Definition eines Spiels

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Definition eines Spiels"

Transkript

1 Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen zwischen mehreren Beteiligten, die verschiedene Handlungsmöglichkeiten haben und damit den Ausgang des Konflikts zu ihrem jeweiligen Nutzen beeinflussen können. Es kann sich bei einer solchen Konfliktsituation um einen Markt mit konkurrierenden oder interagierenden Unternehmen, um politische Gruppen mit unterschiedlichen Zielen, aber auch um die Gegner einer chachpartie handeln. Für die mathematische Behandlung muss man ein Modell bilden, dass die ituation, die pieler, die Handlungsmöglichkeiten und Zielsetzungen möglichst real beschreibt. Bei einem Gesellschaftsspiel mit gegebenen pielregeln ist die Modellbildung in der Regel einfacher als bei einer realen ituation. Im Laufe der Zeit haben sich verschiedene formale Beschreibungen ergeben, die jeweils Vor- und Nachteile für bestimmte piele, für die Erläuterung verschiedener Beurteilungskonzepte und für die Analyse oder Lösung eines piels haben. Um verschiedene Ausgänge und trategien beurteilen und vergleichen zu können, muss der Gewinn oder der Nutzen für die pieler am Ende des piels quantifizierbar sein. Dies kann mittels absoluter oder erwarteter Auszahlungen in Form von Geld,Prestige oder Zufriedenheit berücksichtigt werden. Erwartete Auszahlungen entstehen durch Zufallsentscheidungen oder zufällige Züge, wie z.b. Würfeln. Generell können zufällige Einflüsse durch einen zusätzlichen pieler berücksichtigt werden. Ziel der pieltheorie ist neben einer Beschreibung des piels, auch eine Analyse der Gewinnmöglichkeiten für einzelne pieler und wenn möglich auch eine Empfehlung für die zu treffenden Entscheidungen des pielers, also die Entwicklung einer trategie. Falls alle pieler nur die eigenen Ziele verfolgen, können allerdings am pielende auch ituationen entstehen, die für alle pieler ungünstig sind. 2. piele in extensiver Form

2 Definition 2.1 (piel in extensiver Form) Ein piel in Extensivform bezeichnet in der pieltheorie ein piel, bei dem die pieler zu verschiedenen Zeitpunkten Entscheidungen treffen müssen und dabei zumindest teilweise die zuvor getätigten Züge ihrer Gegenspieler kennen. Damit unterscheidet sich die Extensivform von der Normalform, bei der sämtliche pieler ihre trategien gleichzeitig festlegen. Ein n-personenspiel in extensiver Form mit Auszahlungsfunktion besteht aus: (i) einem (piel-)baum Γ mit einem tartknoten A (ii) einer Auszahlungsfunktion,die jedem Endknoten von Γ eine Auszahlung für jeden pieler zuordnet (iii) einer Zerlegung der Zwischenknoten von Γ in (n+1) Mengen 0, 1,, n, die pielermengen genannt werden (iv) einer Wahrscheinlichkeitsverteilung zu jedem Knoten von 0, (v) einer Zerlegung für jedes i (i =1,,n) in disjunkte Teilmengen i j (Informationsmengen)so dass, kein Weg, der von A ausgeht, zwei oder mehr Elemente von j i enthält alle Knoten aus j i gleich viele und entsprechend übereinstimmend indizierte Nachfolgeknoten haben die Zahl der Zugpositionen von i vor allen Knoten von j i identisch ist die von i auf dem Weg zum Knoten j i gewählten Aktionen für alle solche Knoten übereinstimmen In (i) ist ein Baum im inne der Graphentheorie gemeint, also ein Kreisfreier, zusammenhängender Graph mit einem tartpunkt. (ii) ergibt die Auszahlungsfunktion. (iii)die Zerlegung der Knoten in die Mengen i gibt an, welcher pieler am Zug ist, und trennt die zufälligen Züge ( 0 ) von den pielerzügen ab( 1, i ). (iv) Definiert eine Zufallsverteilung bei jedem zufälligen Zug.(v)Diese Mengen j i werden als Informationsmengen eines pielers bezeichnet. Ihren Knoten sind aufgrund der von ihm gemachten Züge und der Information über die Züge der anderen pieler nicht unterscheidbar für den pieler. Definition 2.2 (vollständige Information)

3 Bei pielen mit perfekter Information ist jedem pieler zum Zeitpunkt einer Entscheidung stets das vorangegangene pielgeschehen, d.h. die zuvor getroffenen Entscheidungen seiner Mitspieler sowie die zuvor getroffenen Zufallsentscheidungen, vollständig bekannt. Beispiele für piele mit perfekter Information sind Brettspiele wie chach, Mühle und Backgammon. Gegenbeispiele sind Kartenspiele wie kat und Poker sowie piele mit simultanen Zügen wie chere-tein-papier. ei Γ ein n-personenspiel in extensiver Form. (i) Ein pieler i hat vollständige (perfekte) Information, wenn j i = 1 gilt. Das piel Γ ist ein piel mit vollständiger Information wenn alle vollständige (perfekte) Informationen besitzen pieler in Γ Beispiel 2.3 (Verteilungsspiel). Zwei gleiche Objekte sollen auf zwei pieler verteilt werden. pieler 1 schlägt die Aufteilung vor, pieler 2 akzeptiert den Vorschlag oder lehnt ihn ab. Wenn pieler 2 akzeptiert, werden die Objekte so aufgeteilt, wie von pieler 1 vorgeschlagen, ansonsten erhält keiner der pieler etwas. Darstellung als pielbaum: pieler 1 A (2,0) (1,1) (0,2) pieler 2 B1 B2 B3 j n j n j n (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) - Anfangspunkt des Baumes: A - pielermengen: 1 = {A} 2 = {B 1,B 2,B 3 } - Informationsmengen: 1 1 ={A} 1 2 ={B 1 }; 2 2 ={B 2 } ; 3 2 ={B 3 }

4 3. piele in Normalform Definition 3.1 (Normalform) In der pieltheorie bezeichnen piele in Normalform diejenigen piele, bei denen alle pieler ihre trategien zeitgleich und ohne Kenntnis der Wahl der anderen pieler festlegen. ie unterscheiden sich von den pielen in Extensivform, bei denen die pieler ihre Entscheidungen zu unterschiedlichen Zeitpunkten treffen müssen und dabei teilweise oder vollständige Kenntnis der bereits getätigten Züge der Mitspieler haben können. Ein n-personen-piel in Normalform ist gegeben durch: (i) eine pielermenge I = {1,..., n} bzw. I = {0, 1,..., n}, falls es Zufallseinflüsse gibt (pieler 0). (ii) die trategiemengen 1,..., i der einzelnen pieler und 0, die trategiemenge für pieler 0 mit ihren Verwirklichungswahrscheinlichkeiten. (iii) eine Auszahlungsfunktion mit π((σ0), σ1,..., σn) = (π1((σ0), σ1,..., σn),..., πn((σ0), σ1,..., σn)), die jeder trategienkombination ((σ0), σ1,..., σn) einen Erwartungswert der Auszahlungsfunftion πi((σ0), σ1,..., σn)) für jeden pieler i = 1,,n zuordnet Die Durchführung eines piels besteht darin, dass jeder pieler eine trategie aus seiner trategiemenge i wählt ohne die Entscheidung der Mitspieler zu kennen. Die sich ergebende trategienkombination beurteilt dann jeder pieler entsprechend seiner Auszahlungsfunktion. Folgerung 3.2 Ein piel Γ lässt sich als n-dimensionale Anordnung mit n-dimensionalen Auszahlungsvektoren darstellen. Diese Darstellung heißt Normalform des piels Γ. Beispiel 3.3 (ohne) Wahrscheinlichkeiten

5 pieler 1 1 chere tein Papier pieler chere Papier ch.. Pap. Pap t. ch. tein t. (0,0) (-1,1) (1,-1) (1,-1) (0,0) (-1,1) (-1,1) (1,-1) (0,0) - Anzahl der pieler : I = {1,2} - trategiemengen: 1 = {chere,tein,papier} 2 ={chere,tein,papier } - trategie: σ i ist die gespielte trategie des pielers i σ i i - Auszahlungsfunktion: z.b. π(chere,chere ) = ( π 1 (chere,chere ), π 2 (chere,chere ) (0,0) = ( 0, 0 ) Dazugehörige Normalform: pieler 2 chere tein Papier pieler 1 chere (0,0) (-1,1) (1,-1) tein (1.-1) (0,0) (-1,1) Papier (-1,1) (1,-1) (0,0) Beispiel 3.4 (mit Wahrscheinlichkeiten)

6 pieler 1 1 1/4 1/4 1/2 chere tein Papier pieler chere 1/3 tein 2/3 0 2/3 0 Papier ch.. 2/3 1/3 Pap. Pap 1/3 t. ch. t. (0,0) 1/12(-1,1) 1/6 (1,-1) (0,0) (0,0) 1/3 (-1,1) (0,0) 1/12(1,-1) (0,0) Dazugehörige Normalform pieler 2 chere tein Papier pieler 1 chere (0,0) (-1/12,1/12) (1/6,-1/6) tein (0,0) (0,0) (-1/3,1/3) Papier (0,0) (1/12,-1/12) (0,0) Definition 3.5 (endliche piele) Ein n-personen-piel heißt endlich, wenn alle i kompakte Teilmengen sind d.h. wenn Γ nur endlich viele Knoten enthält 4. Equilibrium

7 Zur Beurteilung eines piels kann man die Menge aller trategienkombinationen analysieren, da der Ausgang des piels durch die gewählte trategienkombination festgelegt ist. Aus icht eines einzelnen pielers ist es interessant die Wahl der eigenen trategie im Vergleich zu einer Festlegung der trategien der Mitspieler zu beurteilen. Das Equilibrium ist ein zentraler Begriff der mathematischen pieltheorie. Es beschreibt in pielen einen Zustand eines strategischen Gleichgewichts, von dem ausgehend kein einzelner pieler für sich einen Vorteil erzielen kann, indem er allein seine trategie verändert. Definition 4.1 Eine trategienkombination σ * = (σ1 *, σ2 *,,σ n * ) heißt im Gleichgewicht oder Equilibrium n - Tupel, wenn für jedes i = 1,,n und für jedes σ i * i gilt: πi (σ1 *,, σn * ) πi ( σ1 *,, σi-1 *, σi, σi+1 *,,σn * ) Ein n-tupel von trategien ist im Gleichgewicht, wenn das Abweichen von der trategie zu keiner Verbesserung führt, wobei die anderen pieler stets ihre trategien beibehalten. Nicht jedes piel besitzt ein Gleichgewichts n-tupel in solchen pielen wollen die pieler ihre trategie sehr geheim halten.dies lässt vermuten,dass in pielen mit vollständiger Information Gleichgewichts n-tupel existieren. Definition 4.2 (Zerlegung eines piels) Ein piel Γ heißt am Knoten X zerlegt, wenn es keine Informationsmenge gibt, die sowohl X oder Nachfolgerknoten als auch andere Knoten enthält. Dann lässt sich Γalso zerlegen in: - Teilspiel Γ x mit tartknoten X und dessen Nachfolgern - Quotientenspiel Γ/X mit Endknoten X und dem Restbaum. Die Auszahlung an X ist die Auszahlung beim Ausspielen von Γ x atz 4.3 ei Γ zerlegt an X. Für σ i i sei π x (σ 1 Γx,, σ n Γx ) die Auszahlung am Endknoten X des Quotientenspiels Γ/X Dann gilt:

8 π(σ 1,..., σ n ) = π Γ/X ( σ 1 Γ/X,, σ n Γ/X ) Beweis: ei p x = p x (σ 1,..., σ n ) die Wahrscheinlichkeit, dass Knoten X mit trategien σ i erreicht wird. Dann gilt: π(σ 1,..., σ n ) = p x *π(σ 1,..., σ n ) + (1-p x ) π(σ 1,..., σ n ) = p x * π x (σ 1 Γx,, σ n Γx ) + (1-p x ) π ( σ 1 Γ/X,, σ n Γ/X ) = π Γ/X ( σ 1 Γ/X,, σ n Γ/X ) atz 4.4 ei Γ zerlegt an X und seien σ i i i so gewählt, dass i) (σ 1 Γx,, σ n Γx ) ein Equilibrium von Γ x und ii) ( σ 1 Γ/X,, σ n Γ/X ) ein Equilibrium von Γ/X ist. Dann gilt: (σ 1,..., σ n ) ist ein Equilibrium von Γ Beweis: ei σ i * i dann gilt: π i ( σ 1,, σ i-1, σ i *, σ i+1,,σ n ) = π ( σ 1 Γ/X,, σ i * Γ/X,, σ n Γ/X ) mit Auszahlung π i ((σ 1 Γx,, σ i * Γx, σ n Γx ) an X (atz 4.3) <=π ( σ 1 Γ/X,, σ i * Γ/X,,σ n Γ/X ) mit Auszahlung π i ((σ 1 Γx,, σ i Γx, σ n Γx ) an X (nach i) <=π ( σ 1 Γ/X,, σ n Γ/X ) mit Auszahlung π i ((σ 1 Γx,, σ i Γx, σ n Γx ) an X (nach ii) = π i (σ 1,..., σ n ) (nach atz 4.3) atz 4.5 Jedes endliche piel mit vollständiger Information besitzt ein Equilibrium. Beweis: Durch Induktion über die Höhe h des pielbaums Γ - h = 1: Höchstens ein pieler macht einen Zug und wählt die für ihn beste Alternative.

9 - Ist h > 1: lässt sich Γ wegen vollständiger Information in kleinere pielbäume zerlegen. Diese besitzen nach Induktionsvoraussetzung Equilibiria. Damit besitzt nach atz 4.4 auch Γ ein Equilibrium. Ein einfacher Algorithmus zur Identifizierung von Gleichgewichten: Liegt ein piel in strategischer Form vor, so lassen sich alle Equilibria in reinen trategien durch folgenden Algorithmus bestimmen: - Optimiere die Entscheidung von pieler i=1,...,n bei (beliebig) fixierten trategien aller anderen pieler: Markiere die unter diesen Umständen erreichbaren höchsten Auszahlungen für pieler i. Wiederhole dies für alle möglichen trategiekombinationen der anderen pieler. - Führe 1. für alle pieler durch. Dann sind genau die trategienkombinationen Equilibria, bei denen alle Auszahlungen markiert sind. pieler2 pieler2 pieler2 links mitte rechts pieler1 oben 4,2 1,1 2,0 pieler1 mitte 2,3 1,1 1,4 pieler1 unten 3,0 0,2 1,3 Dann funktioniert der Algorithmus wie folgt: i = 1: gegeben pieler 2 spielt Rechts: Für pieler 1 ist oben optimal markiere die 2 gegeben pieler 2 spielt Mitte: oben und mitte ist optimal markiere die beiden 1en gegeben pieler 2 spielt Links: oben ist optimal markiere die 4

10 i = 2: gegeben pieler 1 spielt oben: Für pieler 2 ist Links optimal markiere die 2 gegeben pieler 1 spielt mitte: Rechts ist optimal markiere die 4 gegeben pieler 1 spielt unten: Rechts ist optimal markiere die 3 Das eindeutige Equilibrium n-tupel ist also die trategie die zur Auszahlung 4, 2 führt

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen .. Motivation: Warum

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Systeme easy Systeme mit Bankzahlen Systeme gekürzt. Gültig ab 10. Januar 2013

Systeme easy Systeme mit Bankzahlen Systeme gekürzt. Gültig ab 10. Januar 2013 Systeme easy Systeme mit Systeme gekürzt Gültig ab 10. Januar 2013 Swisslos Interkantonale Landeslotterie, Lange Gasse 20, Postfach, CH-4002 Basel T 0848 877 855, F 0848 877 856, info@swisslos.ch, www.swisslos.ch

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Spieltheorie. Prof. Dr. Bernhard Nebel. Assistent: Dipl.-Inf. Malte Helmert L A TEX-Umsetzung: Ingo Thon

Spieltheorie. Prof. Dr. Bernhard Nebel. Assistent: Dipl.-Inf. Malte Helmert L A TEX-Umsetzung: Ingo Thon pieltheorie Prof. Dr. Bernhard Nebel Assistent: Dipl.-Inf. Malte Helmert A TEX-Umsetzung: Ingo Thon {nebel, helmert, thon}@informatik.uni-freiburg.de ommersemester 2005 Inhaltsverzeichnis 1 Einführung

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form

Vorlesung: Nicht-kooperative Spieltheorie. Teil 5: Spiele in extensiver Form Vorlesung: Nicht-kooperative Spieltheorie Teil 5: Spiele in extensiver Form Dr. Thomas Krieger Wintertrimester 29 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie Das Steuer-Spiel nach Selten

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

2. Spielbäume und Intelligente Spiele

2. Spielbäume und Intelligente Spiele 2. Spielbäume und Intelligente Spiele Arten von Spielen 2. Spielbäume und Intelligente Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Regelwerk der "Electronical Infrastructure for Political Work"

Regelwerk der Electronical Infrastructure for Political Work Regelwerk der "Electronical Infrastructure for Political Work" Stand 01.06.11 Inhaltsverzeichnis 1.Inhalt...2 2.Codex...2 3.Arbeiten mit dem EIPW...2 3.1.Dokumente...2 3.2.Gestaltung der Arbeit...2 3.2.1.Einfachheit

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

MATHEMATISCHE THEORIE STRATEGISCHER SPIELE ODER KURZ NICHTKOOPERATIVE SPIELTHEORIE

MATHEMATISCHE THEORIE STRATEGISCHER SPIELE ODER KURZ NICHTKOOPERATIVE SPIELTHEORIE 1 MATHEMATISCHE THEORIE STRATEGISCHER SPIELE ODER KURZ NICHTKOOPERATIVE SPIELTHEORIE 1 Verbale Beschreibung strategischer Spiele 2 Extensive n-personenspiele (endlich) 21 Beispiel: 'Standard-Zwei-Personen-Poker'

Mehr

Einrichten von email-postfächern mit Outlook und Outlook Express

Einrichten von email-postfächern mit Outlook und Outlook Express Einrichten von email-postfächern mit Outlook und Outlook Express enn Sie bei uns eine Domain einrichten, bekommen Sie mit der Inbetriebnahmebestätigung auch eine Liste mit sogenannten POP3 Namen und den

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

3 Das verbindungslose Vermittlungsprotokoll IP

3 Das verbindungslose Vermittlungsprotokoll IP Das verbindungslose Vermittlungsprotokoll IP 27 3 Das verbindungslose Vermittlungsprotokoll IP In diesem Kapitel lernen Sie das verbindungslose Vermittlungsprotokoll IP näher kennen. Nach dem Durcharbeiten

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

In der Regel gleichartig sind Produkte, die den gleichen Zweck und somit die gleiche konkrete Aufgabe erfüllen.

In der Regel gleichartig sind Produkte, die den gleichen Zweck und somit die gleiche konkrete Aufgabe erfüllen. Bei der Wahl Ihrer Marke sollten Sie darauf achten, dass sie bereits eingetragenen nicht zu ähnlich ist. Denn eine Marke kann vom Schutz ausgeschlossen werden, wenn die Gefahr besteht, dass sie mit einer

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener

Mehr

Datenbanken: Relationales Datenbankmodell RDM

Datenbanken: Relationales Datenbankmodell RDM Das RDM wurde in den 70'er Jahren von Codd entwickelt und ist seit Mitte der 80'er Jahre definierter Standard für Datenbanksysteme! Der Name kommt vom mathematischen Konzept einer Relation: (Sind A, B

Mehr

LMU München - SS04 - Spieltheorie

LMU München - SS04 - Spieltheorie LMU München - SS04 - Spieltheorie Studenten des Kurses, Prof. Schottenloher 7. Juni 2004 Inhaltsverzeichnis 4 Erweiterung des Strategiekonzepts: Gemischte Strategien, beste Antwort und der Existenzsatz

Mehr

Konzepte und Umsetzung von strategischen Spielen

Konzepte und Umsetzung von strategischen Spielen Seminarausarbeitung: Konzepte und Umsetzung von strategischen Spielen Markus Knödler, 45478 Michael Mader, 45633 Nico Meier, 41828 Stefan Wehrenberg, 42261 Sommersemester 2015 Inhaltsverzeichnis 1 Einführung

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

Teil 1: Statische Spiele mit vollständigen Informationen

Teil 1: Statische Spiele mit vollständigen Informationen Teil 1: Statische Spiele mit vollständigen Informationen Kapitel 1: Grundlagen und Notation Literatur: Tadelis Chapter 3 Statisches Spiel In einem statischen Spiel...... werden die Auszahlungen durch die

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Suche schlecht beschriftete Bilder mit Eigenen Abfragen

Suche schlecht beschriftete Bilder mit Eigenen Abfragen Suche schlecht beschriftete Bilder mit Eigenen Abfragen Ist die Bilderdatenbank über einen längeren Zeitraum in Benutzung, so steigt die Wahrscheinlichkeit für schlecht beschriftete Bilder 1. Insbesondere

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Problem Manche Spiele entwickeln sich über die Zeit Dynamik kann aber nicht in Spielen in

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Opponent Modelling in RoShamBo. Timo Bozsolik (timo.boz@gmx.de)

Opponent Modelling in RoShamBo. Timo Bozsolik (timo.boz@gmx.de) Opponent Modelling in RoShamBo Timo Bozsolik (timo.boz@gmx.de) 2 Überblick Einführung Theoretische Betrachtung Die optimale Strategie Basis Strategien Iocaine Powder Schlussfolgerungen 3 RoShamBo Die Regeln

Mehr

Entstehung, Entwicklung und Prinzip

Entstehung, Entwicklung und Prinzip OPEN SOURCE Entstehung, Entwicklung und Prinzip Formulierungen zu Themenfindung und Projektzielen Stand: März 2006 Cedric Spindler, Macy Späni, Silvia Kohler 6. Semester Open Source 1 INHALTSVERZEICHNIS

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr