Wärmedurchgang durch Rohrwände

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wärmedurchgang durch Rohrwände"

Transkript

1 ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche) &Q λ 2 π L Q & λ 2 π L Inegon n en Genzen nnen un ußen : λ 2 π L λ 2 π L ln λ 2 π L ( ln ln ) ämeuchgng uch Rohe (eevewenung nu nch bspche) See

2 eehn Konvekon (nnen un ußen) uf: &Q ( ) oe umgefom ( ) &Q oe umgefom Duch on e e nele (Leung un 2 x Konvekon) egb sch: m gl: ln 2 π L λ es w n ese Glechung esez: k es folg: ln 2 π L λ Be n Schchen egb sch m: z ln n z 2 π L z λz ämeuchgng uch Rohe (eevewenung nu nch bspche) See 2

3 .. Sonefll Dünnwnges Roh m goße ämelefähgke λ, ohne Isoleung. λ Cu, lso ln m s l ln seh klen un venchlässgb. λ Es gl nn: oe bzw..2. Sonefll 2 Isolees Fenhezoh (Shl) obesch veleg (Hezmeum sse). R Iso ln ln 2 π L λ 2 π L λ S R Iso Iso M λ S 60 un λ Iso 0, 045 s λ S >> λ Iso (sse) s bhängg von e Sömungsgeschwngke, em Rohuchmesse, e Tempeu usw. Gößenonung: m K (Luf, uhen) s bhängg von e nempeu, em Rohuchmesse, e Umgebungsempeu usw. Gößenonung Dm s >> un es egb sch Iso ln 2 π L λ Iso Iso ämeuchgng uch Rohe (eevewenung nu nch bspche) See 3

4 2. nwenung - ämeämmung von ämeveelungsnlgen De EnEV scheb e ämeämmung von ämeveelnlgen vo. Rohleungen un muen sn we folg gegen ämeveluse zu ämmen: Rohleungen Mnescke e Dämmschch, bezogen uf ene ämelefähgke von 0,035 / Innenuchmesse bs 22 mm 20 mm Innenuchmesse übe 22 mm bs 30 mm 35 mm Innenuchmesse übe 35 mm bs glech Innenuchmesse 00 mm Innenuchmesse übe 00 mm 00 mm Tb: Dämmschchcken von Rohleungen un muen Be Melen m neen ämelefähgkeen sn e Dämmschchcken umzuechnen. Fü e Umechnung gl, ß e zulässge ämesom je m Rohlänge glech sen muß. kons. oe () () 2. Dzu muß zunächs e vohnene ämeuchgngskoeffzen, e sch us en gefoeen Dämmschchcken un e ämelefähgke λ 0,035 / egb, beechne ween. uf L m Rohlänge bezogen, so egb sch m ußenuchmesse es Rohes un s Iso Schchcke e Isoleung: 2 siso ln k R 2 π λiso π s L Iso k R ämeuchgngskoeffzen bezogen uf m Rohlänge nch EnEV, k (n klchke k R.) L Dm läß sch e lu EnEV gefoee ämeuchgngskoeffzen k RVO beechnen: 2 svo ln k 2 π λ π s RVO VO VO ämeuchgng uch Rohe (eevewenung nu nch bspche) See 4

5 m k RVO ämeuchgngskoeffzen nch EnEV s VO Schchcke e Dämmung nch EnEV sehe Tb. λ VO 0,035 /() nch EnEV 0 /(m²k) ngenommen Fü Dämmsoffe m bwechenen ämelefähgkeen λ R eechne sch e Schchcke e Dämmung s une e Voussezung gleche ämeuchgngskoeffzenen k k 2 2 us: L L k RVO oe k R 2 λ R ln π 2s s 2 λ R ln 2s π 0 s k RVO Dese Glechung knn uch Ieon nch s ufgelös ween. nes ls fü mellsche Rohweksoffe s e ämelefähgke be Kunssoffohen nch zu venchlässgen. Mn ehäl nn folgene Bezehung: k R π ( 2 s) ln ln 2 λ 2 λ s m Innenuchmesse e Rohleung λ ämelefähgke es Rohweksoffs R Quelle: Denpool IfHK, FH olfenbüel ämeuchgng uch Rohe (eevewenung nu nch bspche) See 5

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q&

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q& Pro. r.-in. tths n Insttut ür hermsche erhrenstechnk r.-in. homs etze ärmeübertrun I ösun zur. Übun onenston onensert z.b. ssermp n ener kten Fäche nn bet sch n eser Fäche en onenst n em s onenst nch unten

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

9 Integration von Funktionen in mehreren Variablen

9 Integration von Funktionen in mehreren Variablen 9 Integrton von Funktonen n mehreren Vrlen 9 9 Integrton von Funktonen n mehreren Vrlen Der Integrlegrff für Funktonen n mehreren Vrlen st wesentlch velfältger ls der e Funktonen n ener Vrlen. Dem unestmmten

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

Wert eines Terms berechnen

Wert eines Terms berechnen gnz kl: Mthemtik 3 - Ds Feienheft mit Efolgsnzeige 3 Wet eines Tems eechnen Teme sind sinnvolle Rechenusdücke, die us Zhlen, Vilen, Rechenzeichen und Klmmen estehen können. Sinnlose Rechenusdücke (z. B.:

Mehr

6 Realisierung einer hochfrequenten Strommesstechnik

6 Realisierung einer hochfrequenten Strommesstechnik 6 Realseung ene hohfequenen Soessehnk En Zel dese Abe s es, ene Soessehnk u enwkeln, de es eöglh, auh hohfequene Söe u unesuhen. M de n Kap. vogesellen Dpolodell s das aufgund de deken Popoonalä wshen

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung Foucau-Pende Newonsche Gundechun oeenden Sse Newons Gechun n de Fo Kaf ech Masse a escheunun nu n ene Ineasse d h, n ene Sse, das sch eadn konsane Geschwndke bewe In ene de Wnkeeschwndke oeenden Sse daeen

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens De relevnen Csh Flows n der Unernehmensbewerun us der Sch des Rechnunswesens Edwn O Fscher rl-frnzens-unversä rz Oober 26 DCF-Bssmodelle Percen of Sles-Mehode Fllsude Übersch o onsner Verschuldunsrd o

Mehr

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der

Die Kugel Lösungen. 1. Von einer Kugel ist der Radius bekannt. Berechne Volumen und Oberfläche der De Kugel Lösungen 1. Von ener Kugel st der Radus bekannt. Berechne Volumen und Oberfläche der Kugel. r,8 cm 5, cm 18,6 cm 4, cm 5,6 cm 4,8 cm V 0 cm³ 64 cm³ 6 954 cm³ cm³ 76 cm³ 46 cm³ O 181 cm² 5 cm²

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Die Strömungsrichtung ist (aufgrund freier Konvektion) von unten nach oben. Die Wärmeübertragungsfläche ist im abgebildeten Fall: mit Ra = Gr Pr S ;

Die Strömungsrichtung ist (aufgrund freier Konvektion) von unten nach oben. Die Wärmeübertragungsfläche ist im abgebildeten Fall: mit Ra = Gr Pr S ; Prof. Dr.-Ing. Mtths n Insttut für Thershe Verfhrenstehnk Dr.-Ing. Thos etel äreübertrgung I ösung ur 4. Übung (ehälterseen r ene Flüssgket erhtt, so sett be Übershreten er eetepertur T Verpfung en. e

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1 Stehn Brumme, SST,.FS, Mtrelnr. 7 5 44 Aufge... Zegen Se, dss de Folge onvergert und der Grenwert st, d.h. es glt lm Es st u egen, dss ene Nullfolge st D ene Nullfolge st, stellt ene onvergente Folge mt

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung

Der schematische Aufbau einer Reibkupplung zeigt das Bild Bild 2.45 Schematischer Aufbau einer mechanischen Reibkupplung ..1 Enkuelvorgng Der schemtsche ufbu ener Rebkulung zegt ds Bld.45. Bld.45 Schemtscher ufbu ener mechnschen Rebkulung Ene ulung wndelt de Drehzhl durch Schluf während des uelvorgnges, ds Drehmoment st

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π dn d σ : gb de nzahl de Telchen an, de o Zeenhe und o Flächenenhe n gemessen weden ([ dσ ] m, gebäuchlche Enhe: ban 00 (m) 0-8 m ). d σ : dn n πρdρ πρ( dρ ρ( dρ snχ W ühen den Raumwnel d Ω : π sn χ 3 {

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

Lineare Gleichungssysteme und ihre Lösung

Lineare Gleichungssysteme und ihre Lösung III Lnee Glechungssysteme und he Lösung In den Kpteln II. und II. wude de Bedeutung von Lneen Glechungssysteme (LGS) fü Poleme de Anlytschen Geomete deutlch. eshl stellt sch de Fge nch systemtschen Lösungsvefhen.

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

κ 1 Indizierung Verwendete Größen

κ 1 Indizierung Verwendete Größen Formelsmmlung Gsdynmk Prof. Dr.-Ing. Jnusz. zymczyk FH-trlsund Indzerung Index Bedeutung,, k, l, lokle Größe Ruhegröße/Gesmtgröße/otlgröße (Kessel, Brennkmmer U Umgebung E m ustrtt s n der Poston des toß

Mehr

Formelsammlung Finanzmathematik

Formelsammlung Finanzmathematik FH D WS 9/ Pof. D. Hos Pees Oobe 9 Foelslug Fze BA-Sudegg Ieol Mgee See /7 Foelslug Fze Sue, Folge ud ee eceegel fü Sue: U Aesce Folge: U U... U U U (Dsbuvgesez) U U U U (Udzeug) d d,,3,... Aesce ee: d

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

B.Sc.-Modulprüfung Geotechnik I

B.Sc.-Modulprüfung Geotechnik I Fcheeich Bu- und Umweltingenieuwissenschften Institut und Vesuchsnstlt fü Geotechnik Pof. D.-Ing. Rolf Ktzench Fnzisk-Bun-Stße 7 6487 Dmstdt Tel. +49 6151 16 149 Fx +49 6151 16 6683 E-Mil: ktzench@geotechnik.tu-dmstdt.de

Mehr

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider TU Deen, AG Mechanche Vefahentechnk, Voleene: D.Ing. Benno Weely 1/7 yklonabchee Lteatu: E. Muchelknautz (Stuttgat), CIT 44 (197), N. 1+, S. 671 Duckelut un Abcheega n yklonen, VDI Wämeatla, 6. Aufl.,

Mehr

Einfache Elektrische Netzwerke

Einfache Elektrische Netzwerke un esstechnik Netzwerke un Schltungen Nme, Vornme Testt Besprechung:..8 Abgbe:..8 infche lektrische Netzwerke Aufgbe : Strommessung ( Wir berechnen zuerst ie Wierstäne,, un. m B messen wir Ströme bis zu

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

Arbeit, Energie, Impuls und Erhaltungssätze

Arbeit, Energie, Impuls und Erhaltungssätze Abe, Enege, Ipls n Ehalngssäze De Enfühng on physkalschen Gößen, fü e en Ehalngssaz gl, lefe seh lesngsfähge Saegen z Beechnng on physkalschen Vogängen. In e klassschen Mechank s e Gesaasse enes abgeschlossenen

Mehr

5. Das Finite-Element und die Formfunktion

5. Das Finite-Element und die Formfunktion 5. Ds Fnte-lement nd de Formfnkton Prof. Dr.-Ing. Uwe Renert Fcherech Prof. Dr.-Ing. Mschnen Uwe Renert telng Mschnen HOCHSCHU BRMN 5. Bespel des ensetg engespnnten nd f Zg ensprchten Blkenelements Bestmmng

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnk Telübung: nbelsteter Spnnungsteler Gruppentelnehmer: jnovc, Pcr Abgbedtum: 25.01.2006 jnovc, Pcr Inhltsverzechns 2HEA INHALTSVEZEICHNIS 1. Aufgbenstellung...

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Kopplung von statistischen Monte-Carlo Solvern mit numerischen Fluidcodes

Kopplung von statistischen Monte-Carlo Solvern mit numerischen Fluidcodes Kopplung von ssschen Mone-Clo Solven m numeschen Fludcodes Dplombe von Pe Böne p.boene@fz-juelch.de engeech be Pof. D. Jög Kelle Fchbeech Infomk Fenunvesä n Hgen Jülch / Düen Jul 005 Inhlsvezechns Enleung...

Mehr

Mserlösng zr Afgabe, H5. as Pnk Nach Messng könne es ach ene -Schalng sen. Für ene -Schalng würe aber be Messng e gesame Spannng über em Wersan as abfallen. 5 µf,sec Ω as as en as en as as as Pnke. = +

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

2. Stationäre Wärmeleitung

2. Stationäre Wärmeleitung Sttonäre Wärmeletung Von ttonärer Wärmeletung prcht mn, fll ch de Temperturen nur mt dem Ort, jedoch ncht mt der Zet ändern Der Wärmetrom t dnn bezüglch Ort und Zet kontnt ( Q ɺ kontnt) De Wärmetromdchte

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at

Die. Zeltla1.08. bis 08.08.201. Stadtgemeinde St.Valentin www.takatuka.at Die m n e i e c h e F Zeltl1.08. bis 08.08.201 0 l t n N ge im 5 2015 Stdtgemeinde St.Vlentin www.tktuk.t Liebe Kinde! Liebe Elten! 2 Beeits in wenigen Wochen beginnen die Sommefeien. Die Stdtgemeinde

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen

5.4. Aufgaben zur Kurvenuntersuchung zusammengesetzter Funktionen 5.. Aufgbn zu Kuvnunsuchung zusmmngsz Funkionn Aufgb : Kuvndiskussion von Eponnilfunkionn Unsuch ds Schubild d Funkion f uf Symmi, Achsnschnipunk, Vhln fü ±, Em- und Wndpunk. Skizzi ds Schubild im wsnlichn

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

5. Mehrkomponentensysteme - Gleichgewichte

5. Mehrkomponentensysteme - Gleichgewichte 5. Mehrkomonentensysteme - lechgewchte 5.1 Phsenglechgewchte Enfluss gelöster Stoffe osmotscher ruck Trennung zweer Lösungen durch sem-ermeble Membrn, de nur für ds Lösungsmttel durchlässg st (z.. Schwensblse,

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Druckverluste durch Rohrverzweigungen

Druckverluste durch Rohrverzweigungen Druckverluste durch Rohrverzegungen llgemen Enzelderstände e entle, Hezkessel, Hezkörper, Rohrbögen und Rohrverzegungen us. erzeugen durch eränderung der Strömung ebenfalls enen Druckverlust, der überunden

Mehr

Grundlagen der Wärme- und Stoffübertragung

Grundlagen der Wärme- und Stoffübertragung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG Fkultät für Verfhrens- und Systemtechnk Insttut für Strömungstechnk und Thermodynmk Prof Dr-Ing E Specht Vorlesungsmnuskrpt Grundlgen der Wärme- und Stoffübertrgung

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Das Drei-Körper-Problem und Jupiters Wirkung auf die Erde

Das Drei-Körper-Problem und Jupiters Wirkung auf die Erde Das De-Köpe-Poblem und upes Wkung auf de de Bs jez haben alle unsee mulaonen Zwe-Köpe-onnensseme bescheben (eak gelös) Wenn w abe enen weeen Planeen hnzufügen (De-Köpe-Poblem) wd ene analsche Theoe el

Mehr

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab Lösungen zu Übungsufgben Angewndte Mthemtk MST Bltt Mtlb Prf.Dr.B.rbwsk Zu Aufgbe ) Errbeten Se sch begefügtes Mterl zur Trpezmethde und zur Smpsnschen Fssregel! (us Ppul, Mthemtk für Ingeneure, Bnd Kp.V.)

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Wir feiern 25jähriges Jubiläum feiern Sie mit!

Wir feiern 25jähriges Jubiläum feiern Sie mit! W f 25jähgs Juläum f S mt Zhlch Juläums-Akto, gussoll Vkostug, Fchtug, Gwspl ud l gut Lu wt S d Edlwss-Apothk. Ut dm Motto GESUND VON KOPF BIS FUSS wd 1.2.2014 gz Woch lg usgg gft. Nütz S us Juläumswoch

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion)

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion) Gymnsum Strhlenstz, Zentrsche Streckung, Verstreckenstz 1. Berechne us den jewels gegebenen Größen de gesuchten Streckenlängen: Gegeben: ) AB = cm ; ZA = 3cm ; ZA ' = 5cm A 'B' Gesucht: b) ZA = 3,5cm ;

Mehr

Affine Geometrie 11. Jahrgang

Affine Geometrie 11. Jahrgang Affine Geomeie. Jhgng Gliedeung. Vekoen. Dellung von Vekoen. Rechnen mi Vekoen. Linee Ahängigkei. Geden- und Eenengleichungen. Gedengleichungen. Eenengleichungen in Pmeefom. Inzidenzpoleme. Punk und Gede

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Entdecke die Welt! Australien USA

Entdecke die Welt! Australien USA Entdecke die Welt! Die Feien sind zu Ende endlich sieht Leon seine Feunde wiede! Jede von ihnen w im Ulub in einem ndeen Lnd. Sie hben lle Postkten geschieben und etws mitgebcht. Die blonde Nicole w in

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4) Lösugshiweise zu Eiseeabeit 2 zum Kus 452, ake u öse, WS 2/2 Lösugshiweise zu Eiseeabeit 2: WS 2/2 ake u öse, Kus 452 (Ihaltliche ezug: KE 4) alyse festvezisliche Wetpapiee 5 Pukte Vo Ihe ak wee Ihe ie

Mehr

Experimentalphysik III TU Dortmund WS2015/16 Shaukat TU - Dortmund. de Kapitel 5. Restkern. Projektil (hier Deuteron) Ejektil (hier Tritium)

Experimentalphysik III TU Dortmund WS2015/16 Shaukat TU - Dortmund. de Kapitel 5. Restkern. Projektil (hier Deuteron) Ejektil (hier Tritium) Expinlphsik III TU Doun WS56 Shuk Khn @ TU - Doun. Kpil 5 5. Supozss - lsisch Suuung - inlsisch Suung Kn wi ngg - ki Suung, Knkionn Kn wi än Schiwis in Bispiln: S, S S, S S, ' S S, ' p P S, ' H P S, S,

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Tirol singt! Didaktische Aufbereitung. Frühling In die Berg bin i gern. zum Lied. Stimmbildung. Tanzanleitung. Instrumentalbegleitung

Tirol singt! Didaktische Aufbereitung. Frühling In die Berg bin i gern. zum Lied. Stimmbildung. Tanzanleitung. Instrumentalbegleitung Trol sngt! Sommer 2015 Nr. 6 2015 2 Trol sngt! Frühlng 2015 Nr. 5 2015 1 ktsche ufberetung zum Led In de Berg bn gern Stmmbldung Tanzanletung Instrumentalbegletung Hörbespel Vdeo Hnwese Ledgut aus Trol

Mehr

Abb. 1: Linien- und Flächenschwerpunkt kreisförmig berandeter Gebiete.

Abb. 1: Linien- und Flächenschwerpunkt kreisförmig berandeter Gebiete. Unv. Pof. D. e. nt. Wolfgng H. Mülle Technsche Unvestät Beln kultät V ehstuhl fü Kontnuumsmechnk und Mteltheoe - KM ek. M Enstenufe 5 0587 Beln. Üungsltt-ösungen De chwepunkt W 0/0. Es soll de ge des nenmttelpunkts

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Einige thermodynamische Relationen

Einige thermodynamische Relationen Pof. D. H.-H. Kohle, WS 005/06 PC Ktel A hemodynmsche eltonen A. A Enge themodynmsche eltonen Nchtg zu PC (olumenbhänggket von U, Gbbs-Helmholtz-Glechung) A. hemodynmsche Gundglechungen (Wedeholung von

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

9 Längen- Flächen- und Volumenmessung

9 Längen- Flächen- und Volumenmessung 9 Längen- Flächen- und Volumenmessung A Länge einer Kurve B Flächenmessung C Volumenerechnung 56 A. Länge einer Kurve ERKLÄRUNG 9.1. (Länge einer Kurve in Funktionsdrstellung.) Es sei f eine uf dem Intervll

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig. Prüfung in Dynamik 12. August 2015

Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig. Prüfung in Dynamik 12. August 2015 Institut fü Mechanik Pof. D.-Ing. habil. P. Betsch Pof. D.-Ing. habil. Th. Seelig Püfung in Dynaik 12. August 2015 Aufgabe 1 (ca. 18 % e Gesatpunkte) g l θ In e Abbilung ist ein otieenes Kaussell skizziet.

Mehr

Messung der relativen Konzentration

Messung der relativen Konzentration Messung der relten Konzentrton Lorenzkure Gn-Koeffzent Stndrdserter Gn-Koeffzent Dr. Rcbl Delgdo/ Prof. Kück Lehrstuhl Sttstk Relte Konzentrton Bblogrfe: Prof. Dr. Kück; Unerstät Rostock 005; Sttstk, Vorlesungsskrpt

Mehr