HM I Tutorium 2. Lucas Kunz. 3. November 2016

Größe: px
Ab Seite anzeigen:

Download "HM I Tutorium 2. Lucas Kunz. 3. November 2016"

Transkript

1 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie Reelle Zahlen Intervalle Beträge Natürliche Zahlen Beweise durch vollständige Induktion Theorie über das Tutorium hinaus Axiomatische Konstruktion von R Ganze und Rationale Zahlen Formeln und Rechenregeln Wurzeln und Exponenten Aufgaben Aufgabe

2 1 Theorie 1.1 Reelle Zahlen Bevor mit den reellen Zahlen (wie aus der Schule bekannt) in aller Ausführlichkeit gerechnet werden kann benötigt man einige Begrifflichkeiten (für die Beschreibung der axiomatischen Konstruktion von R sei auf Kapitel 2.1 dieses Dokuments verwiesen): Eine Menge heißt nach oben beschränkt, wenn γ R : x γ x M. In diesem Fall bezeichnet man γ als obere Schranke von M. Da man beliebig viele dieser Zahlen γ finden kann (sind alle Elemente von M kleiner gleich 10, dann sind sie auch kleiner gleich 11,12,13,...) ist nur die kleinste von Bedeutung. Diese kleinste obere Schranke einer Menge nennt man ihr Supremum. Liegt dieses γ innerhalb der Menge selbst, dann bezeichnet man es auch als ihr Maximum. Ganz analog wird die größte untere Schranke als Infimum und das kleinste Element von M als Minimum bezeichnet. Es gilt immer inf M sup M und entsprechend auch min M max M. Weiterhin gilt: Ist B A R und A ist nach oben/unten beschränkt, dann ist auch B nach oben/unten beschränkt und es gilt sup B sup A bzw. inf B inf A. Ist A nach oben beschränkt und γ eine obere Schranke von A, dann ist γ = sup A ɛ > 0 x A mit x > γ ɛ. Die Werte x A kommen dem Supremum also beliebig nahe, allen anderen oberen jedoch Schranken nicht. Ist A nach unten beschränkt und γ eine untere Schranke von A, dann ist γ = inf A ɛ > 0 x A mit x < γ + ɛ. Die Werte x A kommen dem Infimum also beliebig nahe, allen anderen unteren jedoch Schranken nicht. 1.2 Intervalle Nach der Einführung dieser Begriffe mangelt es zur Rechnung nur noch an Schreibweisen und einer speziellen Operation. Aus den erstgenannten ist insbesondere eine einfache Methode relevant, Teilmengen aus R zu definieren, sogenannte Intervalle. Die Beschreibung derer verläuft (wie bereits aus der Schule bekannt) folgendermaßen: Geschlossenes Intervall: [a, b] := {x R : a x x b}. Rechtsseitig offenes Intervall: [a, b) := {x R : a x x < b}. Linksseitig offenes Intervall: (a, b] := {x R : a < x x b}. Offenes Intervall: (a, b) := {x R : a < x x < b}. Ist die eine Seite eines Intervalls offen (bis ), dann schreibt man dies als [a, ) := {x R : a x}. Analog verläuft dies mit (, b] := {x R : x b}. 1.3 Beträge Die erwähnte wichtige Operation ist der Betrag einer Zahl. Für ein beliebiges x R ist dieser bekanntlich definiert als { x falls 0 x x = x falls x < 0. (1.1) Sind a, b, c R wobei 0 c, dann gehorcht diese Operation den folgenden Regeln: 2

3 a 0, a = 0 a = 0 a b = a b a a, a a a c c a c Dreiecksungleichung: a + b a + b umgekehrte Dreiecksungleichung: a b a b 1.4 Natürliche Zahlen Eine Menge A wird als Induktionsmenge bezeichnet, wenn 1. 1 A und 2. aus n A immer folgt, dass n + 1 A. Sei a := {A R : A ist eine Induktionsmenge} die Menge aller solchen Induktionsmengen. Beispiele für solche Mengen sind Intervalle wie [1, ) oder ganz R. Man definiert die natürlichen Zahlen wie folgt: N := A a A := {B a : B A A a}. (1.2) Die natürlichen Zahlen sind also der Schnitt aller Induktionsmengen, also das, was in jeder dieser Mengen A enthalten ist. Dadurch sind sie selbst auch die kleinstmögliche Induktionsmenge. Aufgrund der zweiten Anforderung an Induktionsmengen ist N nicht nach oben beschränkt bzw. die Folge 1 mit n N kommt der 0 beliebig nahe. n 1.5 Beweise durch vollständige Induktion Es sei A(n) eine Aussageform in Abhängigkeit der Variablen n mit den Eigenschaften, dass einerseits A(1) wahr ist und andererseits aus der Wahrheit von A(n) immer folgt, dass auch A(n + 1) wahr ist. In diesem Fall ist A wahr für alle n N. Um dies zu zeigen muss man also nur das Anfangselement A(1) betrachten (Induktionsanfang) und auf diese Aussage auf Wahrheit überprüfen sowie für ein beliebiges (allgemeines) wahres A(n) (z. B. jenes für n = 1, Induktionsvoraussetzung) zeigen, dass daraus auch folgt, dass A(n+1) wahr ist (Induktionsschluss oder -schritt). Sehr einfach ist die Anwendung dieser Beweisart bei rekursiv definierten Rechenvorschriften wie beispielsweise der Fakultät. 2 Theorie über das Tutorium hinaus 2.1 Axiomatische Konstruktion von R Die reellen Zahlen R sind die Grundmenge der Analysis. Auf dieser Menge sind zwei Verknüpfungen Plus + : R R R und Mal : R R R definiert, die jeweils zwei Elemente aus R auf ein drittes abbilden, das ebenfalls in R liegt. Weiterhin nehmen wir insgesamt 15 Axiome als gegeben an: 3

4 1. Assoziativgesetz der Addition: a, b, c R : (a + b) + c = a + (b + c). 2. Neutrales Element der Addition: 0 R a R : a + 0 = a. 3. Inverses Element der Addition: a R a R : a + ( a) = Kommutativgesetz der Addition: a, b R : a + b = b + a. 5. Assoziativgesetz der Multiplikation: a, b, c R : (a b) c = a (b c). 6. Neutrales Element der Multiplikation: 1 R a R : a 1 = a. 7. Inverses Element der Multiplikation: a R \ {0} a 1 R : a a 1 = Kommutativgesetz der Multiplikation: a, b R : a b = b a. 9. Distributivgesetz: a (b + c) = a b + a c. Diese neun Axiome bezeichnet man als die Körperaxiome. Diese werden nicht nur von R, sondern von jedem mathematischen Körper erfüllt. Über diese hinaus gelten für R aber auch die sogenannten Anordnungsaxiome. Diese beziehen sich auf die auf R definierte Ordnungsrelation : 10. a, b R : a b oder b a. 11. Aus a b und b a folgt stets a = b. 12. Aus a b und b c folgt stets a c. 13. Aus a b folgt a + c b + c c R. 14. Aus a b und a c folgt a c b c. Das letzte der bereits erwähnten 15 Axiome ist das sogenannte Vollständigkeitsaxiom. Dieses lautet folgendermaßen: 15. Ist M R und ist M nach oben beschränkt, so existiert das Supremum sup M. Analog existiert für nach unten beschränkte Mengen M das Infimum inf M. 2.2 Ganze und Rationale Zahlen Auf Basis der eben eingeführten natürlichen Zahlen lassen sich auch einige weitere häufig verwendete Zahlenmengen definieren: Natürliche Zahlen mit 0: N 0 := N {0}. Ganze Zahlen: Z := N 0 { n : n N}. Rationale Zahlen: Q := { p q : p Z, q N}. Da Z nicht kontinuierlich ist (man findet zwischen zwei beliebigen Zahlen aus Z nicht unendlich viele weiter Zahlen in Z) existiert bei Beschränkung nicht nur ein Supremum/Infimum, sondern auch immer ein Maximum/Minimum. Weiterhin existieren zwischen jeweils zwei Zahlen aus Z immer unendlich viele Zahlen in R und in Q. 4

5 2.3 Formeln und Rechenregeln Es seien a, b R und n N, dann: ( n ) a n+1 b n+1 = (a b) a n k b k. (2.1) Mit n = 1 folgt daraus die aus der Schule bekannte dritte binomische Formel. Setzt man Hingegen a = 1 und benennt b = q 1, dann ergibt sich eine Möglichkeit zur Auswertung der geometrischen Reihe: n q k = 1 qn+1 1 q. (2.2) Die anderen beiden bekannten binomischen Formeln ergeben sich als Spezialfälle des binomischen Satzes für n = 2: n ( ) n (a + b) n = a n k b k. (2.3) k Mit a = b = 1 erhält man, dass die Summe der Binomialkoeffizienten 2 n ergibt, also n ( ) n = 2 n. (2.4) k Ist x R und x 1 sowie n N, dann gilt weiterhin die Bernoulli sche Ungleichung: 2.4 Wurzeln und Exponenten Der Exponent a n mit a R und n N ist definiert als (1 + x) n 1 + n x. (2.5) a n := a } a {{... a}. (2.6) n Faktoren Die Umkehrung dessen ist die n-wurzel. Ist b = a n, dann ist n b := a. Diese Wurzel ist zu jeder positiven Zahl existent und eindeutig bestimmt. Als Wurzel wird im reellen immer nur ein positiver Wert bezeichnet. Man definiert n x 0 und damit x2 := 2 x 2 := x. (2.7) Achtung: Die Lösungen quadratischer Gleichungen sind dennoch auch negative Zahlen. Ist z.b. x 2 1 = 0, dann ist x = ± 1 = ±1. Es ist jedoch 4 = 2 und 4 2. Im Falle rationaler Zahlen r = p Q ist der Exponent folgendermaßen definiert: q a r = a p q = ( q a ) p. (2.8) Wie genau der Bruch p erweitert ist spielt dabei für das Ergebnis keine Rolle, z. B. ergibt q 5 das selbe wie 1. Ebenso ist es egal, ob man ( q a) p oder q (a 10 2 p ) berechnet. Was bei Exponenten weiterhin beachtet werden sollte ist ihr Grenzwertverhalten und ihr Einfluss 5

6 auf die Ordnung ( ). Ist a > 1, dann strebt a n für n gegen. Ist hingegen a < 1, dann gilt a n 0 für n. Aus diesem Grund konvergiert die unendliche Reihe (n = ) in Gleichung 2.2 nur für q < 1. Unabhängig von Grenzwertprozessen gilt aber für x, y R mit x y für alle n N, dass auch x n y n. Fürderhin existiert auch für beliebige n N eine Ungleichung zwischen geometrischem und arithmetischem Mittel: n a1 a 2... a n a 1 + a a n. (2.9) n Die zweite dieser Methoden der Mittelwertbildung entspricht der aus Schulen bekannten. 3 Aufgaben Die Musterlösungen der Tutoriumsaufgaben 8, 10 und 12 finden sich nach Ablauf der zugehörigen Semesterwoche auf der Internetseite der Vorlesung unter kit.edu/iana1/lehre/hm1phys2016w/. Es gibt aber auch auf diesem Blatt einige alternative Wege, welche verständlicher oder zeitsparender sind: 3.1 Aufgabe 8 Natürlich wurden Ableitungen und Grenzwerte in der Vorlesung noch nicht eingeführt, aber sobald dies geschehen ist sind Infima und Suprema mit diesen wesentlich bequemer zu berechnen. bereits aus der Schule bekannt ist, dass man Extrema einer Funktion bestimmt, indem man die Nullstellen der Ableitung sucht. Im gegebenen Fall hätte man also die Nullstellen der Ableitungen von x + 1 bzw. von x2 suchen müssen. Im letzteren Falle x 1+x 2 liegen diese einmal bei x = 0 und einmal asymptotisch bei x. Für diesen Fall ist also neben der Differentialrechnung der bereits erwähnte Grenzwert vonnöten: lim x 1 ( x + 1 x ) x 2 x 2 = 2 = inf A ; lim = 0 = inf B ; lim = 1 = sup B. x x2 x 1 + x2 Damit man aber sicher sein kann, dass z. B. das Supremum von B im Grenzfall x auftritt müsste man weiterhin zeigen, dass die Funktion x2 (die B definiert) monoton 1+x 2 wachsend ist im Intervall [0, ). Dies wiederum setzt natürlich auch die Differentialrechnung voraus, weil Monotonie durch das Vorzeichen der ersten Ableitung bedingt ist. Da diese Rechenvorschriften allerdings bislang nicht in der Vorlesung eingeführt wurden (auch wenn sie natürlich aus der Schule bekannt sind) finden sie trotz des geringeren Rechenaufwands in der Musterlösung seitens der Übungsleitung keine Anwendung. 6

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018 HM I Tutorium 2 Lucas Kunz 31. Oktober 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper und Gruppen.............................. 2 1.2 Konstruktion der reellen Zahlen........................ 3 1.3 Natürliche

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

2.7. TEILMENGEN VON R 51

2.7. TEILMENGEN VON R 51 2.7. TEILMENGEN VON R 51 für M. Denn zu x M, x > K, gibt es ein b Q mit b (K, x), insbesondere b > K. Dann ist aber K nicht die reelle Zahl, die dem Dedekindschen Schnitt der Mengen A, B entspricht. Ist

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

HM I Tutorium 5. Lucas Kunz. 24. November 2016

HM I Tutorium 5. Lucas Kunz. 24. November 2016 HM I Tutorium 5 Lucas Kunz 24. November 206 Inhaltsverzeichnis Theorie 2. Definition einer Reihe.............................. 2.2 Wichtige Reihen................................. 2.3 Limites inferior

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie Höhere Mathematik I G. Herzog, Ch. Schmoeger Wintersemester 208/9 Karlsruher Institut für Technologie Inhaltsverzeichnis Reelle Zahlen 2 2 Folgen und Konvergenz 2 3 Unendliche Reihen 3 4 Potenzreihen 45

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

HM I Tutorium 5. Lucas Kunz. 21. November 2018

HM I Tutorium 5. Lucas Kunz. 21. November 2018 HM I Tutorium 5 Lucas Kunz 2. November 208 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Wichtige Reihen................................. 2.3 Absolute Konvergenz..............................

