Übungsaufgaben Wahrscheinlichkeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben Wahrscheinlichkeit"

Transkript

1 Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln genommen werden. a) Bei welchen Ergebnissen treten die folgenden Ereignisse ein? A Beide Kugeln haben die gleiche Farbe. B Beide Kugeln haben verschiedene Farben. C Mindestens eine Kugel ist blau. D Genau eine Kugel ist rot. E Höchstens eine Kugel ist weiß. F Beide Kugeln sind weiß. b) Nenne weitere Ereignisse und die jeweils zugehörigen Ergebnisse. Aufgabe 2 (mdb632528): Sicherlich kennst du das Spiel "Papier-Schere-Stein". Zwei Spieler zählen bis drei und zeigen dann gleichzeitig mit einer Hand Schere, Stein oder Papier. Es gelten die Regeln "Papier wickelt Stein", "Stein schleift Schere", "Schere schneidet Papier". Zeigen beide Spieler dasselbe Zeichen, ist das Spiel unentschieden. a) Gib alle möglichen Spielergebnisse an. b) Wie groß ist die Wahrscheinlichkeit, dass das Spiel unentschieden ausgeht? erstellt von OSS Seite 1 von 8

2 c) Bestimme die Wahrscheinlichkeit dafür, dass das Spiel zweimal (dreimal) hintereinander unentschieden endet. d) Gib eine Formel für die Wahrscheinlichkeit an, dass das Spiel n-mal hintereinander unentschieden endet. Aufgabe 3 (mdb300616): In jeder von zwei Urnen befindet sich ein rote, eine blaue und eine weiße Kugel. Aus jeder der beiden Urnen wird blind eine Kugel herausgegriffen. a) Gib eine Menge gleich wahrscheinlicher Ergebnisse an. b) Wie groß ist die Wahrscheinlichkeit, dass beide Kugeln die gleiche Farbe haben? c) Wie groß ist die Wahrscheinlichkeit, dass eine rote und eine blaue Kugel gezogen werden? Aufgabe 4 (mdb620344): Für ein Klassenfest hat die Klasse a ein Glücksrad gebaut. Es besteht zu gleichen Teilen aus den Farben rot, grün und blau. Jeder Spieler dreht zweimal, gewonnen hat derjenige, bei dem das Glücksrad beide Male die gleiche Farbe zeigt. a) Zeichne das entsprechende Baumdiagramm und gib die Ergebnismenge an. b) Welche Ergebnisse bedeuten Gewinn? c) Mit welcher Chance kann man gewinnen? Aufgabe 5 (mdb632542): Wie groß ist die Wahrscheinlichkeit, bei Würfen mit zwei normalen Spielwürfeln wenigstens einmal einen Pasch (zwei gleiche Zahlen) zu erzielen? Zeichne ein Baumdiagramm und berechne den Wert. Aufgabe 6 (mdb625055): a) Errechne die Wahrscheinlichkeit, beim Würfeln mit einem Würfel eine ( ) zu würfeln. b) Errechne die Wahrscheinlichkeit, beim Würfeln mit einem Würfel keine ( ) zu würfeln (Gegenereignis). erstellt von OSS Seite 2 von 8

3 Aufgabe 7 (mdb632894): Eine Münze wird viermal geworfen. a) Gib die Wahrscheinlichkeit an, dass wenigstens einmal Zahl geworfen wird. b) Zeichne ein Baumdiagramm. c) Gib mithilfe der Pfadregel die gesuchte Wahrscheinlichkeit an. Aufgabe 8 (mdb620709): Auf einer Geburtstagsparty sind drei Urnen aufgestellt. Den Hauptgewinn gibt es für drei bunte Kugeln (also keine schwarze Kugel dabei). Jeder zieht der Reihe nach aus jeder der drei Urnen. a) Wie groß ist die Wahrscheinlichkeit für eine rote (eine blaue, eine gelbe) Kugel? b) Wie groß ist die Wahrscheinlichkeit, dass eine rote und eine blaue Kugel gezogen werden? c) Wie groß ist die Wahrscheinlichkeit für einen Hauptgewinn? Aufgabe 9 (mdb300814): Susi und Florian gehen Eis essen und würfeln mit zwei Würfeln aus, wer die Rechnung bezahlen soll. Susi schlägt vor, dass sie bezahlt, wenn die Augensumme ungerade ist und Florian soll bezahlen, wenn die Augensumme gerade ist. Liegt hier eine faire Entscheidungsregel vor? Aufgabe 10 (mdb632892): Wie groß ist bei dem abgebildeten Glücksrad die relative Häufigkeit, dass a) der Hauptgewinn, b) ein Gewinn erziehlt wird? Hauptgewinn; Gewinn; Niete erstellt von OSS Seite 3 von 8

4 Aufgabe 11 (mdb632521): Von Schülerinnen und Schülern einer Klasse kommen mit dem Bus zur Schule und mit dem Fahrrad. Schülerinnen und Schüler gehen zu Fuß zur Schule, werden mit dem Auto gebracht. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler bzw. eine Schülerin a) mit dem Fahrrad, b) mit dem Fahrrad oder zu Fuß, c) nicht mit dem Fahrrad zur Schule kommt? Aufgabe 12 (mdb632516): Jörg zieht aus einem gut gemischten Skatspiel ( Karten) eine Karte. Berechne die Wahrscheinlichkeit dafür, dass er zufällig a) den Herz-König, b) eine Zahl, c) ein schwarzes Ass, d) eine Pik-Karte zieht. Aufgabe 13 (mdb625056): Eine Münze wird -mal geworfen. Das Ergebnis kann jeweils entweder Zahl (Z) oder Wappen (W) sein. Hier die Ergebnisse: a) Welche Werte enthält? b) Bestimme die absolute und die relative Häufigkeit für Wund Z nach,, und Würfen. c) Stelle im Heft die relative Häufigkeit in Abhängigkeit von der Anzahl der Münzwürfe im Säulendiagramm dar. d) Welche Häufigkeiten erwartest du, wenn die Münze -mal geworfen wird? erstellt von OSS Seite 4 von 8

5 Lösung 1 (mdb500405) : {gg, gr, gb, gw, rb, rw, rr, bb, bw} a) A {gg, rr, bb} B C D {gr, gb, gw, rb, rw, bw} {gb, rb, bb, bw} {gr, rb, rw} E {gg, gr, gb, gw, rb, rw, rr, bb, bw} = F { } b) Zu diesem Aufgabenteil liegt keine Lösung vor. Lösung 2 (mdb632528) : Spieler 1 Spieler 2 Sieger Stein Stein unentschieden Stein Schere Spieler 1 Stein Papier Spieler 2 Schere Stein Spieler 2 Schere Schere unentschieden Schere Papier Spieler 1 Papier Stein Spieler 1 Papier Schere Spieler 2 Papier Papier unentschieden a) zweimal unentschieden: dreimal unentschieden: erstellt von OSS Seite 5 von 8

6 b) Lösung 3 (mdb300616) : a) {rr, rb, rw, br, bb, bw, wr, wb, ww} b) A Zwei gleichfarbige Kugeln. c) B Es werden eine rote und eine blaue Kugel gezogen. Lösung 4 (mdb620344) : a) {rr; rg; rb; gr; gg; gb; br; bg; bb} b) Gewinn: {rr; gg; bb} c) Lösung 5 (mdb632542) : Wahrscheinlichkeit, mit zwei Würfeln einen Pasch zu werfen: Wahrscheinlichkeit, keinmal Pasch zu werfen: Wahrscheinlichkeit, wenigstens einmal Pasch zu werfen: erstellt von OSS Seite 6 von 8

7 Lösung 6 (mdb625055) : a) jeweils b) jeweils Lösung 7 (mdb632894) : a) Es gehört nur das Ereignis Kopf Kopf Kopf Kopf mit der Wahrscheinlichkeit nicht dazu, also beträgt die Wahrscheinlichkeit b) c) Lösung 8 (mdb620709) : a) P (rot) ; P (blau) ; P (gelb) b) P (rot, blau) c) P (rot, blau, gelb) Lösung 9 (mdb300814) : Die Entscheidungsregel ist fair, es gibt jeweils Möglichkeiten. Lösung 10 (mdb632892) : erstellt von OSS Seite 7 von 8

8 a) b) Lösung 11 (mdb632521) : a) b) c) Lösung 12 (mdb632516) : a) b) c) d) Lösung 13 (mdb625056) : (Die Ergebnisse wurden zeilenweise berücksichtigt.) Anzahl der Würfe W - absolute Häufigkeit W - relative Häufigkeit Z- absolute Häufigkeit Z- -relative Häufigkeit 3. Zeichenübung 4. Bei der relativen Häufigkeit sind für Wappen" und Zahl" ungefähr jeweils zu erwarten. Man kann also erwarten, dass ungefähr -mal Wappen und ungefähr -mal Zahl kommt. erstellt von OSS Seite 8 von 8

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 5 Wahrscheinlichkeit Regelmässigkeit des Zufalls (angepasst an das Lehrmittel Mathematik 1) Inhalt: Absolute und relative Häufigkeit Wahrscheinlichkeit Voraussagen mit Wahrscheinlichkeit

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten

3.2. Aufgaben zu mehrstufigen Zufallsexperimenten .. Aufgaben zu mehrstufigen Zufallsexperimenten Aufgabe : Baumdiagramm mit Erwartungswert beim zweimaligen Würfeln Ein ungezinkter sechsseitiger Würfel wird zweimal geworfen. a) Zeichne einen repräsentativen

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel Aufgaben ab Seite 9 I. reignisräume. rgebnis und rgebnisraum; Baumdiagramm xperimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - xperimente, deren rgebnisse

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

AUFGABEN ZUR KOMBINATORIK (1)

AUFGABEN ZUR KOMBINATORIK (1) --- --- AUFGABEN ZUR KOMBINATORIK (). Zum Würfeln wird ein Tetraeder benutzt, das auf seinen vier Seiten mit,, und beschriftet ist. Als Ergebnis zählt diejenige Augenzahl, die auf der Grundfläche steht.

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass

Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass Ein Ehepaar wünscht sich drei Kinder. Wie groß ist die Wahrscheinlichkeit, dass a) alle Kinder Mädchen sind? b) das zweite Kind ein Junge ist? c) das älteste Kind ein Junge, das zweite Kind ein Mädchen

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr

Handreichung. zum Kernlehrplan Mathematik

Handreichung. zum Kernlehrplan Mathematik Handreichung zum Kernlehrplan Mathematik Aufgabensammlung zur Entwicklung der allgemeinen mathematischen Kompetenzen im Inhaltsbereich Daten, Häufigkeit und Wahrscheinlichkeit 2010 Hohenzollernstraße 60,

Mehr

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen

Aktiv Kurs Thema Kompakt Test. Reißnägel werfen . Reißnägel werfen Die Klasse 7a will wissen, mit welcher Wahrscheinlichkeit beim Reißnägel fallen lassen die Nadel nach oben zeigt. Dazu lässt jeder Schüler/jede Schülerin der Klasse einen Reißnagel 00-mal

Mehr

Modellierungskonzepte 2

Modellierungskonzepte 2 Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige

Mehr

Beispielaufgaben für die Klasse 6. zum Themenbereich. Statistik und Wahrscheinlichkeitsrechnung

Beispielaufgaben für die Klasse 6. zum Themenbereich. Statistik und Wahrscheinlichkeitsrechnung Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten in Klasse Aufgabe

Mehr

Klausur: Stochastik Stochastik

Klausur: Stochastik Stochastik Stochastik Klausur zu Pfadregeln, bedingte Wahrscheinlichkeit, Erwartungswert einer Zufallsvariablen Vierfeldertafel berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 0 Aufgabe

Mehr

Lesen - rechnen - malen

Lesen - rechnen - malen Zahlen-Logical 1 Lesen - rechnen - malen * Eine Zahl steht Kopf! Male sie blau aus! * Die schwarze Zahl steht nicht neben der roten Zahl! * rote Zahl + grüne Zahl = blaue Zahl * Die gelbe Zahl steht zwischen

Mehr

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich Lösungen zu den Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten

Mehr

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A)

Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung der Erweiterten Berufsbildungsreife 2010 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung

Mehr

Stochastik Wahrscheinlichkeit

Stochastik Wahrscheinlichkeit Stochastik Wahrscheinlichkeit Dies ist ein Detail, das auf dem letzten 1 DM Schein abgebildet war. Es stellt die wichtigste Wahrscheinlichkeitsverteilung überhaut dar die Normalverteilung. Diese Verteilung

Mehr

Daten und Zufall in der Jahrgangsstufe 8 Seite 1

Daten und Zufall in der Jahrgangsstufe 8 Seite 1 Daten und ufall in der Jahrgangsstufe Seite Bei vielen Experimenten, wie z. B. Experimenten der Physik, kann das Ergebnis mit Sicherheit vorhergesagt werden. Solche Experimente heißen kausale Experimente.

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik

Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com

Mehr

Spiele mit. Spiele mit

Spiele mit. Spiele mit Einmal Eins Nimm zwei weiße und einen bunten Würfel. Würfel mit allen drei Würfeln gleichzeitig. Zähle die Augen der beiden weißen Würfel zusammen und nimm das Ergebnis mit der Augenzahl des bunten Würfels

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU Erster Teil: Überlegen Sie mal... Zur Lösung dieser sechs Aufgaben reichen einfache Kenntnisse der Wahrscheinlichkeitstheorie und einige logische

Mehr

KI(D)S Test. Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:..

KI(D)S Test. Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:.. KI(D)S Test Code:.. (2 Buchstaben aus dem Vornamen + 2 Buchstaben des Familiennamens + 2 Ziffern des Geburtstags): Schule: Schulstufe:.. Bist Du Mädchen Bub Geboren am:. Wie alt bist Du?.. Testdurchführung

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel 1 Aufgaben ab Seite 9 I. Ereignisräume 1. Ergebnis und Ergebnisraum; Baumdiagramm Experimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - Experimente,

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Absolute und relative Häufigkeit Übung III

Absolute und relative Häufigkeit Übung III Absolute und relative Übung III In der Tabelle sind die Würfelergebnisse von Marc, Felix, Bjorn und René aus der Basketball-AG notiert. Wer kann am besten Körbe werfen? Würfe Treffer Marc 7 Felix 8 Bjorn

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung a.: Du bearbeitest die Aufgabe in Einzelarbeit. Lies dir die Aufgabe genau durch und überlege dir einen Lösungsansatz. Danach versuche eine Lösung zu erarbeiten. Für diese Phase hast du 10 Minuten Zeit.

Mehr

Zentrale Prüfungen 2009

Zentrale Prüfungen 2009 Zentrale Prüfungen 2009 Mathematik, Hauptschule (Klasse 10 Typ B) Prüfungsteil 1: Aufgabe 1 a) Bestimme den Inhalt der grauen Fläche. Beschreibe z. B. mithilfe der Abbildung, wie du vorgegangen bist. b)

Mehr

Daten und Zufall in der Jahrgangstufe 5

Daten und Zufall in der Jahrgangstufe 5 0 Vorbemerkungen Daten und Zufall in der Jahrgangstufe 5 0.1 Daten Der Austausch von Informationen und die Analyse empirischer Daten prägen unseren Alltag. Immer mehr Entscheidungen und Vorhersagen werden

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

(d) 1,5 1, 02 2x 1 = x x = 2

(d) 1,5 1, 02 2x 1 = x x = 2 KLASSENARBEIT MATHEMATIK G9A 14.03.013 Aufgabe 1 3 4 5 Punkte (max) 11 4 4 4 3 Punkte (1) Löse folgende Gleichungen. (a) x 3 5x + x = 0 (b) 4x 4 + 11x 3 = 0 (c) 1 x = 1 7 (e) (x + 17)(x 16) = 0 (f) (d)

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Wahrscheinlichkeitsrechnung / Stochastik

Wahrscheinlichkeitsrechnung / Stochastik Dieses und alle anderen Mathe-Dokumente unter www.paulguckelsberger.de/mathematik enthalten: 1. Mathematische Einführungen zur Grundlagen-Auffrischung und/oder 2. Ergänzende Erläuterungen und Arbeitshilfen

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Rainer Hauser Dezember 2012 1 Einleitung 1.1 Zufallsexperimente Im Folgenden wird das Resultat eines Experiments als Ereignis bezeichnet. Lässt man eine Metallkugel aus einer

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1

Stochastik. 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Stochastik 1. Oktober 2007 Torsten Linnemann, Kantonsschule Solothurn 1 Inhaltsverzeichnis 1 Einführung in die Wahrscheinlichkeitsrechnung 2 1.1 Laplace-Experimente................................. 2 1.2

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

20.3 Wahrscheinlichkeit bei Laplace- Versuchen

20.3 Wahrscheinlichkeit bei Laplace- Versuchen Zufalls experimente und Ereignisse Geben Sie jeweils eine sinnvolle Ergebnismenge Q für die folgenden Zufallsexperimente an: I) Eine Münze wird dreimal geworfen (benutzen Sie w für Wappen und z für Zahl).

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Stochastik - Kapitel 3

Stochastik - Kapitel 3 Aufgaben ab Seite 8 3. edingte Wahrscheinlichkeit und Unabhängigkeit 3.1 edingte Wahrscheinlichkeit und die Formel von ayes eispiel zum Einstieg in das Thema: Peter wirft zwei Würfel. Danach möchte er

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Bereiche der Stochastik

Bereiche der Stochastik Statistik Wahrscheinlichkeit Kombinatorik Bereiche der Stochastik Kombinatorik Hans Freudenthal: Einfache Kombinatorik ist das Rückgrat elementarer Wahrscheinlichkeitsrechnung. Die Lehrkraft bereitet sich

Mehr

Spielziel Die Spieler versuchen, möglichst viele Baukarten zu erfüllen und so Punkte zu sammeln.

Spielziel Die Spieler versuchen, möglichst viele Baukarten zu erfüllen und so Punkte zu sammeln. Ravensburger Spiele Nr. 27 157 3 Für 2 bis 4 Spieler ab 8 Jahren Grundidee Make n Break: Andrew und Jack Lawson Autoren: Maximilian Kirps und Randolf Siew Illustration: Walter Pepperle Design: P. Becker

Mehr

Mathematik-Olympiade Stufe, Aufgaben Klasse 3

Mathematik-Olympiade Stufe, Aufgaben Klasse 3 Vorname: Nachname: Klasse: Schule: 1 2 3 4 5 6 7 Gesamt von 6 von 5 von 6 von 7 von 3 von 35 Mathematik-Olympiade in Niedersachsen Schuljahr 2014/2015 3. Stufe (Landesrunde) Schuljahrgang 3 Aufgaben 1.

Mehr