Operative vs. Informationelle Systeme. Informationelle Systeme. Informationelle Systeme. Moderne Betriebliche Anwendungen von Datenbanksystemen

Größe: px
Ab Seite anzeigen:

Download "Operative vs. Informationelle Systeme. Informationelle Systeme. Informationelle Systeme. Moderne Betriebliche Anwendungen von Datenbanksystemen"

Transkript

1 Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP R/) Data Warehouse-Anwendungen Data Mining Operative vs. Informationelle Systeme Anspruch an Datenbanken in Unternehmen ist vielschichtig. Man kann sie - je nach Einsatzzweck - in operative und informationelle Systeme einteilen. Operative Systeme eingesetzt von Sachbearbeitern, am Bankschalter, etc. dienen der täglichen Arbeit Informationelle Systeme helfen dem Management, (strategische) Entscheidungen zu finden. (durch DSS = Decision Support Systems) (Systeme für Business Intelligence Anwendungen) bieten Grundlage für weitere Analysen mit OLAP / Data Mining Informationelle Systeme Informationelle Systeme zugeschnitten auf Gegenstandsbereiche (sog. Subjects), z.b. Kunde, Produkt, Vertriebsregion enthalten sehr große Datenmengen enthalten zum großen Teil historische, zusammengefasste Daten Historie aus Daten der operativen Systeme ist nachvollziehbar unterstützen Informations- und Analyseaufgaben, d.h. das Management in der Entscheidungsfindung wenige Zugriffe, aber mit relativ hohem Datenvolumen Datenbankeinträge werden nicht geändert (keine Updates) relativ hohe Redundanz Überblick über alle relevanten Unternehmensdaten komplexe, oft heuristische Ad-hoc-Anfragen z.b. auf der Basis von OLAP-Funktionalitäten Antwortzeitverhalten spielt untergeordnete Rolle Daten sind wohl strukturiert, integriert und konsolidiert Anzahl Benutzer ist eher klein ( Power-User )

2 Gegensätze Grundlagen Operative Systeme Schnelle Antwortzeit Anwendungsorientiert Aktuelle Daten Detaillierte, primäre Daten Häufige Änderungen Dient täglicher Arbeit Informationelle Systeme Hohe Speicherkapazität Gegenstandsorientiert Historische Daten Auch zusammengefasste, abgeleitete Daten Keine Updates Dienst als Datenspeicher für Analyse und Entscheidungsfindung Man muss beide Systeme trennen. Data Warehouse für den informationellen Systemteil Legacy Systeme DWh DBMS & Data Marts Ext. Daten OLAP Tools Data Mining und Statistik Tools Kausale Modelle Intelligente Informationssysteme und Reports operative Daten informationelle Daten Analytiker Management OLTP: Online Transaction Processing Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad Viele (Tausende pro Sekunde) kurze Transaktionen TAs bearbeiten nur ein kleines Datenvolumen mission-critical für das Unternehmen Hohe Verfügbarkeit muss gewährleistet sein Normalisierte Relationen (möglichst wenig Update-Kosten) Nur wenige Indexe (wegen Fortschreibungskosten) SAP R/: Enterprise Resource Modelling (ERP-System) WAN (Internet) LAN Relationales DBMS als Backend-Server (Oracle, Informix, DB, MS SQL-Server, Adabas)

3 Dreistufige Client/Server-Architektur ( Tier, SAP R/) Interne Architektur von SAP R/ sehr viele (Tausen de) Clients Sehr schnelles LAN (z.b. FDDI) ein Datenbank- Server mehrere Applikatio ns- Server zur Skalierun g langsame Netzverbindung (WAN, Internet, Telefon, ) Transaktionsverarbeitung in SAP R/ Data Warehouse-Anwendungen: OLAP~Online Analytical Processing Sperren anfordern Posting-Schritte Sperren freigeben Wie hat sich die Auslastung der Transatlantikflüge über die letzten zwei Jahre entwickelt? oder Dialog-Schritte D D D P P P P Wie haben sich besondere offensive Marketingstrategien für bestimmte Produktlinien auf die Verkaufszahlen ausgewirkt? Online-Phase Posting-Phase

4 Was ist ein Data Warehouse? Gegenstandsorientierung (subject-oriented) Mit dem Begriff Data Warehouse wird eine von den operationalen DV-Systemen isolierte Datenbank umschrieben, die als unternehmensweite Datenbasis für Management-Unterstützungssysteme dient. [Muksch et al. 996] A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. [Inmon, Hackathron 994] DWh ist an Gegenstandsbereichen des Unternehmens orientiert, z.b. Produkten, Kunden, Lieferanten Gegensatz zu Funktions- oder Anwendungsorientierung bei operativen (legacy) Systemen: Funktionen sind z.b. Einkauf, Lagerhaltung, Verkauf Bei der Entwicklung eines DWh stehen die Daten im Mittelpunkt. Bei operationalen Systemen muss auch der Prozess berücksichtigt werden. DWh enthält nur solche Daten, die für DSS-Analysten/Manager relevant und interessant sind, werden oder sein könnten. A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. [Inmon, Hackathron 994] Integration Integration Daten aus verschiedenen Quellen werden im DWh vereinheitlicht, u.a. durch Operative Systeme konsistente Vergabe und Definition von Bezeichnern einheitliche Kodierung Externe Datenquellen Integration, Konsolidierung Data Warehouse z.b. wird jedes Datum in der Form <YYYY-MM-DD> gespeichert einheitliches Festlegen der Maßeinheiten von Attributen z.b. werden Preise in Dollar angegeben Auflösung von strukturellen Konflikten z.b. Schema-Wert-Konflikt In zwei verschiedenen operativen Systemen können die gleichen Daten unter verschiedenen Bezeichnern abgelegt sein die gleichen Bezeichner für verschiedene Zwecke benutzt werden der gleiche Sachverhalt auf verschiedene Weise kodiert sein A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. [Inmon, Hackathron 994] Integration führt dazu, dass alle Daten im DWh in einer einzigen, allgemein akzeptierten Art und Weise gespeichert sind. Erst die Integration erlaubt die einfache und effektive Nutzung der DWh-Daten für Anwendungen z.b. im Management Integration ist ein schwieriger und zeitaufwendiger Prozess

5 Lebenszyklus eines Data Warehouse Behandlung von Strukturkonflikten in relationalen Schemata: [Saltor et. al. 99] Beispiel: Datenbank für Aktienkurse Datenbank New York (ein Tupel pro Tag und Aktie) date stock clsprice IBM HP GM IBM HP GM 5 Datenbank Barcelona (ein Tupel pro Tag, ein Attribut pro Aktie) date HP IBM GM Datenbank Melbourne (eine Relation pro Aktie, ein Tupel pro Tag) Zeitraumbezug (time variancy) In operativen Systemen ist der aktuelle Datenbestand gespeichert. Er kann jederzeit geändert werden (Update). DWh enthält eine ganze Historie von Daten DWh besteht aus Snapshots der operativen Systeme DWh-Daten sind zu einem bestimmten Zeitpunkt gültig (gewesen). Der Gültigkeitszeitraum ist an allen Daten im DWh vermerkt (als Teil des Schlüssels) Zeithorizont des DWh: ca. 5-0 Jahre operative Systeme: max Tage HP date clsprice IBM date clsprice GM date clsprice A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. [Inmon, Hackathron 994] Beständigkeit (nonvolatility) Architektur einer Data Warehouse Umgebung Operative Systeme: Daten werden oft geändert, gelöscht, eingefügt. Aufwendige Mechanismen, um Deadlocks zu vermeiden Locking-Mechanismen, etc. OLAP Tools DWh: primär nur Leseoperationen Daten werden aus den operativen Systemen (initial) geladen Analysesysteme greifen lesend auf DWh-Daten zu. Es gibt keine Updates Legacy Systeme DWh DBMS & Data Marts Ext. Daten Data Mining und Statistik Tools Kausale Modelle Intelligente Informationssysteme und Reports A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. operative Daten informationelle Daten Analytiker Management [Inmon, Hackathron 994]

6 Architektur einer DWh-Umgebung Die innere Struktur eines Data Warehouse Architektur einer DWh-Umgebung Beispiel: Telekommunikationsunternehmen Metadaten Stark zusammengefasste Daten Leicht zusammengefasste Daten Aktuelle detaillierte Daten detailliert Für jeden Kunden, jedes Gespräch inkl. Zone Teilnehmer Zeitpunkt Dauer Gebühren Art des Dienstes Byte pro Kunde leicht zusammengefasst Für jeden Kunden Anzahl der Gespräche insgesamt Anzahl der Ferngespräche Gesprächsdauer Umsatz je Zone Umsatz insgesamt Zusammenfassung monatlich ca. 00 Byte pro Kunde Alte (detaillierte) Daten Architektur einer DWh-Umgebung Datenflüsse im Data Warehouse Zusammenfassen Architektur einer DWh-Umgebung Metadaten Metadaten sind Daten über Daten Metadaten lassen sich in Kategorien einteilen: Laden von Daten aus operativen Systemen Zusammenfassen semantische Metadaten Festlegung der DWh-Terminologie Transformations- und Integrationsregeln für die Abbildung der operativen Daten in die DWh-Daten Aggregationsregeln für das Zusammenfassen der Daten auf verschiedenen Aggregationsstufen Alterungsprozess

7 Architektur einer DWh-Umgebung DWh-Entwicklungszyklus Metadaten (forts.): DWh-Entwicklungszyklus unterscheidet sich vom klassischen: verwaltungstechnische Metadaten Festlegung von Benutzer (-gruppen) und zugehörige Zugriffsrechte statische Daten über das DWh Größe von Tabellen Zugriffsrechte auf Tabellen schematische Metadaten logisches Schema des DWh Abbildung zwischen logischem und physischem Schema Quellen der DWh-Daten Am Anfang des Data-Warehouse-Entwicklungszyklus stehen die Daten (der Prozess ist datengeleitet (data-driven)) Das Data Warehouse wird schrittweise entwickelt. Gründe: genaue Ziele/ Anforderungen an das DWh sind meistens noch nicht bekannt, Größe auch schlecht abschätzbar Kosten und Entwicklungszeit schlecht abschätzbar benötigte Ressourcen (Mitarbeiter, Rechner, ) sind hoch Data Warehouse Entwicklungszyklus Iterative Vorgehensweise iteratives Vorgehen und kurze feedback loops haben viele Vorteile: Anwender können ihre Anforderungen erst dann detailliert artikulieren, wenn der erste DWh-Prototyp vorliegt (. Stufe der DWh-Entwicklung) Management wird erst dann größeres Projektbudget genehmigen, wenn positive Resultate sicher greifbar sind. Qualität des DWh wird durch feedback loops mit Anwendern deutlich verbessert. Data Warehouse Entwicklungszyklus Monitoring der DWh-Benutzung Monitoring ist Voraussetzung für Anpassung des DWh an aktuelle Nutzung Welche Daten des DWh werden regelmäßig genutzt? In welchem Umfang wächst der Datenbestand? Wer benutzt das DWh? Welche Antwortzeiten treten bei welchen Anfragen auf? Wie ist die Belastung des DWh? Leitmotiv: Think big! Start small! Grow step by step!

8 Sammlung und periodische Auffrischung der Data Warehouse-Daten OLTP-Datenbanken und andere Datenquellen OLAP-Anfragen Decision Support Data Mining Das Stern-Schema Data Warehouse Stern-Schema bei Data Warehouse- Anwendungen Das Stern-Schema: Handelsunternehmen Eine sehr große Faktentabelle Alle Verkäufe der letzten drei Jahre Alle Telefonate des letzten Jahres Alle Flugreservierungen der letzten fünf Jahre normalisiert Mehrere Dimensionstabellen Zeit Filialen Kunden Produkt Oft nicht normalisiert Kunden Zeit Verkäufe Produkte Verkäufe r Filialen

9 Das Stern-Schema: Krankenversicherung Behandlunge n Zeit Krankhei ten Ärzte Patienten Kranken häuser Stern-Schema Passau 5-Jul-00 Verkäufer Kunde Anzahl Produkt Filiale VerkDatum Verkäufe Bayern D Passau Bezirk Land FilialenKennung Filialen 4 Kemper 47 wiealt Name KundenNr Kunden 9 Elektronik man 85 wiealt Manager Fachgebiet Name VerkäuferNr Verkäufer Faktentabelle (SEHR groß) Dimensionstabellen (relativ klein) Stern-Schema (cont d) Weihnachten Dienstag Dec-0 Hochsommer Saison Dienstag Wochentag Jul-00 KW Quartal Jahr Monat Tag Datum Zeit.... Siemens Telekom Mobiltelekom 47.. Hersteller Produkthauptgruppe Produktgruppe Produkttyp ProduktNr Produkte Nicht-normalisierte Dimensionstabellen: effizientere Anfrageauswertung Weihnachten Dienstag Dec-0 Hochsommer Saison Dienstag Wochentag Jul-00 KW Quartal Jahr Monat Tag Datum Zeit.... Siemens Telekom Mobiltelekom 47.. Hersteller Produkthauptgruppe Produktgruppe Produkttyp ProduktNr Produkte Datum Monat Quartal ProduktNr Produkttyp Produktgruppe Produkthauptgruppe

10 Normalisierung führt zum Schneeflocken-Schema KWs Kunden Zeit Quartale Verkäufe Filialen Verkäufe r Produkthau ptgruppen Produktgr uppen Produktty pen Produkte Vorteile des Stern-Schemas gegenüber herkömmlichen relationalen Schemata Schema-Entwurf entspricht der natürlichen Sichtweise der Benutzer Daten können in einer für Analysen adäquaten Weise zugegriffen werden. Erweiterungen und Änderungen am Schema sind leicht zu realisieren. Beziehungen zwischen den Tabellen sind vordefiniert Join-Operationen können durch entsprechende Zugriffspfade unterstützt werden Schnelle Antwortzeiten sind möglich Stern-Schema kann leicht in relationales DB-Schema umgesetzt werden. Vorteile des Stern-Schemas gegenüber herkömmlichen relationalen Schemata Umsetzung des Stern-Schemas in relationale Tabellen: Kennzahlentabelle (major table): Die Gegenstände der Analyse (Kennzahlen) werden in dieser Tabelle gesichert Nebentabelle (minor tables): Jede Dimension wird zu einer eigenen Relation / Tabelle. Kennzahlentabelle: Jedes Tupel der Kennzahlentabelle besteht aus einem Zeiger für jede Dimensionstabelle (Fremdschlüssel), die den Kontext eindeutig definieren und den numerischen Werten (Daten) für den jeweiligen Kontext. Sie enthält die eigentlichen Geschäftsdaten, die analysiert werden sollen. Die Kennzahlentabelle kann sehr viele Zeilen enthalten (Millionen). Der Schlüssel der Kennzahlentabelle wird durch die Gesamtheit der Dimensionszeiger gebildet Anfragen im Sternschema select sum(v.anzahl), p.hersteller from Verkäufe v, Filialen f, Produkte p, Zeit z, Kunden k Einschränkung where z.saison = 'Weihnachten' and der Dimensionen z.jahr = 00 and k.wiealt < 0 and Join-Prädikate p.produkttyp = '' and f.bezirk = 'Bayern' and v.verkdatum = z.datum and v.produkt = p.produktnr and v.filiale = f.filialenkennung and v.kunde = k.kundennr group by p.hersteller;

11 Algebra-Ausdruck Roll-up/Drill-down-Anfragen σ(produkte) σ(filialen) select Jahr, Hersteller, sum(anzahl) from Verkäufe v, Produkte p, Zeit z A A where v.produkt = p.produktnr and v.verkdatum = z.datum and p.produkttyp = '' Verkäufe group by p.hersteller, z.jahr; σ(kunden) A A σ(zeit) select Jahr, sum(anzahl) from Verkäufe v, Produkte p, Zeit z where v.produkt = p.produktnr and v.verkdatum = z.datum and p.produkttyp = '' group by z.jahr; Roll-up Drill-down Ultimative Verdichtung select sum(anzahl) from Verkäufe v, Produkte p where v.produkt = p.produktnr and p.produkttyp = '';

12 Drill- Down Roll-up Flexible Auswertungsmethoden: slice and dice R eg io n en Produktgruppen K u n d en R eg io n en Produktgruppen R eg io n en Produktgruppen K u n d en K u n d en Materialisierung von Aggregaten insert into DCube ( select p.hersteller, z.jahr, sum(v.anzahl) from Verkäufe v, Produkte p, Zeit z where v.produkt = p.produktnr and p.produkttyp = '' and v.verkdatum = z.datum group by z.jahr, p.hersteller ) union ( select p.hersteller, to_number(null), sum(v.anzahl) from Verkäufe v, Produkte p where v.produkt = p.produktnr and p.produkttyp = '' group by p.hersteller ) union ( select null, z.jahr, sum(v.anzahl) from Verkäufe v, Produkte p, Zeit z where v.produkt = p.produktnr and p.produkttyp = '' and v.verkdatum = z.datum group by z.jahr ) union ( select null, to_number(null), sum(v.anzahl) from Verkäufe v, Produkte p where v Produkt = p ProduktNr and p Produkttyp ='' ); Relationale Struktur der Datenwürfel

13 Würfeldarstellung Der cube-operator select p.hersteller, z.jahr, f.land, sum(v.anzahl) from Verkäufe v, Produkte p, Zeit z, Filialen f where v.produkt = p.produktnr and p.produkttyp = '' and v.verkdatum = z.datum and v.filiale = f.filialenkennung group by cube (z.jahr, p.hersteller, f.land); Wiederverwendung von Teil-Aggregaten insert into VerkäufeProduktFilialeJahr ( select v.produkt, v.filiale, z.jahr, sum(v.anzahl) from Verkäufe v, Zeit z where v.verkdatum = z.datum group by v.produkt, v.filiale, z.jahr ); select v.produkt, v.filiale, sum(v.anzahl) from Verkäufe v group by v.produkt, v.filiale Wiederverwendung von Teil-Aggregaten select v.produkt, v.filiale, sum(v.anzahl) from VerkäufeProduktFilialeJahr v group by v.produkt, v.filiale select v.produkt, z.jahr, sum(v.anzahl) from Verkäufe v, Zeit z where v.verkdatum = z.datum group by v.produkt, z.jahr

14 Die Materialisierungs-Hierarchie { } Die Zeit-Hierarchie Jahr {Produkt} {Jahr} {Filiale} {Produkt, Jahr} {Produkt, Filiale} {Filiale, Jahr} Quartal Woche (KW) {Produkt, Filiale, Jahr} Teilaggregate T sind für eine Aggregation A wiederverwendbar wenn es einen gerichteten Pfad von T nach A gibt Also T A Man nennt diese Materialisierungshierarchie auch einen Verband (Engl. Lattice) Tag Monat Bitmap-Indexe Beispiel-Anfrage und Auswertung Optimierung durch Komprimierung der Bitmaps Ausnutzung der dünnen Besetzung Runlength-compression Grundidee: speichere jeweils die Länge der Nullfolgen zwischen zwei Einsen Mehrmodus-Komprimierung: bei langen Null/Einsfolgen speichere deren Länge Sonst speichere das Bitmuster

15 Bitmap-Operationen Bitmap-Join-Index B-Baum B-Baum B-Baum B-Baum TID-V TID-K TID-V TID-K (i,ii)(ii,i)(iii,ii)(iv,ii)(v, (I,i)(I,v)(II,i )(II iii)(ii iv (i,ii)(ii,i)(iii,ii)(iv,ii)(v, (I,i)(I,v)(II,i )(II iii)(ii iv

16 5 5 Select k.* Select v.* B-Baum From Verkäufe v, Kunden k B-Baum From Verkäufe v, Kunden k TID-V Where v.produktid = 5 And v.kundennr = k.kundennr TID-K Where k.kundennr = 47 and v.kundennr = k.kundennr (i,ii)(ii,i)(iii,ii)(iv,ii)(v, (I,i)(I,v)(II,i )(II,iii)(II,iv Beispielanfrage auf dem Sternschema: Stern-Verbund -- Star Join select sum(v.anzahl), p.hersteller from Verkäufe v, Filialen f, Produkte p, Zeit z, Kunden k where z.saison = 'Weihnachten' and z.jahr = 00 and k.wiealt < 0 and Einschränkung der Dimensionen p.produkttyp = '' and f.bezirk = 'Bayern' and v.verkdatum = z.datum and v.produkt = p.produktnr and v.filiale = f.filialenkennung and v.kunde = k.kundennr group by p.hersteller; Join-Prädikate

17 Illustration des Star Join Zeit Verkäufe Kunden Bitmap-Indexe für die Dimensions- Selektion Zeit Verkäufe Kunden Filialen Produkte Filialen Produkte Ausnutzung der Bitmap-Join-Indexe Zeit Verkäufe Kunden Filialen Eine Produkte weitere Join-Methode: DiagJoin Für :N-Beziehungen Daten sind zeitlich geballt (clustered) Beispiel Order Lineitem Order A Lineitem Die Lineitems (Bestellpositionen) einer Order (Bestellung) kommen zeitlich kurz hintereinander Grundidee des DiagJoins besteht darin, synchron über die beiden Relationen zu laufen Die Orders werden in einem Fenster gehalten

18 DiagJoin Junker 45 Lola 9965 Kaller Hummer Müller Maier 47 Kemper Customer Order Mixer Papier 4 47 Fax Hub Toner 47 Drucker 47 Laptop PC 47 Preis Produkt Position LineItem DiagJoin Junker 45 Lola 9965 Kaller Hummer Müller Maier 47 Kemper Customer Order Mixer Papier 4 47 Fax Hub Toner 47 Drucker 47 Laptop PC 47 Preis Produkt Position LineItem DiagJoin Junker 45 Lola 9965 Kaller Hummer Müller Maier 47 Kemper Customer Order Mixer Papier 4 47 Fax Hub Toner 47 Drucker 47 Laptop PC 47 Preis Produkt Position LineItem DiagJoin Junker 45 Lola 9965 Kaller Hummer Müller Maier 47 Kemper Customer Order Mixer Papier 4 47 Fax Hub Toner 47 Drucker 47 Laptop PC 47 Preis Produkt Position LineItem

19 DiagJoin Order Customer Kemper 47 Maier Müller Hummer Kaller LineItem Position Produkt PC Laptop Drucker Toner Hub Fax Preis DiagJoin Customer Kemper Maier Müller Hummer Kaller Order LineItem Position Produkt PC Laptop Drucker Toner Hub Fax Preis Lola Junker Papier Mixer Lola Junker Papier Mixer 47 5 Quirl Muss zwischengespeichert werden und nachbearbeitet werden Quirl Anforderungen an den DiagJoin :N Beziehung Die -er Tupel sind in etwa derselben Reihenfolge gespeichert worden wie die N -er Tupel Die Tupel werden in der time-of-creation -Reihenfolge wieder von der Platte gelesen (full table scan) Die referentielle Integrität muss gewährleistet sein Das Fenster muss so groß sein, dass kaum Tupel nachbearbeitet werden müssen Nachbearbeitung bedeutet Tupel auf dem Hintergrundspeicher speichern Den zugehörigen Joinpartner via Index auffinden Also ist ein Index auf Order. hierfür notwendig Nicht für die erste Phase des DiagJoins Weitere Decision-Support Anfrage-Typen Top N-Anfragen Ich will nur die N besten Treffer erhalten und nicht alle 5 Millionen Muss bei der Anfrageoptimierung berücksichtigt werden Online Aggregation Man berechnet das Ergebnis approximativ Je länger die Anfrage läuft, desto genauer wird das Ergebnis

20 Top N-Anfragen Select A.* From Angestellte A, Abteilungen abt Where A.Abteilung = abt.abteilungsnr and abt.ort = Passau Order by A.Gehalt Stop after 0 Online-Aggregation Select abt.ort, avg(a.gehalt) From Angestellte A, Abteilungen abt Where A.Abteilung = abt.abteilungsnr Group by abt.ort

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

OLTP: Online Transaction Processing

OLTP: Online Transaction Processing Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing (bisheriger Fokus) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche Anwendungen OLTP Data Warehouse Data Mining Kapitel 17 1 OLTP: Online Transaction Processing Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche Anwendungen OLTP Data Warehouse Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem Bestellungen in einem Handelsunternehmen Charakterisierung Hoher Parallelitätsgrad

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Moderne Betriebliche Anwendungen von Datenbanksystemen

Moderne Betriebliche Anwendungen von Datenbanksystemen Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP R/3) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

5 Data Warehouses und Data Mining

5 Data Warehouses und Data Mining 5 Data Warehouses und Data Mining Mittels OLAP Techniken können große Datenmengen unterschiedlich stark verdichtet und gezielt aufbereitet werden. Mittels Data Mining können große Datenmengen nach bisher

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. s - Einführung Definition Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema, -Anfragen Data Mining Prof. E. Rahm 1-1 y yy

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45 Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der

Mehr

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein 1 Definitionen 1.1 Datenbank Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert Integriert, selbstbeschreibend, verwandt 1.2 Intension/Extension Intension: Menge der Attribute Extension:

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Grundlagen der Programmierung 2 Einführung in Datenbanken Grundlagen der Programmierung 2 I-1 Inhalt Einführung Entity-Relationship-Diagramm Relationales Modell Entity-Relationship-Diagramm ins Relationales

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. Data Warehouses - Einführung Definitionen und Merkmale Grobdefinition Einsatzbeispiele DW-Merknmale nah Imnon OLTP vs. OLAP Grobarchitektur Virtuelle vs. phsische Datenintegration Mehrdimensionale Datensicht

Mehr

Die Grundbegriffe Die Daten Die Informationen

Die Grundbegriffe Die Daten Die Informationen Die Grundbegriffe Die Daten sind diejenigen Elemente, die vom Computer verarbeitet werden. Die Informationen sind Wissenselemente, welche durch die Analyse von Daten erhalten werden können. Die Daten haben

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Definition Informationssystem

Definition Informationssystem Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Allgemeines zu Datenbanken

Allgemeines zu Datenbanken Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,

Mehr

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Kompakt-Intensiv-Training OLAP gilt als Schlüsseltechnologie auf dem Gebiet Business Intelligence. In unserer Schulung "Microsoft SQL-Server 2008 R2/2012

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Abschluss Einblick und Ausblick

Abschluss Einblick und Ausblick Abschluss Einblick und Ausblick Prof. Dr. T. Kudraß 1 Benutzer Komponenten eines DBMS (Überblick) I/O-Prozessor Output-Generierung Parser für selbst. oder eingebettete Kommandos Precompiler Autorisierungs-Kontrolle

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1 Name Klasse Datum 1 OLAP vs. OLTP In den RDBMS Konfigurationen unterscheidet man zwei verschiedene Grundtypen: OLTP: OnLine Transactional Processing ist für die Transaktionsprozesse und somit zur funktionalen

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

DBS: Administration und Implementierung Klausur

DBS: Administration und Implementierung Klausur Prof. Dr. Stefan Brass 12.06.2001 Institut für Informatik Universität Gießen Hinweise DBS: Administration und Implementierung Klausur Die Bearbeitungszeit ist 1 Stunde, 30 Minuten (von 8 30 bis 10 00 ).

Mehr

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse Seminar Advanced Data Warehouse Thema: Index Selection Vortrag von Stephan Rieche gehalten am 2. Februar 2004 Download:.../~rieche Inhalt des Vortrages 1. Einleitung - Was ist das Index Selection Problem?

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Von der spezialisierten Eigenentwicklung zum universellen Analysetool. Das Controlling-Informationssystem der WestLB Systems

Von der spezialisierten Eigenentwicklung zum universellen Analysetool. Das Controlling-Informationssystem der WestLB Systems Von der spezialisierten Eigenentwicklung zum universellen Analysetool Das Controlling-Informationssystem der WestLB Systems Begriffe und Definitionen Data Warehouse - Datensammlung oder Konzept?! Data

Mehr