Mehr

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle...

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle... Goethe-Oberschule Berlin (Gymnasium) A. Mentzendorff Geändert: Januar 010 Zahlenbereiche Inhaltsverzeichnis 1 Die reellen Zahlen als angeordneter Körper 1.1 Körperaxiome....................................

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

HM I Tutorien 6 und 7

HM I Tutorien 6 und 7 HM I Tutorien 6 und 7 Lucas Kunz. Dezember 207 und 8. Dezember 207 Inhaltsverzeichnis Vorwort 2 2 Theorie 2 2. Definition einer Reihe.............................. 2 2.2 Absolute Konvergenz..............................

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

1 Grundlagen. 1.1 Elementare Logik

1 Grundlagen. 1.1 Elementare Logik Höhere Mathematik 7 1 Grundlagen 1.1 Elementare Logik Eine (mathematische) Aussage ist ein Satz, der entweder wahr oder falsch ist (keine Aussage ist sowohl wahr als auch falsch). Der Wahrheitswert v(a)

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Übung am..008 Übung 4 Einleitung Zuerst soll auf den aktuellen Übungsblatt und Stoff der Vorlesung eingegangen

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Analysis I - Reelle Zahlen

Analysis I - Reelle Zahlen November 17, 2008 Algebraische Grundbegriffe und Körper Definition Sei M eine Menge. Jede Funktion f : M M M heißt eine (binäre, innere) Verknüpfung oder eine Operation auf M. Wir schreiben für (a, b)

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

$Id: reell.tex,v /11/03 12:36:49 hk Exp $

$Id: reell.tex,v /11/03 12:36:49 hk Exp $ $Id: reell.tex,v 1.48 2017/11/03 12:36:49 hk Exp $ 1 Die reellen Zahlen 1.3 Die Anordnung der reellen Zahlen Nachdem wir im vorigen Abschnitt alle zunächst für uns relevanten Grundlagen behandelt haben,

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

VO Mathematik I für Studierende der Wirtschaftswissenschaften

VO Mathematik I für Studierende der Wirtschaftswissenschaften VO Mathematik I für Studierende der Wirtschaftswissenschaften ao. Univ.-Prof. Mag. Dr. Andreas J. Novák December 3, 015 1 Einleitung 1.1 Mathematische Schreibweisen: für alle es existiert ein/eine n n

Mehr

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten. 11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung Kapitelgliederung 2. Reelle Zahlen 2.1 Der Körper der reellen Zahlen 2.2 Anordnungsaxiome 2.3 Betrag und Dreiecksungleichungen 2.4 Darstellung von Zahlen im Rechner 2.5 Intervalle Buchholz / Rudolph: MafI

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 11 Aussagen, Beweise, vollständige Induktion 15 Man kann die Methode der vollständigen Induktion auch auf vielfältige Weise einsetzen, um geometrische Aussagen zu beweisen Hier ein prominentes Beispiel

Mehr

LS Informatik 4 & Reelle Zahlen. Buchholz / Rudolph: MafI 2 2

LS Informatik 4 & Reelle Zahlen. Buchholz / Rudolph: MafI 2 2 2. Reelle Zahlen Buchholz / Rudolph: MafI 2 2 Kapitelgliederung 2.1 Der Körper der reellen Zahlen 2.2 Anordnungsaxiome 2.3 Betrag und Dreiecksungleichungen 2.4 Darstellung von Zahlen im Rechner 2.5 Intervalle

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 013/1 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Grundlagen der Analysis

Grundlagen der Analysis Grundlagen der Analysis Skript zur Vorlesung Sommersemester 200 von Dr. Dominik Faas Institut für Mathematik Fachbereich 7: Natur- und Umweltwissenschaften Universität Koblenz-Landau Literatur zur Vorlesung

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Skript zur Vorlesung Analysis I

Skript zur Vorlesung Analysis I Skript zur Vorlesung Analysis I Sommersemester 2010 Robert Haller-Dintelmann 30. Juli 2010 Inhaltsverzeichnis I. Zahlen und Mengen 1 1. Grundlegende Begriffe 3 2. Die reellen Zahlen 11 3. Die natürlichen

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine

Mehr