Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK"

Transkript

1 Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

2 Shannon Formeln Shannon Formeln sind aussagenlogische Formeln, die aufgebaut sind aus dem dreistelligen Operator sh den Konstanten und Aussagevariablen P,..., P n,... Der Wahrheitswerteverlauf von sh wird gegeben durch { P falls P sh(p, P, P ) = = P falls P = oder in Tabellenform: P P P sh(p, P, P ) Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

3 Eigenschaften des sh-operators sh(p, P, P ) ( P P ) (P P ) sh(, P, P ) P sh(, P, P ) P sh(p,, ) P sh(p,, ) P sh(p, P, P ) P sh(sh(p, P, P ), P 4, P 5 ) sh(p, sh(p, P 4, P 5 ), sh(p, P 4, P 5 )) A sh(p, A P=, A P= ) sh(a, B, C) sh(a, B, C) Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

4 Normierte Shannon Formeln Wir fixieren eine Ordnung auf der Menge der Aussagevariablen, etwa die durch die Ordnung der Indizes gegebene. Definition Die Konstanten, sind normierte sh-formeln. sh(p i, A, B) ist eine normierte sh-formel wenn A und B normierte sh-formeln sind und für jede in A oder B vorkommende Aussagenvariable P j gilt j > i. Theorem Zu jeder aussagenlogischen Formel A gibt es eine äquivalente normierte sh-formel B. Prof. Dr. Bernhard Beckert Formale Systeme WS / 4/8

5 Shannon Graphen Definition Ein sh-graph ist ein gerichteter, binärer, zusammenhängender Graph. Jedem nichtterminalen Knoten v ist eine natürliche Zahl index(v) zugeordnet. Von jedem nichtterminalen Knoten v gehen zwei Kanten aus. Eine davon ist mit, die andere mit gekennzeichnet. Jedem terminalen Knoten v ist eine der Zahlen oder zugeordnet, bezeichnet mit wert(v). Ist der nichtterminale Knoten w ein unmittelbarer Nachfolger von v, dann gilt index(v) < index(w). Es gibt genau einen Wurzelknoten. Prof. Dr. Bernhard Beckert Formale Systeme WS / 5/8

6 Beispiele von Shannon Graphen i i Prof. Dr. Bernhard Beckert Formale Systeme WS / 6/8

7 Shannon Graphen vs normierte Shannon Formeln Es gibt eine offensichtliche Korrespondenz zwischen Shannon Graphen und normierten Shannon Formeln: n-te Variable entspricht Knoten mit Index n Von jetzt an betrachten wir nur noch Shannon Graphen. Prof. Dr. Bernhard Beckert Formale Systeme WS / 7/8

8 Shannon Graphen und Boolesche Funktionen Jedem sh-graphen G kann man eine m-stellige Boolesche Funktion f G zuordnen, wobei m die Anzahl der in G vorkommenden verschiedenen Indizes i,..., i m ist. Wir fassen f G als eine Funktion mit den Eingabevariabeln P i,..., P im auf und bestimmen den Funktionswert f G (P i,..., P im ), indem wir an der Wurzel von G beginnend einen Pfad durch G wählen. Am Knoten v folgen wir der Kante, wenn die Eingabevariable P index(v) den Wert hat, sonst der Kante. Der Wert des terminalen Knotens ist dann der gesuchte Funktionswert. Prof. Dr. Bernhard Beckert Formale Systeme WS / 8/8

9 Shannongraph als Boolesche Funktion G: f G (,, ) =? Prof. Dr. Bernhard Beckert Formale Systeme WS / 9/8

10 Shannongraph als Boolesche Funktion G: f G (,, ) =? Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

11 Reduzierte Shannon Graphen Definition Ein sh-graph heißt reduziert, wenn es keine zwei Knoten v und w (v w) gibt, so daß der in v verwurzelte Teilgraph G v mit dem in w verwurzelten Teilgraph G w isomorph ist. es keinen Knoten v gibt, so dass die beiden von v ausgehenden Kanten zum selben Nachfolgerknoten führen. Ein reduzierter Shannongraph heißt auch ordered binary decision diagram (OBDD). Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

12 Ein Beispiel Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

13 Doppelte Kanten Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

14 Elimination doppelter Kanten Prof. Dr. Bernhard Beckert Formale Systeme WS / 4/8

15 Isomorphe Teilgraphen Prof. Dr. Bernhard Beckert Formale Systeme WS / 5/8

16 Isomorphe Teilgraphen Prof. Dr. Bernhard Beckert Formale Systeme WS / 6/8

17 Reduktion isomorpher Teilgraphen Prof. Dr. Bernhard Beckert Formale Systeme WS / 7/8

18 Weitere Beispiele 4 Prof. Dr. Bernhard Beckert Formale Systeme WS / 8/8

19 Isomorphie von Shannon Graphen Definition Seien zwei sh-graphen H, G gegeben. Ihre Knotenmengen seien V, V. H, G heißen zueinander isomorph (H = G) genau dann, wenn es eine bijektive Abbildung π von V nach V gibt mit: index(k) = index(π(k)) für jeden Nichtterminalknoten k V wert(k) = wert(π(k)) für jeden Terminalknoten k V Für jeden Nichtterminalknoten k V, dessen -Kante/-Kante zu dem Knoten k /k führt, gilt: die -Kante von π(k) führt zu π(k ), die -Kante zu π(k ). Prof. Dr. Bernhard Beckert Formale Systeme WS / 9/8

20 Einfachstes Beipiel isomorpher Shannon Graphen Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

21 Komplexeres Beipiel isomorpher Shannon Graphen Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

22 Erste Reduktion Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

23 Zweite Reduktion Prof. Dr. Bernhard Beckert Formale Systeme WS / /8

24 Letzte Reduktion Prof. Dr. Bernhard Beckert Formale Systeme WS / 4/8

25 Ein Kriterium für Reduziertheit Theorem Sei G ein Shannongraph, so daß für jedes Paar von Knoten v, w gilt wenn dann die -Nachfolger von v und w gleich sind und die -Nachfolger von v und w gleich sind v = w Dann erfüllt G die Bedingung () aus der Definition reduzierter Shannongraphen, d.h. für jedes Paar x, y von Knoten gilt wenn dann G x isomorph zu G y ist x = y Prof. Dr. Bernhard Beckert Formale Systeme WS / 5/8

26 Eindeutigkeit reduzierter Shannon Graphen Theorem Sind G, H reduzierte sh-graphen zu Σ = {P,..., P n }, dann gilt f G = f H G = H. (Zu jeder Booleschen Funktion f gibt es bis auf Isomorphie genau einen reduzierten sh-graphen H mit f = f H ). Prof. Dr. Bernhard Beckert Formale Systeme WS / 6/8

27 Abhängigkeit von der Variablenordnung Zwei BDDs für (x y) (x y ) x y y x y y Ordnung: x < y < x < y x x x y y y y y y Ordnung: x < x < y < y Prof. Dr. Bernhard Beckert Formale Systeme WS / 7/8

28 Eine harte Nuß [BDD für Multiplikationen] X enthalte k Variablen {x,..., x k, y,..., y k } x = x... x k und y = y... y k bezeichnen k-stellige Binärzahlen. für i < k bezeichne Mult i die boolsche Funktion, die das i-te Bit des Produktes von x mit y beschreibt. Theorem Für jede Ordnung < der Variablen in X gibt es einen Index i < k, so dass der BDD B Multi,< mindestens k/8 Knoten besitzt. Prof. Dr. Bernhard Beckert Formale Systeme WS / 8/8

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme Kapitel 4: Binäre Entscheidungsdiagramme (BDDs) BDDs (binary decision diagrams) wurden aus binären Entscheidungsbäumen für boole sche Funktionen entwickelt. Binärer Entscheidungsbaum (binary decision tree:

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Hauptseminar Model Checking Binary Decision Diagrams Kristofer Treutwein 23.4.22 Grundlagen Normalformen Als kanonische Darstellungsform für boolesche Terme gibt es verschiedene Normalformen, u.a. die

Mehr

Grundlagen digitaler Systeme WS12

Grundlagen digitaler Systeme WS12 Grundlagen digitaler Systeme WS12 Binary Decision Diagrams Johann Blieberger 183.580, VU 2.0 Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email:

Mehr

Entscheidungsverfahren für die Software-Verifikation. 4 - BDDs

Entscheidungsverfahren für die Software-Verifikation. 4 - BDDs Entscheidungsverfahren für die Software-Verifikation 4 - BDDs Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen) Boolesche

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

4. OBDDs und Modellüberprüfung

4. OBDDs und Modellüberprüfung 4. OBDDs und Modellüberprüfung OBDD Ordered Binary Decision Diagrams Geordnete binäre Entscheidungsdiagramme Binäres Entscheidungsdiagramm: in der einfachsten Form ein binärer Entscheidungsbaum, in dem

Mehr

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1

Formale Systeme, WS 2010/2011 Lösungen zum Übungsblatt 1 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. r. B. Beckert Thorsten Bormer Formale Systeme, WS 2/2 Lösungen zum Übungsblatt ieses Blatt wurde in der Übung am 29..2 besprochen.

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. Übung: Reinhard Hemmerling Büsgenweg 4, Raum 89 (1. Stock) rhemmer<at>gwdg.de

Formale Systeme. Übung: Reinhard Hemmerling Büsgenweg 4, Raum 89 (1. Stock) rhemmer<at>gwdg.de Formale Systeme Vorlesung: Winfried Kurth Lehrstuhl Computergrafik und ökologische Informatik Büsgenweg 4, Raum 90 (1. Stock) 39-9715 wkinformatik.uni-goettingen.de http://www.uni-goettingen.de/de/72781.html

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Präsentation BDDs Binary Decision Diagrams

Präsentation BDDs Binary Decision Diagrams Präsentation Binary Decision Diagrams Günther Eder Andreas Weichhart 28.01.2011 1 / 19 Überblick 1/2 Überblick Boolean Expressions Nachteil KNF/DNF Shannon Expansion INF 1. 2. Boolean Expressions 3. Nachteil

Mehr

Darstellung Boolescher Funktionen

Darstellung Boolescher Funktionen Darstellung Boolescher Funktionen Einführung in die Technische Informatik Univ.-Prof. Dr. Paul Molitor Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Nicht-Kanonizität von AIGs Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.6

Nicht-Kanonizität von AIGs Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.6 Nicht-Kanonizität von AIGs BDDs Binar Decision Diagrams BDDs 2 neue dreistellige Basis-Operation ITE (i-then-else): Bedingung ist immer eine Variable ( ) ( ) gehen zurück au Shannon (deshalb auch Shannon-Graphs)

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Binary Decision Diagrams (Einführung)

Binary Decision Diagrams (Einführung) Binary Decision Diagrams (Einführung) Binary Decision Diagrams (BDDs) sind bestimmte Graphen, die als Datenstruktur für die kompakte Darstellung von booleschen Funktionen benutzt werden. BDDs wurden von

Mehr

Binary Decision Diagrams (BDDs) 1

Binary Decision Diagrams (BDDs) 1 Handout 22.11.2011 Binary Decision Diagrams (BDDs) 1 Übersicht Es gibt viele verschiedene Möglichkeiten um Boole sche Funktionen zu repräsentieren (Boole sche Formeln, Minterme, Wahrheitstabellen, ). Manche

Mehr

Binary Decision Diagrams

Binary Decision Diagrams Begleitmaterial zur Vorlesung Binary Decision Diagrams Wintersemester 2006/2007 Detlef Sieling Universität Dortmund FB Informatik, LS 2 44221 Dortmund Von diesem Begleitmaterial dürfen einzelne Ausdrucke

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Vom Vorteil der Winzigkeit

Vom Vorteil der Winzigkeit Institut für Mikroverfahrenstechnik Thermische Mikroverfahrenstechnik Vom Vorteil der Winzigkeit Wie Winzlinge beim Energie sparen helfen juergen.brandner@kit.edu, KIT University of the State of Baden-Württemberg

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Uwe Bubeck: Binary Decision Diagrams 2

Uwe Bubeck: Binary Decision Diagrams 2 Uwe Bubeck: Binary Decision Diagrams 2 Uwe Bubeck: Binary Decision Diagrams 4 Uwe Bubeck: Binary Decision Diagrams 5 Uwe Bubeck: Binary Decision Diagrams 6 Uwe Bubeck: Binary Decision Diagrams 7 Uwe Bubeck:

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Informatik A ( Frank Hoffmann)

Informatik A ( Frank Hoffmann) Teillösungen zum 1. Aufgabenblatt zur Vorlesung Informatik A ( Frank Hoffmann) 1. Improvisieren Stellen Sie die Zahl 6 dar durch einen Ausdruck, der genau dreimal die Ziffer i enthält und ansonsten neben

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr