Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 11 Produktion, Sparen und der Aufbau von Kapital"

Transkript

1 apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs

2 Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion: Y = F(, ) Die Produkion häng langfrisig g ab vom: A echnischen Wissen (A ); Arbeiseinsaz (Beschäfigung ) und apialbesand ( ) Wir konzenrieren uns auf die Enwicklung des apialbesands und reffen daher folgende Annahmen: 1. Bevölkerungsgröße, Parizipaionsrae und Ab Arbeislosenquoe nehmen wir als konsan an: = 2. Es gib keinen echnischen Forschri. A =A=1 Y F(, ) =

3 11-1 Die Wechselwirkung zwischen Produkion und apial Zwei Beziehungen zwischen Produkion und apial besimmen langfrisig die Produkion: Die Höhe des apialbesands beeinfluss die Güermenge, die produzier werden kann. Die Produkionsmenge beeinfluss, wie viel gespar und invesier werden kann und dami, wie viel apial akkumulier wird.

4 Die Wechselwirkung zwischen Produkion und apial apial, Produkion und Sparen/Invesiionen Y = F(, ) I = S = s Y Δ = I Abschreibungen

5 Die Wirkung von apial auf die Produkion Uner der Annahme konsaner Skalenerräge gil für die Beziehung zwischen Produkion je Beschäfigen und apialinensiä (/) : Y Y = F,1 f F,1 Vereinfach: = f mi: Uner diesen Annahmen läss sich die Beziehung zwischen Produkion und apial (jeweils je Y Beschäfigen) wie folg schreiben: In Woren: Seig die apialinensiä (apial je Beschäfigen), dann seig auch die Produkion je Beschäfigen. = f

6 Die Wirkung der Produkion auf die apialakkumulaion Produkion und Invesiion: Zwischen privaer Ersparnis und Invesiionen beseh folgende Beziehung : I = S + ( T G) Wenn T = G T G = 0 I = S S = sy 0 < s < 1 Die Invesiionen ensprechen der privaen Ersparnis; diese seig proporional mi dem Einkommen I = sy Die Invesiionen sind deshalb proporional zur Produkion: Je höher die Produkion, deso höher die Ersparnis; umso höher sind dami auch die Invesiionen.

7 Die Wirkung der Produkion auf die apialakkumulaion Invesiion und apialakkumulaion: Die Enwicklung des apialbesands im Zeiablauf: = ( 1 δ ) + I + 1 δ bezeichne die Abschreibungsrae. ombinieren wir die Beziehung zwischen Produkion und Invesiion, I = sy, und die Beziehung zwischen Invesiion und apialakkumulaion, so erhalen wir die zweie zenrale Gleichung der Wachsumsheorie: Y + 1 ( 1 δ ) s = +

8 Die Wirkung der Produkion auf die apialakkumulaion Produkion und apial je Beschäfigen: Y + 1 = ( 1 δ ) + s Eine Umformung erlaub es uns, die Veränderung der apialinensiä über die Zei zu berachen: s Y δ + = + 1 In Woren: Die Veränderung der apialinensiä (linke Seie) is gleich der Ersparnis je Beschäfigen minus den Abschreibungen auf apial je Beschäfigen (reche Seie).

9 11-2 Sparquoe und apialakkumulaion Wir haben zwei Beziehungen hergeleie: Y = f s Y + 1 = δ Erse Beziehung: Das apial besimm über die Produkionsfunkion die Produkion Zweie Beziehung: Die Produkion wirk ihrerseis über die Ersparnis auf die apialakkumulaion Führen wir nun beide Beziehungen zusammen, so können wir die Enwicklung von Produkion und apial im Zeiverlauf berachen.

10 Die Dynamik von apialbildung und Produkion Y = f s Y = δ + 1 Ersezen wir in der rechen Gleichung die Produkion je Beschäfigen (Y /) durch f( /), dann erhalen wir: = sf δ + 1 Veränderung der Invesiionen Abschreibungen apialinensiä vom während des während des Jahr zum Jahr +1 1 Jahres Jahres

11 Die Dynamik von apialbildung und Produkion = sf δ + 1 Veränderung der Invesiionen Abschreibungen apialinensiä vom während des während des Jahr zum Jahr +1 Jahres Jahres Überseig die Invesiion je Beschäfigen die Abschreibungen je Beschäfigen, dann is die Veränderung der apialinensiä posiiv: Das apial je Beschäfigen seig. Wenn die Invesiion je Beschäfigen kleiner is als die Abschreibungen je Beschäfigen, dann is die Veränderung der apialinensiä negaiv: Das apial je Beschäfigen fäll.

12 Die Dynamik von apialbildung und Produkion Dynamische Enwicklung von apial und Produkion apial ha abnehmende Grenzerräge: Die Produkionszuwächse werden immer kleiner Die Ersparnisse (ein Teil der Produkion) werden invesier Abschreibungen δ / Ausgangspunk g ( o /) Sind apial und Produkion niedrig, dann überseigen die Invesiionen die Abschreibungen; der apialbesand wächs. igen Y/ je Beschäf Produkion Y*/ B C D A ( o /) */ apialinensiä / Produkion je Beschäfigen f( /) Invesiionen je Beschäfigen sf( /) AB = Produkion je Beschäfigen AC = Invesiion je Beschäfigen AD = Abschreibungen AC > AD Die Abschreibungen je Beschäfigen seigen proporional mi der apialinensiä.

13 Die Dynamik von apialbildung und Produkion Dynamische Enwicklung von apial und Produkion Bei 0 / is die Differenz zwischen Invesiionen und Abschreibungen posiiv (Srecke CD). apialinensiä und Produkion je Beschäfigen seigen also. je Beschäf igen Y/ Y*/ B C Abschreibungen / δ Produkion je Beschäfigen f( /) Invesiionen je Beschäfigen sf( /) Produkion D A Sind apial und Produkion hoch, liegen die Invesiionen uner den Abschreibungen; der apialbesand nimm ab. ( o /) */ apialinensiä /

14 Die Dynamik von apialbildung und Produkion Beim iveau */, sind die Invesiionen gerade groß genug, um die Abschreibungen zu decken. apialinensiä und Produkion je Beschäfigen bleiben von da an konsan auf ihrem langfrisigen Gleichgewichsniveau. igen Y/ je Beschäf Produkion Y*/ B C D A ( o /) */ Abschreibungen δ / Produkion je Beschäfigen f( /) Invesiionen je Beschäfigen sf( /) apialinensiä / Links von */: Invesiionen > Abschreibungen: apialinensiä seig Rechs von */: Invesiionen < Abschreibungen: apialinensiä fäll

15 apial und Produkion im Seady Sae 1 Als Seady Sae bezeichne man den Zusand, bei f s δ = +1 y dem sich Produkion je Beschäfigen und apialinensiä nich mehr verändern. Die linke S i d bi Gl i h i l l i h ll Seie der obigen Gleichung is also gleich ull: f s * * 0 * * 1 δ = = + Die Produkion je Beschäfigen (Y*/) im Seady f s 0 δ = = Y f * * e odu o je esc ä ge ( / ) Seady Sae ergib sich für */ aus der Produkionsfunkion: f =

16 Der Einfluss der Sparquoe auf die Produkion Die Auswirkungen unerschiedlicher Sparquoen Abschreibungen δ / Ein Land mi einer höheren Sparquoe erreich im Seady Sae ein höheres Produkions- niveau je Beschäfigen. je Beschäf igen Y/ Produkion Y 1 / Y 0 / B C A D Produkion f( /) Invesiion bei s 1 s 1 f( /) Invesiion bei s 0 s 0 f( /) ( 0 /) 1 / apialinensiä /

17 Der Einfluss der Sparquoe auf die Produkion Welchen Einfluss ha die Sparquoe auf die Wachsumsrae der Produkion? Die bisherige Analyse liefer uns drei Anworen auf diese Frage: 1. Die Sparquoe beeinfluss die langfrisige Wachsumsrae der Produkion je Beschäfigen nich. Diese lieg bei ull, da die Wirschaf langfrisig zu einem konsanen Produkionsniveau je Beschäfigen konvergier.

18 Der Einfluss der Sparquoe auf die Produkion Welchen Einfluss ha die Sparquoe auf die Wachsumsrae s ae der Produkion? o 2. Die Sparquoe besimm aber die Höhe des langfrisigen Produkionsniveaus i je Beschäfigen. Ceeris paribus erreichen Länder mi einer höheren Sparquoe ein höheres Produkionsniveau.

19 Der Einfluss der Sparquoe auf die Produkion Welchen Einfluss ha die Sparquoe auf die Wachsumsrae der Produkion? 3. Eine höhere Sparquoe läss für einige Zei, nich aber für immer, die Produkion särker wachsen. Das langfrisige Produkionsniveau i seig mi einer höheren Sparquoe. Allerdings kann die Sparquoe die langfrisige Wachsumsrae nich beeinflussen. In der Zei, in der die Produkion anseig, erleb die Ökonomie eine Phase posiiven Wachsums. Sie ende, sobald sie ihren neuen Ruhepunk erreich.

20 Der Einfluss der Sparquoe auf die Produkion Die Auswirkungen eines Ansiegs der Sparquoe auf die Produkion je Beschäfigen Ein Ansieg der Sparquoe führ zu einer Wachsumsperiode, bis die Produkion ihr neues, höheres Seady Sae iveau erreich ha.

21 Der Einfluss der Sparquoe auf die Produkion Die Auswirkungen eines Ansiegs der Sparquoe auf fdie Produkion je Beschäfigen in einer Volkswirschaf mi echnischem Forschri Ein Ansieg der Sparquoe führ zu einer Periode mi höherem Wachsum, bis die Produkion einen neuen, höheren Wachsumspfad erreich ha.

22 Sparquoe und onsum Mi der Sparquoe variier der onsum je Beschäfigen im Seady Sae Die Auswirkungen der Sparquoe auf den onsum je Beschäfigen im Seady Sae je Beschäf igen Y/ Produkion Y 1 / Y 0 / B A S= 1: C/=0 C/ bei s 1 Abschreibungen δ / Produkion f( /) Invesiion bei s 1 s 1 f( /) Invesiion bei s 0 s 0 f( /) onsum C/ bei s 0 : AB S= 0: C/=0 ( 0 /) 1 / apialinensiä /

23 Sparquoe und onsum Die Auswirkungen der Sparquoe auf den onsum je Beschäfigen im Seady Sae Ein Ansieg der Sparquoe führ zunächs zu einem Ansieg des onsums je Beschäfigen im Seady Sae. je Beschäfig gen C/ onsum j Maximaler Seady Sae onsum je Beschäfigen Dann aber (ab s G ) komm es zu einem Rückgang des onsums je Beschäfigen im Seady Sae. s G 0 1 Sparquoe s

24 Sparquoe und onsum Für s > s G, führ eine höhere Sparquoe zu einem Ansieg von Produkion und apial, sie verringer aber den onsum je Beschäfigen. Für s=1, sind zwar apial und Produkion je Beschäfigen maximal. Die gesame Produkion wird aber benöig, um die Abschreibungen zu ersezen. Für onsum bleib nichs mehr übrig. Für Sparquoe s <s G bedeue s >s G ein is Ansieg ineffizien: der Sparquoe onsumverzich (onsumverzich heue würde heue) dauerhaf auch onsum höheren in onsum der Zukunf in der Zukunf! Welche reduzieren! Sparquoe is opimal?

25 Sparquoe und onsum Goldene Regel der apialakkumulaion (Golden Rule): Wähle die Sparquoe s G, die den den maximalen onsum im Seady Sae ermöglich Aber: Ansieg der Sparquoe bis s G bedeue onsumverzich heue: Trade off zwischen Gegenwars- und Zukunfskonsum Unerschiedliche Belasung der Generaionen! Beispiel: Reform der Renenversicherung

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Annahme: Preisniveau und Saasverschuldung Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt)

2) Neoklassisches Wachstumsmodell (ohne technischen Fortschritt) ) Neoklassisches Wachsumsmodell (ohne echnischen Forschri).1) Problemsellung (Arbeismark) Das Problem, das von Solow - dem Begründer der neoklassischen Wachsumsheorie - angegangen wurde, bezog sich auf

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking Seminararbeispräsenaion Risiko und Seuern On he Effecs of Redisribuion on Growh and Enrepreneurial Risk-aking aus der Vorlesung bekann: Posiionswahlmodell Selbssändigkei vs. abhängige Beschäfigung nun

Mehr

Profitmaximierung. Kapitel 11. Profitmaximierung. Profitmaximierung. Profitmaximierung. Profitmaximierung. Marktangebot und Input Nachfrage

Profitmaximierung. Kapitel 11. Profitmaximierung. Profitmaximierung. Profitmaximierung. Profitmaximierung. Marktangebot und Input Nachfrage Profimaximierung Profimaximierung apiel 11 Profimaximierung Markangebo und Inpu Nachfrage Produzenenrene Anwendung von Produkionsheorie auf Wachsum 1 2 Profimaximierung Die Profimaximierung hilf uns Firmenenscheidungen

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

2.1 Produktion und Wirtschaftswachstum - Das BIP

2.1 Produktion und Wirtschaftswachstum - Das BIP 2.1 Produkion und Wirschafswachsum - Das BIP DieVolkswirschafliche Gesamrechnung(VGR)is das Buchführungssysem des Saaes. Sie wurde enwickel, um die aggregiere Wirschafsakiviä zu messen. Die VGR liefer

Mehr

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation Gliederung akroökonomie 1 rof. Volker Wieland rofessur für Geldheorie und -poliik J.W. Goehe-Universiä Frankfur 1. Einführung 2. akroökonomische Analyse mi Flexiblen reisen 3. akroökonomische Analyse in

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen Kapiel IX Öffenliche Verschuldung a) Besandsgröße Einige Kenngrößen Öffenliche Verschuldung, ausgedrück durch den Schuldensand (Schuldner: Bund, Länder, Gemeinden, evenuell auch Unernehmen dieser Gebieskörperschafen,

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität 4. Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen 4.2 egiser 22 Technische Informaik 2 Asynchrone sequenielle chalungen 4. Asynchrone sequenielle chalungen Bei chalnezen exisier kein

Mehr

Grundschaltung, Diagramm

Grundschaltung, Diagramm Grundschalung, Diagramm An die gegebene Schalung wird eine Dreieckspannung von Vs (10Vs) angeleg. Gesuch: Spannung an R3, Srom durch R, I1 Der Spannungsverlauf von soll im oberen Diagramm eingezeichne

Mehr

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen

Übungsaufgaben zu Kapitel 5: Erwartungen Die Grundlagen Kapiel 5 Übungsaufgaben zu Kapiel 5: Erwarungen Die Grundlagen Übungsaufgabe 5-1a 5-1a) Beschreiben Sie die heoreischen Überlegungen zum Realzins. Wie unerscheide sich der Realzins vom Nominalzins? Folie

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

ifo Institut für Wirtschaftsforschung an der Universität München Endogenes Wachstum Prof. Dr. Kai Carstensen LMU und ifo Institut

ifo Institut für Wirtschaftsforschung an der Universität München Endogenes Wachstum Prof. Dr. Kai Carstensen LMU und ifo Institut Endogenes Wachsum Prof. Dr. Kai Carsensen LMU und ifo Insiu Rückblick auf die Modelle mi exogenem TF TF is der zenrale Mechanismus, um Wachsum pro Kopf zu erreichen Einkommensunerschiede zwischen armen

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit WS 2007/08 Phillips Kurve (Blanchard Ch.8) 310 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Kapitel 7 Erwartungsbildung, Konsum und Investition. Dr. Joscha Beckmann Makroökonomik II Wintersemester 2013/14 Folie 1

Kapitel 7 Erwartungsbildung, Konsum und Investition. Dr. Joscha Beckmann Makroökonomik II Wintersemester 2013/14 Folie 1 Kapiel 7 Erwarungsbildung, Konsum und Invesiion Dr. Joscha Beckmann Makroökonomik II Winersemeser 2013/14 Folie 1 Erwarungsbildung, Konsum und Invesiion 7.1 Erwarungen und Konsumnachfrage 7.2 Invesiionen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Machen Sie Ihre Kanzlei fi für die Zukunf! Grundvoraussezung für erfolgreiches Markeing is die Formulierung einer Kanzleisraegie. Naürlich, was am meisen zähl is immer noch Ihre fachliche Kompeenz. Aber

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

Unternehmensbewertung

Unternehmensbewertung Unernehmensbewerung Brush-up Kurs Winersemeser 2015 Unernehmensbewerung 1. Einführung 2. Free Cash Flow 3. Discouned-Cash-Flow-Bewerung (DCF) 4. Weighed average cos of capial (wacc) 5. Relaive Bewerung/

Mehr

Ü b u n g s a u f g a b e n. Aufgaben zu Kapitel 1 "Das Klassische Modell"

Ü b u n g s a u f g a b e n. Aufgaben zu Kapitel 1 Das Klassische Modell Volkswirschafslehre PD Dr. Jürgen Ehlgen Makroökonomik für Forgeschriene, Sommersemeser 2010 Ü b u n g s a u f g a b e n Aufgaben zu Kapiel 1 "Das Klassische Modell" 1. Leien Sie algebraisch die Arbeisnachfragefunkion

Mehr

Value Based Management

Value Based Management Value Based Managemen Vorlesung 5 Werorieniere Kennzahlen und Konzepe PD. Dr. Louis Velhuis 25.11.25 Wirschafswissenschafen PD. Dr. Louis Velhuis Seie 1 4 CVA Einführung CVA: Cash Value Added Spezifischer

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

2. Kapitel: Nationale Buchhaltung

2. Kapitel: Nationale Buchhaltung Dr. Andreas Schäfer Mk ik(b.sc.) Vorlesung WS 2011/12 2. Kapiel: Naionale Buchhalung Insiu für Theoreische Volkswirschafslehre Einleiung Drei Definiionen des Volkseinkommens Bruoinlandsproduk vs. Bruonaionaleinkommen

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Makroökonomie 1. Übersicht. 2. Makroök. Analyse mit flexiblen Preisen

Makroökonomie 1. Übersicht. 2. Makroök. Analyse mit flexiblen Preisen Übersich Maroöonomie Prof. Voler Wieland Professur für Geldheorie und -polii J.W. Goehe-Universiä Franfur. Einführung 2. Maroöonomische Analyse mi Flexiblen Preisen 3. Maroöonomische Analyse in der urzen

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form.

Eine charakteristische Gleichung beschreibt die Arbeitsweise eines Flipflops in schaltalgebraischer Form. Sequenielle Schalungen 9 Charakerisische Gleichungen Eine charakerisische Gleichung beschreib die Arbeisweise eines Flipflops in schalalgebraischer Form. n is ein Zeipunk vor einem beracheen Tak. is ein

Mehr

a) Die Begründung von Staatseingriffen im Bereich der Alterssicherung

a) Die Begründung von Staatseingriffen im Bereich der Alterssicherung III. Die Einzelsyseme der sozialen Sicherung Soziale Sicherung durch Mark und Saa WS 03/04 2. Renenversicherung Version vom 04.03.2004 2. Renenversicherung a) Die Begründung von Saaseingriffen im Bereich

Mehr

Seminar Bevölkerungsökonomie

Seminar Bevölkerungsökonomie Seminar Bevölkerungsökonomie Ökonomische Konsequenzen der Bevölkerungsalerung Sommersemeser 202 Lehrveransalungsnummer: 040068 Lehrveransalungsleier: Dr. Thomas Fen Wirschafswachsum und Humankapial Teil

Mehr

Soziale Sicherung durch Markt und Staat SS 2005 5. Rentenversicherung Version vom 02.06.2005. Equation Section 5

Soziale Sicherung durch Markt und Staat SS 2005 5. Rentenversicherung Version vom 02.06.2005. Equation Section 5 Soziale Sicherung durch Mark und Saa SS 2005 5. Renenversicherung Version vom 02.06.2005 Equaion Secion 5 Equaion Secion 5...2 5. Renenversicherung...3 5. Einleiung...3 5.2 Das Alerssicherungssysem in

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve

AVWL II, Prof. Dr. T. Wollmershäuser. Kapitel 5 Die Phillipskurve AVWL II, Prof. Dr. T. Wollmershäuser Kapiel 5 Die Phillipskurve Version: 22.11.2010 Der empirische Befund in den 60er Jahren Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 : 1931-1939 In

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Preisniveau und Staatsverschuldung

Preisniveau und Staatsverschuldung Preisniveau und Saasverschuldung Annahme: Privae Wirschafssubjeke berücksichigen bei ihren Enscheidungen die Budgeresrikion des Saaes. Wenn sich der Saa in der Gegenwar sark verschulde, dann muss der zusäzliche

Mehr

Musterbeispiele zur Zinsrechnung

Musterbeispiele zur Zinsrechnung R. Brinkann h://brinkann-du.de Seie 1 20.02.2013 Muserbeisiele zur Zinsrechnung Ein Bankkunde uss Zinsen zahlen, wenn er sich bei der Bank Geld leih. Das Geld was er sich leih, nenn an aial. Die Höhe der

Mehr

3. Physikschulaufgabe. - Lösungen -

3. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse I - Lösungen - hema: Aom- u. Kernphysik, Radioakiviä. Elekrisches Feld: Alphasrahlung: Sind (zweifach) posiiv geladene Heliumkerne. Sie werden im elekrischen Feld

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

I. Vorbemerkungen und wichtige Konzepte

I. Vorbemerkungen und wichtige Konzepte - 1 - I. Vorbemerkungen und wichige Konzee A.Warum und zu welchem Zweck bereiben wir Wirschafsheorie? 1. Zur Beanworung der ökonomischen Grundfragen Fragen der Allokaion (Ziel is die effiziene Allokaion

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Ist die Kaufkrafttheorie der Lohnerhöhungen Unsinn?

Ist die Kaufkrafttheorie der Lohnerhöhungen Unsinn? Is die Kaufkrafheorie der Lohnerhöhungen Unsinn? Diplomarbei zur Erlangung des Grades eines Diplom-Volkswir an der Wirschafswissenschaflichen Fakulä der Humbold-Universiä zu Berlin vorgeleg von Thomas

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION

9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der

Mehr

Fallstudie zu Projektbezogenes Controlling :

Fallstudie zu Projektbezogenes Controlling : Projekbezogenes Conrolling SS 2009 Fallsudie zu Projekbezogenes Conrolling : Thema: Erfolgspoenzialrechnung Lehrsuhl für Beriebswirschafslehre, insb. Conrolling Projekbezogenes Conrolling SS 2009 LITERATUR

Mehr

Kapitel 3: IS-LM mit Erwartungen. Makroökonomik I - IS-LM mit Erwartungen

Kapitel 3: IS-LM mit Erwartungen. Makroökonomik I - IS-LM mit Erwartungen Kapitel 3: IS-LM mit Erwartungen 1 Ausblick: IS-LM mit Erwartungen IS-LM mit Erwartungen Geldpolitik und die Rolle von Erwartungen Abbau des Budgetdefizits bei rationalen Erwartungen 2 3.1 IS-LM mit Erwartungen

Mehr

Zusatzbeiträge in der Gesetzlichen Krankenversicherung Weiterentwicklungsoptionen und ihre finanziellen sowie allokativen Effekte *)

Zusatzbeiträge in der Gesetzlichen Krankenversicherung Weiterentwicklungsoptionen und ihre finanziellen sowie allokativen Effekte *) Zusazbeiräge in der Gesezlichen Krankenversicherung Weierenwicklungsopionen und ihre finanziellen sowie allokaiven Effeke *) Manuel Kallwei Anabell Kohlmeier (beide Sab des Sachversändigenraes zur Beguachung

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten.

Kapitel 14: Steuern. Hauptidee: Steuern verändern das Wettbewerbsgleichgewicht und führen zu Wohlfahrtsverlusten. Kapiel 14: Seuern Haupidee: Seuern verändern das Webewerbsgleichgewich und führen zu Wohlfahrsverlusen. Aren von Seuern Mengenseuer: Jede gehandele Mengeneinhei des Gues wird mi einer Seuer von belase

Mehr

Die Renteninformation Alles klar! Oder doch nicht?

Die Renteninformation Alles klar! Oder doch nicht? Die Renteninformation Alles klar! Oder doch nicht? Veröffentlichung von Ulrich Watermann Schmitzbüchel 32a D 51491 Overath Tel: 02204 / 768733 Fax: 02204 / 768845 Mail: uw@watermann vorsorgekonzepte.de

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Tabellenband Onlinebefragung Sicherheit im Leben - Thema Urlaub -

Tabellenband Onlinebefragung Sicherheit im Leben - Thema Urlaub - Tabellenband Onlinebefragung Sicherhei im Leben - Thema Urlaub - Eine Onlinebefragung der Sifung: Inerneforschung im Aufrag der ERGO Direk Versicherungen, Sepember 2014 Feldzei: 24.09.2014 bis 01.10.2014

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe

Kapitelübersicht. Kapitel. Die Bewertung von Anleihen und Aktien. Bewertung von Anleihen und Aktien. einer Anleihe 5-0 5- Kapiel 5 Die Beweung von Anleihen und Akien Kapielübesich 5. Definiion und Beispiel eine Anleihe ( Bond ) 5. Beweung von Anleihen 5.3 Anleihenspezifika 5.4 De Bawe eine Akie 5.5 Paameeschäzungen

Mehr

Unendliche Folgen und Reihen

Unendliche Folgen und Reihen . ) Zu Beginn befinde sich ein neu geborenes Kaninchenpaar K im Gehege (), ebenso zu Beginn des zweien Monas (), zu Beginn des drien Monas wird ein Kaninchenpaar K geboren (), zu Beginn des vieren Monas

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Gaslieferverträge RWE Erdgas 2012

Gaslieferverträge RWE Erdgas 2012 Gaslieferverträge RWE Erdgas 2012 Viele Verbraucher haben im Spätsommer/Herbst 2008 mit der RWE Westfalen- Weser-Ems AG (RWE) Gaslieferverträge zu einem Festpreis mit der Bezeichnung RWE Erdgas 2011 abgeschlossen.

Mehr

Vorlesung Internationale Währungstheorie

Vorlesung Internationale Währungstheorie Vorlesung Inernaionale Währungsheorie Organisaorisches: Vorlesung: Übung: Klausur: Prof. Dr. Gerhard Illing, Mi. 9-2, HS A 25 Hgb. Julia Bersch, Do. 6-8 oder 8-20, HS A 25 Hgb. Freiag, 5.02.08 von 6:30-8:30

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Saisik II Übung 4: Skalierung und asympoische Eigenschafen Diese Übung beschäfig sich mi der Skalierung von Variablen in Regressionsanalysen und mi asympoischen Eigenschafen von OLS. Verwenden Sie dazu

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Investment under Uncertainty Princeton University Press, New Jersey, 1994

Investment under Uncertainty Princeton University Press, New Jersey, 1994 Technische Universiä Dresden Fakulä Wirschafswissenschafen Lehrsuhl für Energiewirschaf (EE 2 ) Prof. Dr. C. v. Hirschhausen / Dipl.-Vw. A. Neumann Lesebeweis: Avinash K. Dixi und Rober S. Pindyck Invesmen

Mehr