Wahrscheinlichkeit & Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wahrscheinlichkeit & Statistik"

Transkript

1 Wahrscheilichkeit & Statistik created by Versio: 3. Jui Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege aller mögliche Ergebisse eies Zufallseperimets Ereigis:, B, C,... Ereigisse umfasse verschiedee Ergebisse aus dem Wahrscheilichkeitsraum. Ereigisse sid Teilmege vom Ereigisraum Ω: Ω. Wahrscheilichkeit: P ( P ( [0, 1] (Wahrscheilichkeite liege zwische 0 ud 100% P ( 0 ( ist das umögliche Ereigis P (Ω 1 (Ω ist das sichere Ereigis Gegeereigis: Das Gegeereigis umfasst alle Ergebisse, die icht i ethalte sid. Es gilt: P ( 1 P ( zwei Ereigisse, B: B B umfasst alle Ergebisse, die i, i B oder i beide ethalte sid ( oder B. Es gilt: B für Ereigisse ohe gemeisame Ergebisse ( B : P ( B P ( + P (B für Ereigisse mit gemeisame Ergebisse ( B : P ( B P ( + P (B P ( B B B B umfasst alle Ergebisse, die i ud i B gleichzeitig vorkomme ( ud B. Es gilt: für uabhägige Ereigisse: P ( B P ( P (B für abhägige Ereigisse: P ( B P ( P (B Bedigte Wahrsch keit, uabhägige Ereigisse: P ( B Die bedigte Wahrscheilickeit gibt die Wahrscheilickeit für ei Ereigis a, we ma scho weiss, dass das Ereigis B eigetrete ist. P ( B P ( B P (B Zwei Ereigisse, B sid uabhägig falls: P ( B P ( absolute Häufigkeit, relative Häufigkeit: H ( h ( Wird ei Eperimet mal hitereiader durchgeführt, da bezeichet ma mit der absolute Häufigkeit H ( die zahl Eperimete, bei dee das Ereigis eigetrete ist. Die relative Häufigkeit h ( gibt de Prozetuale teil der Eperimete a, bei welche das Ereigis eigetrete ist. Wird ei Eperimet sehr oft wiederholt, ähert sich die relative Häufigkeit h ( a die Wahrscheilichkeit P ( a. H ( h ( P ( (für geüged grosse

2 Baumdiagramme Bei mehrstufige Eperimete ka ist es oft hilfreich, ei Baumdiagramm zu zeiche. Jeder st etspricht eier mögliche Kombiatio der Ereigisse der verschiedee Stufe. Für die Berechug der Wahrscheilichkeite gilt: Stufe 1 p 1 p B Etlag eies stes müsse die Wahrscheilichkeite multipliziert werde Die Wahrscheilichkeite mehrer Äste müsse addiert werde. Baumdiagramme sid vor allem sivoll bei zwei- oder dreistufige Eperimete. q 1 q r 1 r Stufe C D C D, C, D B, C B, D Eizele Äste: P (, C p 1 q 1 P (, D p 1 q Mehrere Äste: P (, C oder B, D p 1 q 1 + p r Bedigte Wahrscheilichkeit, Satz vo Bayes, Totale Wahrscheilichkeit, Uabhägigkeit Bei der bedigte Wahrscheilicheit iteressiert us die Wahrscheilichkeit eies Ereigisses, we wir scho wisse, dass B eigetrete ist (z.b. wie gross die Wahrscheilichkeit für Farbeblidheit ist, we ma weiss, dass die Perso weiblich ist. Diese Bedigte Wahrscheilichkeit wird mit P ( B bezeichet ud es gilt: P ( B P ( B P (B Zwei Ereigisse ud B heisse uabhägig, we P ( P ( B gilt. Isbesodere gilt für uabhägige Ereigisse: P ( B P ( P (B Typisches Gegebe: Satz vo Bayes, Totale Wahrscheilichkeit: P ( P ( P (B P ( B P ( B P ( B B B B B B B B B Totale Wahrscheilichkeit: P (B P ( P (B + P ( P ( B Satz vo Bayes: P ( B P ( P (B P ( B P (B P ( P (B + P ( P ( B Eie Krakheit tritt i der Bevölkerug mit eier Wahrscheilichkeit vo % auf: P (K 0.0 Ist eie Perso gesud, liefert der Test zum Nachweis dieser Krakheit i 3% der Fälle fälschlicherweise ei positives Resultat: P ( P K 0.03 Bei eier krake Perso zeigt der Test i 10% der Fälle ei egatives Resultat: P ( P K 0.1 Gesucht: Wie gross ist die Wahrscheilichkeit, dass ei Test positiv ist? Wie gross ist die Wahrscheilichkeit, dass eie Perso tatsächlich krak ist, we der Test positiv ausgefalle ist? Lösug: P (Test positiv P (P P (K P (P K + P ( K P ( P K 4.74% P (Krak, falls Test positiv P (K P P (K P (P K P (K P (P K + P ( K P ( P K 37.97%

3 Laplace Eperimete, Kombiatorik We alle mögliche Ergebisse eies Zufalleperimets die gleiche Wahrscheilichkeit habe, et ma dieses Zufalleperimet ei Laplace Eprimet. I solche Fälle lasse sich die Wahrscheilichkeite vo Ereigisse besoders eifach bereche: P ( zahl güstige Ergebisse zahl mögliche Ergebiss Ω g m Wobei mit g die zahl der güstige Ergebisse ud mit m Ω die zahl der mögliche Ereigisse bezeichet werde. Das bzähle vo solche zahle gehört zum Thema der Kombiatorik. Kombiatorik Permutatioe verschiedee Elemete Elemete, vo dee je k 1, k,... idetisch sid zahl Möglichkeite, Elemete azuorde! Es gibt 4! 4 Möglichkeite, die Buchstabe, B, C, D azuorde.! k 1! k! 6! Es gibt 3!! Möglichkeite, die Buchstabe,,, B, B, C, D azuorde. uswähle ohe Zurücklege zahl Möglichkeite, k Elemete aus auswähle ohe Zurücklege (d.h. ohe Wiederholuge ohe Berücksichtigug der Reihefolge ( k! k!( k! ( 1( k+1 k! Es gibt ( Möglichkeite, 6 Zahle aus 45 auszuwähle (Schweizer Zahlelotto. mit Berücksichtigug der Reihefolge! ( k! ( 1 ( k + 1 Es gibt 0! 17! verschiedee Möglichkeite für die erste 3 Plätze bei eiem Ree mit 0 Teilehmer. uswähle mit Zurücklege zahl Möglichkeite, k Elemete aus auswähle mit Zurücklege (d.h. mit Wiederholuge ohe Berücksichtigug der Reihefolge ( + k 1 ( + k 1! k k! ( 1! Bei eiem Quiz bekommt i jeder der 10 Rude eier der 4 Teilehmer eie Pukt. Es gibt da ( ( mögliche Pukte-Edstäde. mit Berücksichtigug der Reihefolge k Es gibt Möglichkeite, mit de Buchstabe, B,..., Z ei Passwort mit 4 Buchstabe zu bilde. Produktregel: Ka ei Eperimet i ei mehrstufiges Eperimet zerlegt werde, so ka ma die zahl Möglichkeite für ei Ereigis bereche, idem ma die zahl Möglichkeite der Teilereigisse miteiader multipliziert. Wie viele Möglichkeite gibt es, beim Schweizer Zahlelotto (6 ( aus 45 3 Richtige zu ziehe? 6 zahl Möglichkeite, aus de 6 Richtige 3 auszuwähle: ( 3 39 zahl Möglichkeite, 39 Falsche 3 auszuwähle: ( ( zahl Möglichkeite Total für 3 Richtige: 3 3

4 Beroulli-Eperimet mehrmaliges Wiederhole eies Eperimets mit usgäge K K Z Z K K Ei idealer Würfel wird 10 mal geworfe. Wahrscheilichkeit für 7 Sechser: P (7 Treffer zahl Eperimete (zahl Müzwürfe k zahl Treffer (zahl Kopf p Trefferwahrscheilichkeit (z.b. ufaire Müze p 0.6 q 1 p Nietewahrscheilichkeit ( P (geau k Treffer p k q k k ( 10 7 ( ( % 6 Wahrscheil keit für weiger als 9 Sechser: P (weiger als 9 Treffer 1 P (9 oder 10 Treffer ( (10 ( 9 ( 1 ( ( 10 ( ( % Ureeperimete Ziehe vo Kugel mit oder ohe zurücklege Reihefolge spielt keie Rolle N R + B + G Kugel total R rote Kugel B blaue Kugel G grüe Kugel r + b + g gezogee Kugel r rote gezogee Kugel b blaue gezogee Kugel g grüe gezogee Kugel Wahrscheilichkeit p um geau r rote, b blaue ud g grüe Kugel zu ziehe: mit Zurücklege: p ( r ( r b ( r b g p rr p bb p g g wobei: p r R N, p b B N, p g G N ohe Zurücklege: p Die Formel gilt aalog auch für eie adere zahl Kugelfarbe. Für zwei verschiedee Farbe etspricht sie dem Beroullieperimet. ( R ( r B ( b G r ( N Die Formel gilt aalog auch für eie adere zahl Kugelfarbe. Mit dieser Formel ka ma auch die Wahrscheilichkeite beim Lotto aus N bereche. z.b. Wahrscheilichkeit für 4 Richtige beim Schweizerzahlelotto 6 aus 45: ( 6 ( P (4 Richtige 4 39 ( % 6

5 Zufallsvariable Wird jedem Ergebis eies Eperimets eie Zahl zugeordet, da et ma diese Zuordug eie Zufallsvariable oder eie Zufallsgrösse (übliche Symbole für Zufallsgrösse: X, Y, Z. Diskrete Zufallsvariable Stetige Zufallsgrösse Zufallsvariable X : Ω { 1,, 3,... } (abzälbar Beispiele: X ugesumme beim Würfel X zahl Treffer eier Beruoullikette X : Ω R (überabzählbar Beispiele: X Zeitpukt eies Ufalls X Oberfläche eies Regetropfes Wahrscheilichkeit Wahrscheilichkeitsverteilug: ls Formel: P (X i... Dichte: f ( Verteilugsfuktio: ls Tabelle: i 1 P (X i P (X 1 P (X... F ( P (X Wahrscheilichkeit: f (t dt P ( 1 X 1 f (t dt F ( F ( 1 Grafische Darstellug P (X i f ( i a F (a P (X a Erwartugswert E (X µ i i P (X i E (X µ t f (t dt E (ax + b a E (X + b E (X + Y E (X + E (Y Falls X ud Y uabhägig: E (X Y E (X E (Y Variaz V (X i ( i µ P (X i V (X (t µ f (t dt V (X E ( X µ V (ax + b { a V (X V (X + V (Y für X, Y uabh. V (X + Y V (X + V (Y + [E (X Y E (X E (Y ] allgemei Stadardabweichug V (X V (X Spezielle Verteiluge Ugleichug vo Tschebycheff Gleichverteilug Biomialverteilug Poissoverteilug Hypergeometrische Verteilug Geometrische Verteilug Gleichverteilug Normalverteilug Epoetialverteilug P ( X µ c c oder P ( X µ c 1 c Isbesodere: Der Wert eier Zufallsvariable liegt zu midestes 75% i [µ, µ + ] Der Wert eier Zufallsvariable liegt zu midestes 89% i [µ 3, µ + 3]

6 Diskrete Verteiluge Gleichverteilug: X G( : Ω {1,,..., } p P ( X G( k 1 µ E ( X G( + 1 wedug: V ( X G( ( 1 ( ud ( 1 ( + 1 Beim eimalige Würfel mit eiem ideale Würfel ist die ugesumme gleichverteilt zum Parameter 6. 1 Biomialverteilug: X B(,p : Ω {0, 1,,..., } P ( X B(,p k ( p k (1 p k k µ E ( X B(,p p V ( X B(,p p (1 p ud p (1 p wedug: pproimatio durch die Poissoverteilug: pproimatio durch die Normalverteilug: Die zahl Treffer bei eier Beroullikette der Läge mit Erfolgswahrscheilickkeit p ist Biomialverteilt mit de Parameter ud p. Für sehr gross ud p sehr klei (Faustformel: p 0.05 ud 50 ka die Biomialverteilug durch die Poissoverteilug zum Parameter µ p ageährt werde: P ( X B(,p k µk k! e µ Für p (1 p > 9 ka die Wahrscheilichkeit P ( k 1 X B(,p k mit Hilfe der Stadardormalverteilug ageähert werde: P ( X B(,p k ( k µ Φ P ( X B(,p k ( k µ 1 Φ P ( ( ( k µ k1 µ k 1 X B(,p k Φ Φ ( P X B(,p µ c ( c Φ 1 ( P X B(,p µ c ( c Φ Poissoverteilug: X P(λ : Ω {0, 1,,... } P ( X P(λ k λk k! e λ µ E ( X P(λ λ V ( X P(λ λ ud λ wedug 1: wedug : Die Häufigkeit eies völlig zufällig eitretede Ereigis mit Erwartugswert µ ist Poissoverteilt zum Parameter µ. uf eiem Strassestück ereige sich im Jahr im Durchschitt 10 Ufälle. We X die Zufallsgrösse ist, welche die zahl Ufälle pro Tag agibt, da ist X Poissoverteilt zum Parameter λ ud es gilt: P (X k ( 36 1 k k! e 1 36 äherug eier Biomialverteilug (siehe Biomialverteilug.

7 Stetige Verteiluge Gleichverteilug: X G([a,b] : Ω [a, b] { 1 f ( b a für [a, b] 0 sost F ( 1 b a µ E ( X G([a,b] a + b V ( X G([a,b] (b a 0 für < a a für [a, b] b a 1 für > b 1 ud b a 1 1 b a 1 F ( f ( F ( F ( P ( X G([a,b] a b a b wedug: Möchte ma mit eiem Zug wegfahre, welcher im Halbstudetakt fährt ud ma zu eiem völlig zufällige Zeitpukt zum Bahhof geht, da ist die Wartezeit i Miute eie stetige gleichverteilte Zuvallsvariable für das Itervall [0, 30]. Normalverteilug: X N(µ, : Ω R Stadardormalverteilug (µ 0, 1: ϕ ( 1 π e 1 Φ ( 1 π e 1 d Die Verteilugsfuktio Φ ka ur äherugsweise ausgewertet werde, deshalb beutzt ma etweder eie Tabelle (siehe ächste Seite oder eie Tascherecher. ϕ ( Φ ( P ( X N(0,1 Φ ( 1 Φ ( µ E ( X N(0,1 0 V ( X N(0,1 1 ud 1 llgemeie Normalverteilug (µ, : wedug 1: wedug : P ( X N(µ, ( µ Φ P ( X N(µ, ( µ 1 Φ P ( ( ( µ 1 µ 1 X N(µ, Φ Φ ( P X N(µ, µ c ( c Φ 1 ( P X N(µ, µ c ( c Φ Die Normalverteilug kommt i der Prais recht häufig zumidest Näherugsweise vor. Bei eier Produktio müsse Teile vo eier bestimmte Läge gefertigt werde. Die tatsächliche Läge weiche jedoch immer ei weig vo dieser Läge ab. Die bweichug vo der geforderte Läge ist ormalverteilt mit µ 0 ud eiem vom Produktiosvorgag abhägede. äherug der Biomialverteilug (siehe Biomialverteilug

8 Die Verteilugsfuktio Φ für die Stadardormalvertilug Positive Werte: Φ ( ϕ ( Φ ( Bsp: Φ ( Negative Werte: Φ ( 1 Φ ( ϕ ( Φ ( 1 Φ ( Bsp: Φ ( Φ ( Eiige besodere Werte: Φ (

9 Beurteilede Statistik: Grudbegriffe I der Beurteilede Statistik versucht ma, aus de bei mehrmalige Durchführuge eies Zufallseperimetes aufgetretee Ergebisse auf die ubekate, dem Zufallseperimet tatsächlich zugrudeliegede Wahrscheilichkeitsverteilug zu schliesse. Stichprobe: 1,,..., Die Werte 1,,... sid Ergebisse eies mehrmalig durchgeführte Zufallseperimets mit der ubekate Zufallsgrösse X. Stichprobeumfag: zahl der Messuge i eier Stichprobe. Mittelwert: 1 Stichprobevariaz: S S 1 1 i1 i ( i Stichprobemittel: X Das Stichprobemittel X 1 (X 1 + X + + X gibt de Durchschittswert a, we ei Zufallseperimet mit der Zufallsgrösse X mal wiederholt wird. Es gilt: µ X µ X i1 X X bzw. X X µ X schätze: µ X Schätzwert für µ X ist X schätze: X Schätzwert für X ist S Das Stichprobemittel ist für eie grosse Stichprobeumfag ageähert ormalverteilt, uabhägig vo der Verteilug vo X. p schätze: p P ( Schätzwert für p ( ist h ( H( Vertrauesitervall für de ubekate Erwartugswert µ X der Zufallsgrösse X Der ubekate Erwartugswert µ X liegt mit der Sicherheitswahrscheilichkeit γ im Vertrauesitervall [ c γ, + c γ ]. Es gilt: γ P ( ( cγ X µ X c γ Φ 1 bzw. Φ X ( cγ X 1 + γ Damit lässt sich aus eiem gegebee γ der Wert c γ oder umgekehrt bestimme. Falls X icht bekat ist, ka ma de Schätzwert S beutze. Vertrauesitervall für eie ubekate Wahrscheilickkeit p p ( Die ubekate Wahrscheilichkeit p p ( eies Ereigisses liegt mit der Sicherheitswahrscheilichkeit γ im Vertrauesitervall [p 1, p ]. Vorgehe für die Ermittlug der Itervallsgreze p 1, p : 1 Bestimme de Stichprobeumfag, die relative Häufigkeit h h ( ud die Sicherheitsw keit γ. Welcher Wert für c ergibt sich aus Φ (c 1 + γ? 3 Welche Itervallsgreze p 1 ud p ergebe sich aus (h p c p (1 p (ach p auflöse.

