Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v"

Transkript

1 Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v }{{} 1 A 1 = v }{{} 2 A 2 Q 1 1 m 2 Q 2 Massenfluss Volumenstrom

2 Hydrodynamik Beispiel Rohrströmung: A = konst geschlossene Stromröhre Wasserstrahl m 2 m 1 m geschlossenes Kontrollvolumen m 1 = m 2 + m 3 2

3 Kontinuität WICHTIG: In der 1-dimensionalen Kontinuitätsgleichung ist v ein Mittelwert der Geschwindigkeit. In Wirklichkeit ist v nicht konstant wegen Reibungseffekten, Wirbeln,...! h y x Realität v = v(y) v ist konstant in der Kontinuitätsgleichung Der Massenstrom muß der Gleiche sein ρv(y)dy = ρ vh 3

4 Bernoulli 2.Newton sches Gesetz: Masse Beschleunigung = Summe der äußeren Kräfte m d v dt = F a Bewegungsgleichung für ein infinitesimales Element entlang einer Stromlinie g Druck Reibung z s ρ d v dt = p s ρgdz ds R Trägheit Gravitation 4

5 Bernoulli entlang einer Stromlinie: v = v(s, t) totale (substantielle) d v dt = v Beschleunigung eines Partikels d v = v v dt + t s ds t + ds dt v s = v t + v v s lokale Beschleunigung konvektive Beschleunigung 5

6 Beispiel Rohrströmung A ρ Diffusor v(x) v1(t) v2(t) A,ρ = konst v 1 (t) = v 2 (t) nur lokale Beschleunigung v0 = konst nur konvektive Beschleunigung 6

7 Beispiel Annahmen: inkompressibel (ρ = konst) reibungsfrei (R = 0) stationär t = 0 konstante Gravitation ( g = konst) ] ρ[ v t + v v s = p s ρgdz ds R = 0 = 0 f(s) s = d ds 1 2 ρ dv2 ds = dp ds ρgdz ds ρ 2 v2 + p + ρgz = konst 7

8 Druckmessung statischer Druck: p (Index: 1, 2, a, ) p p Totaldruck (Pitotrohr): p 0, p 01, p 02, p t p 0 = p ρv2 + ρgh bei konstanter Höhe h = 0 p 0 = p ρv2 8

9 Druckmessung Potentialdruck: p pot = ρgh dynamischer Druck: p dyn = 1 2 ρv2 h die kinetische Energie wird umgewandelt, wenn die Strömung auf v = 0 verzögert wird 9

10 6.4 Aus einem großen Überdruckbehälter strömt Wasser ins Freie. Zwischen den Querschnitten A 1 und A 2 wird die Druckdifferenz p gemessen. A 1 = 0, 3 m 2, A 2 = 0, 1 m 2, A 3 = 0, 2 m 2, h = 1 m, ρ = 3 kg/m 3, p a = 5 N/m 2, p = 0, 64 5 N/m 2 g = m/s 2 Bestimmen Sie a) die Geschwindigkeiten v 1, v 2, v 3, b) die Drücke p 1, p 2, p 3 und den Druck p über dem Wasserspiegel!

11 6.4 Druckbehälter mit Düse p B h = konst. z gut gerundeter Einlass Venturidüse 11

12 6.4 Erhaltung der Gesamtenergie entlang einer Stromlinie (qualitativ) p 1/2 rho v3**2 rho g h 1/2 rho v2**2 p B 1/2 rho v1**2 p 1 p2 p 3 = p a s Bernoulli: p 0 = p b + ρgh = p i ρv2 i 12

13 6.4 Kontinuität (Massenbilanz): = = ṁ = ρ Q = konst. ρ = konst = v 1 A 1 = v 2 A 2 = v 3 A 3 = A = v = p a) gemessen p = p 1 p 2 Bernoulli: p 1 + ρ 2 v2 1 = p 2 + ρ 2 v2 2 = p = p 1 p 2 = ρ 2 (v2 2 v2 1 ) > 0 v 1 = v 2 A 2 A 1 p = ρ 2 [ 1 A2 2 A 2 1 ] v 2 2 v 2 = 2 ρ p ( ( ) ) = 12 1 A2 2 A 1 m s v 1 = v 2 A 2 A 1 = 4 m s v 3 = v 2 A 2 A 3 = 6 m s 13

14 6.4 Die Venturidüse dient zur Massen- und Volumenstrommessung! Q = va = v 2 A 2 Prinzip: Messung von p Berechnung von v 2 Berechnung von Massen- und Volumenstrom 14

15 6.4 b) Berechnung der Drücke p B,p 1,...,p 3 p 0 stellt die Energie dar, die in kinetische Energie umgewandelt werden kann. p 0 = p B + ρgh = p 1 + ρ 2 v2 1 = p 2 + ρ 2 v2 2 = p 3 + ρ 2 v2 3 Wenn ein Druck bekannt ist, können die anderen mithilfe der Bernoulli- Gleichung berechnet werden. p 3 im Austrittsquerschnitt Annahme: parallele Stromlinien am scharfkantigen Austritt

16 Bewegungsgleichung für ein Element x g p(x+dx)da z p(x)da Bewegungsgleichung in x-richtung für ein mitbewegtes Kontrollvolumen dadx (enthält immer die gleichen Partikel) 16

17 Bewegungsgleichung für ein Element m du dt = ẍρdadx = p(x)da p(x + dx)da ẍρdadx = p(x)da Annahme: parallele Stromlinien ( p + p x dx ) da ρẍ = p x ẋ = 0 Geschwindigkeit u = dx dt = ẋ notwendige Bedingung: ẍ = 0 p x = 0 = der Druck im Austrittsquerschnitt ist eine Funktion von y Strömung in Luft: dp dy = ρg Vern. der pot. Energie von Luft p Austritt = p Umgebung = konst. 17

18 6.4 p 3 = p a Bemerkung: Bernoulli: 0 3 p B + ρgh = p a ρv2 3 offener Behälter p B = p a v 3 = 2ρ (p B p a + ρgh) v 3 = 2gh f(a 3 ) Theorem von Torricelli (15.Okt Okt. 1647) 18

19 6.5 Zwei große übereinanderliegende Becken sind durch eine Hebeleitung miteinander verbunden. Am Ende der Leitung befindet sich eine Düse. A = 1 m 2, A d = 0, 1 m 2, h = 5 m, H = 80 m, p a = 5 N/m 2, ρ = 3 kg/m 3, g = m/s 2 a) Wie groß ist der Volumenstrom? b) Skizzieren Sie den Verlauf des statischen Druckes in der Leitung! c) Bei welchem Austrittsquerschnitt bilden sich Dampfblasen, wenn der Dampfdruck p D = 0, N/m 2 ist? 19

20 6.5 2 v h g r p a H A s A d 5 4 z inkompressibel, reibungsfrei, stationär Bernoulli a) Volumenstrom: Q = va = v 5 A 5 Bernoulli: 0 5 s 4 5 Berechnung von p 5 : gerade parallele Stromlinien Druck ist im Austrittsquerschnitt konstant p a + ρgh = p 5 + ρg( s) + ρ 2 v2 5 p 5 = p a + ρgs 20

21 6.5 p a + ρgh = p a + ρgs ρgs ρv2 5 v 5 = 2gH f(a d,s) b) Q = A d v 5 = 4 m3 s p,p0 pa p1 p2 = p3 p4 1/2 rho u^2 p5= pa+rho g s rho g H rho g (H+h) 1/2 rho u 2 d rho g 0 4 s 5 rho g ( s) 21

22 6.5 c) kleinster Druck zwischen 2 und 3: p 2 = p 3 = p D Kontinuität: v 5 A D = v A Bernoulli: p a = p D + ρgh ρv 2 A d = A p a p D ρgh h H = m2 22

23 erweiterter Bernoulli A rho = const. A 1 2 v 1 v 2 Verengung Delta h ~ Delta p Theoretischer Volumenstrom: Q th für reibungsfreie Strömung 1. Bernoulli: p 1 + ρ 2 v2 1 = p 2 + ρ 2 v Kontinuität: v 1 A 1 = v 2 A 2 23

24 erweiterter Bernoulli Verhältnis der Querschnitte: m = A 2 A 1 : Konti v 1 = v 2 m Bernoulli: p 1 ρ v2 2 m2 = p 2 ρ v2 2 v 2 2 v 2 = ( 1 m 2) = 2 p 1 p 2 ρ 2 p ρ(1 m 2 ) 2 p Q th = A 2 ρ(1 m 2 ) = 2 p ρ 24

25 erweiterter Bernoulli (Forts.) In der Realität entstehen Verluste durch Dissipation, Wirbel,... Die Reibung muss berücksichtigt werden. Die Verluste und die Kontraktion werden in der Durchflusszahl α zusammengefasst. 2 p Q real = αa 2 ρ(1 m 2 ) α 1 = α 1 m 2 α aus Experimenten Wirbel, Dissipation Die Strömung in Rohren kann ebenfalls so bestimmt werden. 25

26 erweiterter Bernoulli (Forts.) Druckverlust in Einbauten (Krümmer, Ventile, Verengung...) p v = ζ 1 2 ρv2 Koeffizient: ζ = p v 1 = Druckverlust 2 ρv2 dynamischer Druck v = 1 2 p ζ ρ(1 m 2 ) = Q = v A = 1 A ζ (Experimente, Standards Katalog) 2 p ρ(1 m 2 ) 26

27 erweiterter Bernoulli Bernoulli von 1 nach 2 p 1 + ρ 2 v2 1 p 2 + ρ 2 v2 2 konst e Fall: Arbeit wird zugeführt e a p 1 + ρ 2 v2 1 + e a = p 2 + ρ 2 v2 2 2.Fall: Verlust e v p 1 + ρ 2 v2 1 = p 2 + ρ 2 v2 2 + e v 27

28 Beispiel p a g basin l rho 2d l l 4d d d l container l omega p i 28

29 Beispiel Ein großes Becken ist mit einem geschlossenen Behälter verbunden. Der Einlass ist gut gerundet. Die Verbindung besteht aus einem gekrümmten Rohr. Jedes Teilstück des Rohres mit der Länge l hat einen Rohrreibungskoeffizienten λ. Das Rohr dreht sich mit konstanter Winkelgeschwindigkeit ω. Bei der Winkelgeschwindigkeit ω 0 ist der Massenstrom gerade null. a) Berechnen Sie den Druck p i im Behälter b) Berechnen Sie den Volumenstrom Q durch das Rohr für ω = 2 ω 0 c) Skizzieren Sie die mechanischen Energieanteile für eine Stromlinie, beginnend an der Oberfläche Gegeben: l,d,g,ρ,ω 0,p a,λ, Hinweis: p r = ρω2 r 29

30 Beispiel a) kein Massenstrom bei ω = ω p 5 = p a + 4ρgl p 6 = p ρ(ω 0l) 2 p i = p 6 = p a + 4ρgl ρω2 0 l2 b) Bernoulli im rotierenden System [ω = 2ω 0 ]: 1 6 p a + 4ρgl = p i ρv ρ(2ω 0l) ( ) + 2 1ρ v2 2λ 2d l + v 2 3 λ 4d l + v 2 6 λ2l d 2* 3 3*

31 Beispiel Kontinuität: v 2 = v 6( d 2d )2 = v 3 (4d 2d )2 v2 = 1 4 v 6 ; v3 = 1 16 v 6 0 = 3 2 ρω2 0 l2 + 1 [ 2 ρv λ l d ( ] 24 ) v 6 = 3ω2 0 l2 1 + λd l ; Q = πd2 4 v 6 31

32 Beispiel p a p 2 delta p v 2 1/2 rho v 4 rho g l p /2 rho(2 omega l) 32

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

14. Strömende Flüssigkeiten und Gase

14. Strömende Flüssigkeiten und Gase 14. Strömende Flüssigkeiten und Gase 14.1. orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

Kontinuitätsgleichung

Kontinuitätsgleichung Kontinuitätsgleichung Bilanzierungen Kontinuitätsgleichungen stellen Massenbilanzen dar M an spricht von der Kontinuitätsgleichung und stellt sie je nach Art der Massenbilanz unterschiedlich dar Bilanzierungen

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Versuch D4: Volumenstrommessung

Versuch D4: Volumenstrommessung Versuch D4: Volumenstrommessung 1 Einführung und Grundlagen Bei technischen Prozessabläufen ist die Prozessüberwachung von zentraler Bedeutung für den korrekten Ablauf und für die Sicherheitstechnik. Sollen

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Aerodynamik von Hochleistungsfahrzeugen. Gliederung.

Aerodynamik von Hochleistungsfahrzeugen. Gliederung. WS10/11, Folie 2.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

9.Vorlesung EP WS2008/9

9.Vorlesung EP WS2008/9 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Aufgabe 1 Hydrostatik (23 Pkt.)

Aufgabe 1 Hydrostatik (23 Pkt.) Aufgabe 1 Hydrostatik (23 Pkt.) R 1 Das in der Abbildung dargestellte Reservoir besteht aus zwei hydraulisch miteinander verbundenen Kammern. In der geneigten Trennwand ist ein Kolben eingebaut, der sich

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Universität Karlsruhe Institut für Hydromechanik

Universität Karlsruhe Institut für Hydromechanik Universität Karlsruhe Institut für Hydromechanik Kaiserstr. 12 D-76128 Karlsruhe Tel.: +49 (0)721/608-2200, -2202 Fax: +49 (0)721/66 16 86 ifh@uni-karlsruhe.de www.ifh.uni-karlsruhe.de lehre@ifh.uka.de

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

5. Impulssatz 5-1. Aufgabe 5.1 [8]

5. Impulssatz 5-1. Aufgabe 5.1 [8] 5-1 5. Impulssatz Aufgabe 5.1 [8] In einem horizontal liegenden 60 -Rohrkrümmer verjüngt sich in Fließrichtung der Rohrinnendurchmesser von D 1 = 0,4 m auf D = 0, m. Am Krümmerausgang (Schnitt -) herrscht

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Bild 2: Anwendung des Trägheitsprinzips auf eine Strömung, links zulässig, rechts unzulässig

Bild 2: Anwendung des Trägheitsprinzips auf eine Strömung, links zulässig, rechts unzulässig Impulssatz 1 Impulssatz Trägheitsprinzip Die Gleichungen der Strömungslehre gehen auf die klassische Mechanik von Isaac Newton zurück. In seinen Philosophiae Naturalis Principia Mathematica (Mathematische

Mehr

Grundlagen der Numerischen Thermouiddynamik CFD 1

Grundlagen der Numerischen Thermouiddynamik CFD 1 Grundlagen der Numerischen Thermouiddynamik CFD 1 Skriptum zur Vorlesung Dr. J. Sesterhenn Fachgebiet Numerische Fluiddynamik Technische Universität Berlin Wintersemester 2009/2010 ii Inhaltsverzeichnis

Mehr

Fluidmechanik II. Fluidmechanik II, N. A. Adams

Fluidmechanik II. Fluidmechanik II, N. A. Adams Fluidmechanik II Wintersemester 2013/2014 Vorlesung: Zeit: Montag17:00-18:30 Ort: MW 0001 Übung (ab 21.10.) Zeit: Montag18:35-19:20 Ort: MW 0001 Gruppenübung siehe Web Manuskript und Übungsunterlagen:

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

Klausur Strömungsmechanik I (Bachelor) 11. 03. 2015

Klausur Strömungsmechanik I (Bachelor) 11. 03. 2015 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömunsmechanik I (Bachelor) 11. 03. 25 1. Aufabe (9 Punkte) Ein autonomes Unterseeboot erzeut Auftrieb durch einen externen Ballon. Der Hauptkörper des U-Boots

Mehr

Kurzfragen (24 Punkte)

Kurzfragen (24 Punkte) Kurzfragen (24 Punkte) Kurzfrage a Gegeben sei ein Bernoulli-Diffusor. Die Wandreibung sei vernachlässigbar, das Fluid sei inkompressibel. Gegeben: A 1, A 2, c 1, l Diffusor, h, ρ Ka1) Leiten Sie eine

Mehr

Ergänzungen zu Physik I Universität Zürich, HS 2010, U. Straumann Version 26. Februar 2011

Ergänzungen zu Physik I Universität Zürich, HS 2010, U. Straumann Version 26. Februar 2011 Ergänzungen zu Physik I Universität Zürich, HS 2010, U. Straumann Version 26. Februar 2011 Inhaltsverzeichnis 1 Statik und Dynamik der Gase und Flüssigkeiten 1.1 1.1 Fest, flüssig, gasförmig.................................

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Hydraulik I. Roman Stocker. Gerinneströmung (ohne Reibung)

Hydraulik I. Roman Stocker. Gerinneströmung (ohne Reibung) Hydraulik I Roman Stocker Gerinneströmung (ohne Reibung) Begriffe der Gerinneströmung (1) z o = Sohlhöhe h = Wassertiefe v 2 /(2g) = Geschwindigkeitshöhe (Annahme: α = 1) H E = Energiehöhe H 0 = spezifische

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung der Übungsklausur Lösung der Übungsklausur Aufgabe 1 Verständnisfragen (30 Punkte. a Zeichnung: Erklärung: Wenn die Person,,steht

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar)

Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar) I.12 Elastizität Soweit: starre Körper, imkompressibel, in Wirklichkeit sind alle Körper kompressibel (zusammendrückbar) Beispiele: Feder Balken Torsion Durch äußere Kraft wird Körper deformiert, nach

Mehr

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele

Arbeitsblatt zur Ventilberechnung Berechnungsbeispiele Arbeitsblatt zur Ventilberechnung Berechnungsbeisiele Inhalt Seite Ventilberechnung bei Flüssigkeiten Ventilberechnung bei Wasserdamf 5 Ventilberechnung bei Gas und Damf 7 Ventilberechnung bei Luft 9 Durchfluss

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Anwendung von CFD-Verfahren zur Analyse von Propellerentwürfen im Hinblick auf verkehrswasserbauliche Fragestellungen

Anwendung von CFD-Verfahren zur Analyse von Propellerentwürfen im Hinblick auf verkehrswasserbauliche Fragestellungen zurück zum Inhaltsverzeichnis zur Kurzfassung Anwendung von CFD-Verfahren zur Analyse von Propellerentwürfen im Hinblick auf verkehrswasserbauliche Fragestellungen M. Abdel-Maksoud, S.-B. Müller, M. Gutsch

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

Zh. Zhang. Freistrahlturbinen. Hydromechanik und Auslegung. fya Springer

Zh. Zhang. Freistrahlturbinen. Hydromechanik und Auslegung. fya Springer Zh. Zhang Freistrahlturbinen Hydromechanik und Auslegung fya Springer Inhaltsverzeichnis Einleitung 1 1 Arbeitsprinzip von Pelton-Turbinen 11 1.1 Umwandlung von hydraulischer Energie in mechanische Energie..

Mehr

Klausur Fluidenergiemaschinen Fragen H Lösung:

Klausur Fluidenergiemaschinen Fragen H Lösung: Klausur Fluidenergiemaschinen (mit Lösungen).0.00 Fragen. Wasser soll mit einer Pumpe von einem unteren Becken in ein oberes Becken gefördert werden. Beide Becken sind offen. a) Stellen Sie qualitativ

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik)

Bild 6.1: Beispiel für eine Hydropumpe Radialkolbenpumpe (Wepuko Hydraulik) 6 Hydropumpen 6.1 Allgemeines Als Herzstück eines hydraulischen Systems gilt die Hydropumpe. Die über ihre Antriebswelle zugeführte mechanische Energie wird dazu benötigt, die Energie des durch die Pumpe

Mehr

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage

Strömungsmechanik. Eine kompakte Einführung für Physiker und Ingenieure. Hendrik Kuhlmann. 2., aktualisierte Auflage Strömungsmechanik Eine kompakte Einführung für Physiker und Ingenieure 2., aktualisierte Auflage Hendrik Kuhlmann 4.3 Anwendungen der Bernoulli-Gleichung z p u g x Abb. 4.4: Stromlinien um einen homogen

Mehr

Oberflächenspannung I

Oberflächenspannung I Oberflächenspannung I In einer Flüssigkeit wirkt auf ein Molekül von allen Seiten die gleiche Wechselwirkungskraft mit anderen Molekülen. Diese Symmetrie ist an der Oberfläche verletzt. Ein Molekül hat

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr