ( E)φ + E ( φ) und φ = E W = ɛ 0 dv [ (Eφ) + E ] Benutze Gauss sches Theoem: W = ɛ 0 [ V φe df + dv E ] Wenn sich im Unendlichen keine Ladungen befinden, kann man das Integationsvolumen ins Unendliche ausdehnen. Dann gilt: W = ɛ 0 dv E. Mit einem elektischen Feld ist also stets eine Enegiedichte u = ɛ 0 E veknüpft. Diese Enegiedichte ist nicht linea in den Felden. Dahe ist die Enegiedichte zweie sich übelagende Felde nicht allein duch die Summe de individuellen Enegiedichten gegeben. Homogen geladene Kugel Das Feld de homogen geladenen Kugel ist adialsymmetisch mit E () = { Q R 3 ( < R) Q ( > R). Daaus egibt sich eine Feldenegiedichte von Q u() = 3π ɛ 0 { R 6 ( < R) 4 ( > R) Damit beinhaltet die Ladungsanodnung eine homogen geladenen Kugel eine Gesamtenegie von U = u()dv = 3 Q 5ɛ 0 R. Läßt man die Kugel bei gleichbleibende Gesamtladung zu eine Punktladung schumpfen, so ekennt man, daß die Selbstenegie eine Punktladung unendlich anwächst..

9 Klassische Elektonenadius Setzt man die elektostatische Enegie eines Elektons mit seine Ruhemasse gleich, U = m e c = 3 5ɛ 0 e R e, so egibt sich de klassische Elektonenadius zu R e = 3 5ɛ 0 e m e c cm.

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r

anziehend (wenn qq 1 2 abstoßend (wenn qq 1 2 2 Sorten Ladung: + / - nur eine: Masse, m>0 Kraft entlang Verbindungslinie wie El.-Statik Kraft 1 2 r 3. Elektomagnetische Felde 3.. Elektostatische Käfte 3... Coulombgesetz eob.: el. geladene Köpe üben Kaft aufeinande aus Anziehung Abstoßung - - - - Was ist elektische Ladung???? Usache de Kaft? Histoisch:

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Das Partnerprogramm für Vereine stellt sich vor.

Das Partnerprogramm für Vereine stellt sich vor. 2 1 1 Das Patnepgamm fü Veeine stellt sich v. Gezielt. Spüba. Gt. Obehessische Veeinsabeit hat einen hhen Stellenwet fü jedes einzelne Mitglied, nsee Gesellschaft nd ns, die Spakasse Obehessen. Seit Jahen

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

Suche nach Dunkler Materie

Suche nach Dunkler Materie Beobachtungen, Expeimente, Modelle Seminaabeit SS 00 RWTH Aachen - Stefan Höltes Beteue: Pof. C. Bege - 1 - Inhalt Vowot 1 Bestimmung de Masse von Galaxien 1.1 Rotationskuven 1. Leuchtkaft von Stenen 1.

Mehr

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik)

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik) 19. Volesung EP III Elektizität und Magnetismus 19. Magnetische Felde (Magnetostatik) Vesuche: Feldlinienbilde (B-Feld um Einzeldaht, 2 Dähte, Spule) Kaftwikung von Stömen Dehspulinstument Fadenstahloh

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen Analytische Beechnung magnetische Felde in Pemanentmagnet eegten Maschinen Vom Fachbeeich Elektotechnik de Helmut-Schmidt-Univesität Univesität de Bundesweh Hambug zu Elangung des akademischen Gades eines

Mehr

VR-Bank Mittelsachsen eg

VR-Bank Mittelsachsen eg N. 3 / Septembe 2012 Bötewitz Ostau Lommatzsch Leisnig Döbeln Hatha Waldheim Miltitz Roßwein Nossen Dittmannsdof Goßvoigtsbeg Wi fü Sie - Vebunden mit den Menschen in unsee Region Feibeg Band-Ebisdof Obebobitzsch

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife MATHEMATIK Aufgabenestellung und Bewetung von Klausuen und Püfungen fü den Eweb de Fachhochschuleife in beuflichen Bildungsgängen im Rahmen duale ode vollqualifizieende Bildungsgänge, in de Beufsobeschule

Mehr

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g

( ) ( ) ( ) 2. Bestimmung der Brennweite. Abbildungsgleichung. f b = + = + b g 3..00 Volesun - Bestimmun de Bennweite B G F F Aildunsleichun f ; f wid fest ewählt; wid so lane eändet, is Bild schaf auf Mattscheie escheint. ( ) ( ) ( ) ( ) f f. Methode ( ) ( ) f ± Die folenden Folien

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

2 Das zeitunabhängige elektromagnetische Feld

2 Das zeitunabhängige elektromagnetische Feld 2 Das zeitunabhängige elektromagnetische Feld Bedingungen, unter welchen E und B-Felder zeitunabhängig folgen aus Maxwellgleichungen ε dive = ε dive = divb = divb = rote = Ḃ rote = µ rotb = j + εė µ rotb

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011 Einige Gundlagen de magnetischen Nahfeld-Kopplung Volesung Michael Gebhat TU Gaz, Sommesemeste Inhalt Übeblick Methode des Magnetischen Moments Biot-Savat Gesetz zu Bestimmung de H-Feldstäke Koppelsystem:

Mehr

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION.

ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. ERDGASENTSPANNUNGSANLAGE OBERBUCHSITEN UT WISI ENIM AD MINIM VENIAM,QUIS NOSTRUD EXERCI TATION. DIE GASVERBUND MITTELLAND AG Die Gasvebund Mittelland AG (GVM) ist mit und 33 Pozent des nationalen Edgasabsatzes

Mehr

6.2 Erzeugung von elektromagnetischen Wellen

6.2 Erzeugung von elektromagnetischen Wellen 6.2. ERZEUGUNG VON ELEKTROMAGNETISCHEN WELLEN 29 6.2 Ezeugung von elektomagnetischen Wellen In diesem Abschnitt soll die Entstehung und die Emission von elektomagnetischen Wellen beschieben weden. Die

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

4. Chemische Bindung

4. Chemische Bindung 4. Chemische Bindung 4... Vlenzindungs-Modell: Oktettegel Die Bildung enegetisch egünstigte Elektonenkonfigutionen (die esondes stil sind) wid ngestet Eine esondes stile Konfigution ist die Edelgskonfigution

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen

Solare Brennstoffe Erzeugung, Nutzungsverfahren und Umwandlungseffizienzen Solae Bennstoffe Ezeugung, Nutzungsvefahen und Umwandlungseffizienzen Die dezeitige Enegievesogung insbesondee fü mobile Anwendungen basiet zu einem Goßteil auf de Nutzung fossile Bennstoffe. De hohe Vebauch

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Relativistische Sterne

Relativistische Sterne Relativistische Stene von Mike Geog Benhadt 18. Oktobe 2010 Im Folgenden wid zunächst ein kuze Abiss de Allgemeinen Relativitätstheoie gegeben und diese auf komakte Stene, d.h. Neutonenstene und Weiße

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln WEKA FACHMEDIEN GmbH Technische Spezifikationen fü die Anliefeung von Online-Webemitteln Jonathan Deutekom, 01.07.2012 Webefomen Webefom Beite x Höhe Fullsize Banne 468 x 60 Leadeboad 728 x 90 Rectangle

Mehr

Wavelet-Analysen ozeanischer Drehimpulszeitreihen

Wavelet-Analysen ozeanischer Drehimpulszeitreihen ISSN 1610-0956 Publication: Scientific Technical Repot No.: STR 03/08 Autho: R. Hengst Wavelet-Analysen ozeanische Dehimpulszeiteihen Rico Hengst GeoFoschungsZentum Potsdam, Depatment 1: Geodäsie und Fenekundung,

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik Zum Leveage Effekt Text 01-2013 Ausgangssituation und Ansatzpunkte de Kapitalstuktupolitik De finanzwitschaftliche Themenbeeich de Kapitalstuktupolitik fokussiet die ökonomische, i.e. finanzwitschaftliche

Mehr

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz 4.4 Gegeninduktion Pimä- Sekundä-keis Up U S Vesuche: Tansfomato, Schmelzen von Daht und Metall, Hönetblitz 1 4.5 Zusammenfassung: Elekto-/Magnetodynamik langsam veändeliche Felde a. Elektostatik: (Vakuum)

Mehr

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung

P. Knoll, Vorlesung: Raman- und Infrarot-Spektroskopie, 2std. SS 2004 Seite 1. VORLESUNG und UE. P. Knoll. Vorbesprechung P. Knoll, Volesung: Raman- und Infaot-Spektoskopie, std. SS 4 Seite 1 VORLESUNG und UE P. Knoll RAMAN- UND INFRAROT-SPEKTROSKOPIE LVA: 437783 (VO) std., 4377 (UE) std. Vobespechung Ot: HS411, Univesität

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte.

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte. Auslegung von Mikowellen-Themopozess-Anlagen unte Nutzung von hochfequenz-technischen Pinzipien - am Beispiel eines Entbindeungsofens fü keamische Günköpe Von de Fakultät fü Maschinenbau, Vefahens- und

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Grundlagen der Berichterstattung:

Grundlagen der Berichterstattung: Gundlagen de Beichtestattung: Fima: F. Hoffmann-La Roche AG o Inklusive TAVERO AG (100 % Roche Tochte: Tagesvepflegung und weitee Sevices) Aeal: Roche-Aeal in Basel (Genzachestasse) o Fü einige de Daten

Mehr

Felder ausgewählter Konfigurationen

Felder ausgewählter Konfigurationen Felde ausgewählte Konfiguationen Anwendung von Supepositionspinzip Gauß sche Satz Feldbeechung aus Potenzial. Feld und Potenzial innehalb und außehalb eine Vollkugel. Feld und Potenzial innehalb und außehalb

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

Magnetische Levitation

Magnetische Levitation Deutsche Physikalische Gesellschaft (Hsg.): Didaktik de Physik. Augsbug 3. Belin: Lehmanns 3; ISBN 3-93647-11-9 Magnetische Levitation Bend Schalau Volkhad Nodmeie H. Joachim Schlichting Westfälische Wilhelms-Univesität

Mehr