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung

Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung www.s.schule.de/~matheabi 1 Wahrscheilichkeitsrechug Eileitug Dieser Text ist etstade, um Schülerie ud Schüler der Jahrgagsstufe 12 die Wiederholug des Stoffs voragegageer Jahre zu erleichter. Nebe viele

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Kapitel 6 : Punkt und Intervallschätzer

Kapitel 6 : Punkt und Intervallschätzer 7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte

Mehr

3 Wichtige Wahrscheinlichkeitsverteilungen

3 Wichtige Wahrscheinlichkeitsverteilungen 26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Kapitel 2: Laplacesche Wahrscheinlichkeitsräume

Kapitel 2: Laplacesche Wahrscheinlichkeitsräume - 12 - (Kapitel 2 : Laplacesche Wahrscheilicheitsräume) Kapitel 2: Laplacesche Wahrscheilicheitsräume Wie beim uverfälschte Müzewurf ud beim uverfälschte Würfel spiele Symmetrieüberleguge, die jedem Elemetarereigis

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

15. WAHRSCHEINLICHKEITSRECHNUNG

15. WAHRSCHEINLICHKEITSRECHNUNG 5. WAHRSCHEINLICHKEITSRECHNUNG 5.. Eiführug Ereigisse sid oft icht geau vorhersagbar. Ma weiß vorher icht sicher, ob sie eitrete werde. Solche Ereigisse et ma zufällig. Beispiele: Müzwurf (Kopf oder Zahl)

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neuma Erfolg im Mathe-Abi 2013 Vorabdruck Wahlteil Stochastik für das Abitur ab 2013 zum Übugsbuch für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Vorwort Vorwort Erfolg vo Afag a...ist das

Mehr

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung

6. Grenzwertsätze. 6.1 Tschebyscheffsche Ungleichung 6. Grezwertsätze 6.1 Tschebyscheffsche Ugleichug Sofer für eie Zufallsvariable X die Verteilug bekat ist, lässt sich die Wahrscheilichkeit dafür bestimme, dass X i eiem bestimmte Itervall liegt. Wie ist

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

X X Schätzen von Vertrauensintervallen Schwankungsintervall

X X Schätzen von Vertrauensintervallen Schwankungsintervall .. Schätze vo Vertrauesitervalle..1. Schwakugsitervall Beispiel: X = Betrag vo Geldüberweisuge, ormalverteilt, µ = 5000, = 1000 Zufallsstichprobe mit = 100, Schätzer für µ: X X Gesucht: Itervall, i dem

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz

9. Diskrete Zufallsvariable, Wahrscheinlichkeitsverteilung, Erwartungswert, Varianz 44 9. Diskrete Zufallsvariable, Wahrscheilichkeitsverteilug, Erwartugswert, Variaz Bei Zufallsversuche iteressiere oft icht die Ergebisse selbst, soder Zahle, die de mögliche Ergebisse des Zufallsversuchs

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Die notwendigen Verteilungstabellen finden Sie z.b. hier:

Die notwendigen Verteilungstabellen finden Sie z.b. hier: Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Zentraler Grenzwert Satz

Zentraler Grenzwert Satz Zetraler Grezwert Satz Aufgabe Aufgabe 1 Um ihr Studium zu fiaziere jobbe Sie ebebei als Iterviewer ud befrage bei eier ihrer Missioe zufällig Wahlberechtigte um das Wahlergebis eier bestimmte Partei vorherzusage.

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf

Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters: . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

A Ω, Element des Ereignisraumes

A Ω, Element des Ereignisraumes ue biostatisti: grudlegedes zur wahrscheilicheit ud ombiatori 1/6 WAHRSCHEINLICHKEIT / EINIGE BEGRIFFE Ereigisraum Ω Elemetarereigis A: Ω ist die Mege aller mögliche Elemetarereigisse A Ω, Elemet des Ereigisraumes

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

1 Wahrscheinlichkeitslehre

1 Wahrscheinlichkeitslehre Wahrscheilichkeitslehre. Grudlage der Wahrscheilichkeitsrechug Die Wahrscheilichkeitslehre ist ei elemetarer Bestadteil der Statistik. Die mathematische Wahrscheilichkeitslehre umfasst ei kompliziertes

Mehr

Erfolg im Mathe-Abi 2017

Erfolg im Mathe-Abi 2017 Gruber I Neuma Erfolg im Mathe-Abi 2017 Übugsaufgabe für de Wahlteil Bade-Württemberg mit Tipps ud Lösuge Ihaltsverzeichis Ihaltsverzeichis Aalysis 1 Tuel... 7 2 Widkraftalage... 8 3 Testzug... 9 4 Abkühlug...

Mehr

Anwendung für Mittelwerte

Anwendung für Mittelwerte Awedug für Mittelwerte Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Mittelwert der Grudgesamtheit icht zufällig?... beobachtete Mittelwert zufällig Statistik für SoziologIe 1

Mehr

Parameterschätzung. Kapitel Schätzfunktionen

Parameterschätzung. Kapitel Schätzfunktionen Kapitel 8 Parameterschätzug 8.1 Schätzfuktioe Def. 8.1.1: Es seie X 1,X,...,X uabhägige ZV, die alle die gleiche Verteilug besitze. θ sei ei ubekater Parameter dieser Verteilug. X 1,X,...,X ist als eie

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Kapitel 11 DIE NORMAL-VERTEILUNG

Kapitel 11 DIE NORMAL-VERTEILUNG Kapitel DIE NORMAL-VERTEILUNG Fassug vom 7. Februar 006 Prof. Dr. C. Porteier Mathematik für Humabiologe ud Biologe 49 . De itio der Normal-Verteilug. De itio der Normal-Verteilug Bisher habe wir ur diskret

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger IDUKTIVE STTISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUG - LÖSUGE erutatioe. zahl der erutatioe vo verschiedefarbige erle!! 0. zahl der erutatioe vo 0 uerierte Kugel! 0!.8.800

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel

Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ),

Zufallsvariable. Die Wahrscheinlichkeitsverteilung p (probability function) ist definiert durch: p(x i ) := P (X = x i ), ETHZ 90-683 Dr. M. Müller Statistische Methode WS 00/0 Zufallsvariable Zusammehag: Wirklichkeit Modell Wirklichkeit Stichprobe Date diskret stetig rel. Häufigkeit Häufigkeitstabelle Stabdiagramm Histogramm

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen - 39 (Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable 5 Deiitio : : Ω Ω,, seie Abbilduge über derselbe Mege Ω Die Abbildug

Mehr

Klausur 3 Kurs 11ma3g Mathematik

Klausur 3 Kurs 11ma3g Mathematik 202-06-2 Klausur 3 Kurs ma3g Mathematik Lösug I eier Lotto-Ure befide sich 49 Kugel, die mit de Zahle vo bis 49 beschriftet sid. Eie eizige Kugel wird gezoge. Bereche Sie die Wahrscheilichkeit, dass diese

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung www.s.schule.de/~matheabi 32 www.s.schule.de/~matheabi 1 Stichwortverzeichis abhägig...8 bweichug... mittlere...7 iomialkoeffiziet...10 iomialverteilug...15, 24, 25 lockdiagramm...6 Ereigis...1 Elemetar-...1

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Ihaltsverzeichis 1 Vorbemerkuge 1 Zufallsexperimete - grudlegede Begriffe ud Eigeschafte 3 Wahrscheilichkeitsaxiome 4 4 Laplace-Experimete 6 5 Hilfsmittel aus der Kombiatorik 7 6 Bedigte Wahrscheilichkeite

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr