Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Größe: px
Ab Seite anzeigen:

Download "Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung."

Transkript

1 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei V ein Vekorraum und g eine Lie-Algebra. Definiion 1.7. Definiere die folgenden Ideale: 1. Das Zenrum z(g) = {x g [x, y] = 0 x, y g}. Das Kommuaorideal [g, g] = [x, y] x, y g Offensichlich is g/[g, g] abelsch. Definiion 1.8. Is h eine Uneralgebra von g, so is der Normalisaor von h in g definier als n g (h) = {X g [X, h] h}. Der Normalisaor is eine Uneralgebra von g. Definiion 1.9. Ein Homomorphismus von Lie-Algebren heiß Darsellung von g. ρ : g gl(v ) Für uns is vor allem die im folgenden Saz eingeführe Darsellung von Bedeuung. Saz ad X : g g, Y [X, Y ] is eine Derivaion.. ad : g der(g), X ad X is eine Darsellung, die adjungiere Darsellung. 3. ker(ad) = z(g) Beweis. Für den Beweis werden die folgenden Eigenschafen einer Lie-Algebra ausgenuz (X, Y, Z g): [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0 (1) 1. Es gil die Produkregel für Derivaionen: [X, Y ] = [Y, X] () [, ] bilinear (3) ad X ([Y, Z]) = [X, [Y, Z]] (1) = [Y, [Z, X]] [Z, [X, Y ]] (),(3) = [[X, Y ], Z] + [Y, [X, Z]] = [ad X (Y ), Z] + [Y, ad X (Z)] 1

2 . Ich zeige nur, dass ad ein Homomorphismus von Lie-Algebren is. ad([x, Y ])(Z) = ad [X,Y ] (Z) = [[X, Y ], Z] () = [Z, [X, Y ]] (1) = [X, [Y, Z]] + [Y, [Z, X]] (),(3) = [X, [Y, Z]] [Y, [X, Z]] = [X, ad Y (Z)] [Y, ad x (Z)] = ad X (ad Y (Z)) ad Y (ad X (Z)) = [ad X, ad Y ](Z) = [ad(x), ad(y )](Z) 3. X ker(ad) ad X 0 Y g : [X, Y ] = 0 X z(g) 1..1 Die Exponenialabbildung In diesem Abschni werden einige Eigenschafen der Exponenialabbildung für Marizen erarbeie. Das Konzep is eine Verallgemeinerung der uns bekannen Exponenialabbildung in R oder C. Viele der Eigenschafen sind eher analyischer Naur, sind aber nowendig, um im nächsen Kapiel die Lie-Algebra einer linearen Lie-Gruppe zu definieren. Definiion 1.3. Für eine Marix A Ma n (R) heiß Exponenialabbildung. exp : Ma n (R) GL n (R), A Bemerkung. Für uns is exp nur dann ineressan, wenn die obige Reihe konvergier. Dies is aber asächlich für jede Marix A der Fall: Für A = is exp(a) exp( A ), exp(a) is also normkonvergen. i,j a i,j Das folgende echnische Lemma wird benöig, um Eigenschafen der Exponenialabbildung beweisen zu können. Lemma Die Menge der über C diagonalisierbaren (halbeinfachen) Marizen lieg dich in R n = Man (R). Beweis. (Skizze) Sei A Ma n (R) mi A = T 1 JT, wobei J die jordansche Normalform bezeichne. Auf der Diagonalen der Marix J sehen die (nich nowendig paarweise verschiedenen) Eigenwere von A: J = λ 1... * 0 λ n k=0 A k k!

3 Falls nun zwei Eigenwere übereinsimmen, also λ i = λ j für i < j gil, seze λ i = λ i + ɛ i für ein kleines ɛ i. Ansonsen sei λ i = λ i. Es ergib sich die leich verschobene Marix J = λ 1... * 0 λn mi paarweise verschiedenen Diagonalelemenen. Die Marix T 1 JT is diagonalisierbar, da es eine Basis aus Eigenvekoren gib und lieg in einer kleinen Umgebung von A = T 1 JT. Folgende hilfreiche Eigenschafen der Exponenialabbildung sind bekann: Lemma Für A, B Ma n (R), g GL n (R), α, β R gil 1. exp(0) = I n. exp((α + β)a) = exp(αa) exp(βa) 3. exp(a + B) = exp(a) exp(b), falls AB = BA 4. exp(gag 1 ) = g exp(a)g 1 5. de(exp(a)) = e Spur(A) Bemerkung. Aus der lezen Eigenschaf ergib sich die Tasache, dass exp asächlich nach GL n (R) abbilde, denn die Deerminane von exp(a) is immer eine posiive Zahl, insbesondere ungleich Null. Beweis. Alle Aussagen sind durch Einsezen in die Poenzreihe und leiche Rechnungen nachvollziehbar. Ich zeige lediglich die leze Behaupung. Sei zunächs A = diag(λ 1,..., λ n ) eine Diagonalmarix. Einsezen in die Definiion ergib dann exp(a) = diag(exp(λ 1 ),..., exp(λ n )), also de(exp(a)) = exp(λ 1 ) exp(λ n ) = e Spur(A). Sei nun B = gag 1 diagonalisierbar. Mi Eigenschaf 4. folg exp(b) = g exp(a)g 1 und somi de(exp(b)) = de(exp(a)) = e Spur(A) = e Spur(B). Da die diagonalisierbaren Marizen dich in Ma n (R) liegen, gil die Aussage für jedes C Ma n (R). Definiion Sei G eine opologische Gruppe. Ein Homomorphismus von opologischen Gruppen (also ein seiger Gruppenhomomorphismus) heiß Einparameer-(Uner-)gruppe. c : (R, +) G 3

4 Wichig is vor allem die folgende Einparameergruppe, die späer benuz wird, um die Lie-Algebra einer linearen Lie-Gruppe zu definieren. Beispiel Für A Ma n (R) liefer eine Einparameergruppe. c A : (R, +) GL n (R), exp(a) Saz Sei X Ma n (R) und c X Dann gelen die im Beispiel definiere Abbildung. 1. c X is differenzierbar mi c X (0) = I n, c X (0) = X.. exp is eine analyische Funkion (d.h. es gib eine Poenzreihe, die lokal gegen exp konvergier; bereis gezeig) mi d exp 0 = id Man(R). Wir möchen nun eine Umkehrabbildung für exp definieren. Dafür berachen wir die zum reellen oder komplexen Logarihmus analoge Poenzreihendarsellung des Marixlogarihmus. Definiion Für A GL n (R) heiß Logarihmusreihe. log(a) = ( 1) k+1 (A I n) k k k=1 Um den Logarihmus sinnvoll nuzen zu können benöigen wir Konvergenz: Lemma Für A GL n (R) mi A I n < 1 is log(a) konvergen und es gil exp(log(a)) = A.. Für A Ma n (R) mi A < 1 is exp(a) I n < 1 und es gil log(exp(a)) = A. 1.. Die Lie-Algebra einer linearen Lie-Gruppe Mihilfe der Marixexponenialabbildung wird in diesem Kapiel die Lia-Algebra einer linearen Lie-Gruppe definier. Diese bilde eine Uneralgebra von gl n (R)(= Ma n (R)). Definiion Sei G eine lineare Lie-Gruppe (das is eine abgeschlossene Unergruppe von GL n (R)). g = Lie(G) = {X gl n (R) exp(a) G R} heiß Lie-Algebra der linearen Lie-Gruppe G. 4

5 Um zu zeigen, dass g eine Uneralgebra is, wird das folgende Lemma benöig. Lemma Sei G eine lineare Lie-Gruppe, g die zugehörige Lie-Algebra, X, Y g, A G. Es gil 1. AXA 1 g. exp(x + Y ) = lim m (exp( X m ) exp( Y m ))m (Formel von Lie) 3. Für die Einparameergruppe c() = exp( Y )X exp(y ) gil (0) = [X, Y ]. d c d Saz 1.4. Die Lie-Algebra Lie(G) der linearen Lie-Gruppe G is eine Uneralgebra von gl n (R). Beweis. Seien X, Y Lie(G). Zu zeigen is, dass X + Y G (Lie(G) Unervekorraum) und [X, Y ] Lie(G). Ich benuze das obige Lemma. (a) Sei R. Es gil exp((x + Y )) =. lim (exp( X m m ) exp( Y m ))m. Da X, Y Lie(G), gil exp( X m ), exp( Y m ) G. Per Definiion is G abgeschlossen, also gil bereis exp((x + Y )) G, bzw. X + Y Lie(G). (b) Sei c() = exp( Y )X exp(y ). Mi 3. folg [X, Y ] = d c Def. c() c(0) c() X (0) = lim = lim. d 0 0 Nun gil X c() Lie(G) und mi 1. auch Lie(G). Wie bereis gezeig is Lie(G) ein Unervekorraum und als solcher abgeschlossen. Es folg, dass die Differenz und deren Grenzwer in Lie(G) liegen, das heiß [X, Y ] Lie(G). Zum Schluss wird der Begriff der Lie-Algebra einer linearen Lie-Gruppe noch anhand von zwei Beispielen konkreisier. Beispiel Berache die spezielle lineare Gruppe SL n (R) = {A GL n (R) de(a) = 1}. Die Lie-Algebra dieser Gruppe is sl n (R) = {A gl n (R) de(exp(a)) = 1 R} = {A gl n (R) Spur(A) = 0} Die leze Gleichung ergib sich dabei durch Ableien: d d de(exp(a)) =0 = d d exp(spur(a)) =0 = exp(spur(a)) Spur(A) =0 = Spur(A). 5

6 1 α β. H 3 = 0 1 γ α, β, γ R GL 3 heiß Heisenberg-Gruppe. 0 a b Deren Lie-Algebra ha die Gesal h 3 = 0 0 c a, b, c R. Beweis. (a) Sei A h 3, R. Per Definiion der Exponenialabbildung gil 0 a b exp(a) = I c + (A) + (A) }{{} =A und mi (A) = 0 0 ac, (A) 3 = (A) 4 =... = 0 folg 1 a b + ac exp(a) = 0 1 c H (b) Sei nun X H 3 mi exp(x) H 3. Um zu zeigen, dass X dann schon in der Lie-Algebra h 3 liegen muss, nuzen wir den Logarihmus als Umkehrfunkion. Zunächs erzwingen wir die nowendige Konvergenz durch Wahl eines kleinen R\{0}, sodass exp(x) I 3 < 1 gil. Dann is 1 α β X = log(exp(x)) = log 0 1 γ 0 } 0 {{ 1 } =:B = (B I 3 ) (B I 3) + (B I 3) }{{ 3 } =0 0 0 β αγ = 0 0 γ und es folg X = 0 0 β γ 0 0 αγ h 3. 6

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Michael Ho, M. Sc. M. Sc. SS 6 9.7.6 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zur Übungsklausur Aufgabe

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

7 Das lokale Ito-Integral

7 Das lokale Ito-Integral 7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz

Der Primzahlsatz, Teil 1. 1 Erste Abschätzungen zum Primzahlsatz Der Primzahlsaz, Teil Vorrag zum Seminar zur Funionenheorie, 07.05.0 Raffaela Biesenbach Diese Arbei beschäfig sich mi der Herleiung des Primzahlsazes. Dazu werden Definiionen und Säze aus dem Sri zur

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Differenzieren von Funktionen zwischen Banachräumen

Differenzieren von Funktionen zwischen Banachräumen Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Zwischenwerteigenschaft

Zwischenwerteigenschaft Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Insiu für Technologie Insiu für Analysis Dr. Chrisoph Schmoeger Dipl.-Mah. Sebasian Schwarz SS 015 17.05.015 Höhere Mahemaik II für die Fachrichung Physik Lösungsvorschläge zum 6. Übungsbla

Mehr

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz

Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom Claudia Würz 1 Einleitung Gruppen in der Physik Liegruppen und Liealgebren 1.Teil Vortrag vom 13.06.2006 Claudia Würz Im folgenden wollen wir uns mit Liegruppen und Liealgebren beschäftigen. Sie sind nicht nur für

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand

8.5 Uneigentliche Integrale Integrale über unbeschränkte Bereiche. f(x) dx. Integrale über unbeschränkte Funktionen mit Singularitäten am Rand 8.5 Uneigenliche Inegrle Inegrle über unbeschränke Bereiche,, Inegrle über unbeschränke Funkionen mi Singulriäen m Rnd, f : (, b] R seig, f : [, b) R seig Lokle Inegrierbrkei: Definiion: Eine Funkion f

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/23 12:56:11 hk Exp hk $

Lie Gruppen, SS 2010 Montag $Id: intro.tex,v /04/23 12:56:11 hk Exp hk $ Lie Gruppen, SS 2 Montag 9.4 $Id: intro.tex,v.5 2/4/23 2:56: hk Exp hk $ Einleitung Wir wollen jetzt die Frage der Umkehrbarkeit der Exponentialfunktion behandeln. Zunächst werden wir einsehen, dass exp

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

Schlanke Baumzerlegungen von Graphen

Schlanke Baumzerlegungen von Graphen Parick Bellenbaum Schlanke Baumzerlegungen von Graphen 12. Dezember 2000 Diplomarbei am Mahemaischen Seminar der Universiä Hamburg Zusammenfassung Berache man zwei Teile einer Baumzerlegung eines endlichen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

Grenzwertsätze für Zeitreihen

Grenzwertsätze für Zeitreihen KAPIEL 6 Grenzwersäze für Zeireihen In diesem Kapiel sellen wir wichige Grenzwersäze für saionäre Zeireihen {X n } in diskreer Zei zusammen. Sei µ = E(X ) und ρ(k) = E(X 1 µ)(x 1+k µ) = Cov (X 1, X 1+k

Mehr

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume

26 Eigenschaften der Eigenwerte, Eigenvektoren und Eigenräume Lieare Algebra II SS 211 - Prof Dr Mafred Leiz Kapiel VIII: Das Eigewerproblem 26: Eigeschafe der Eigewere, K 26 Eigeschafe der Eigewere, Eigeveore ud Eigeräume A Eigeschafe der Eigewere B Eigeschafe der

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Anlysis I 4. Übungssunde Seven Biln sevenb@suden.ehz.ch biln.uk/eching June 6, 07 Erinnerung Sz. (Prielle Inegrion) f (x) g(x)dx = [ ] b f(x)g(x) f(x) g (x)dx. Sz 6..5 (Subsiuion) Sei f : [, b] R seig,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Aufgabe 30 Versicherungsechnik Übungsbla 9 Abgabe bis zum Diensag, dem 13122016 um 10 Uhr im Kasen 19 Berachen Sie

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 3. Aufgaben Tag 3 für Physier WS 5/6 Reihen Zeigen Sie, dass die folgenden Reihen onvergieren und die angegebenen Summen haben. Dabei is f die -e Fibonacci-Zahl a + = 4 Wir fassen die gegebene Reihe als Grenzwer der Folge

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

1. Schularbeit (6R) 24. Okt. 1997

1. Schularbeit (6R) 24. Okt. 1997 . Schularbei (6R). Ok. 997. Vereinfache und selle das Ergebnis mi posiiven Hochzahlen dar. Es sind dabei alle Rechenschrie anzugeben: 7 x x y 8 : x x y. Löse die folgende Wurzelgleichung ohne Verwendung

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Akuarielle und finanzmahmaische Bewerung I Xiaoying Xu Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof Schmidli,

Mehr

Stochastische Automaten und Quellen

Stochastische Automaten und Quellen KAPITEL 2 Sochasische Auomaen und Quellen Sei A ein Sysem allgemeiner Ar (z.b. ein physikalisches Sysem oder eine Nachrichenquelle), das wir zu diskreen Zeipunken = 0, 1,... beobachen. Wir nehmen an: (SA

Mehr

7. Funktionalgleichung der Zeta-Funktion

7. Funktionalgleichung der Zeta-Funktion Oo Forser: RZF 7 Funkionalgleichung der Zea-Funkion 7 Funkionalgleichung der Zea-Funkion 7 Saz (Poissonsche Summaionsformel Sei f : R C eine seig differenzierbare Funkion mi f(x O ( x für x Sei ˆf : R

Mehr

Das lineare H-unendlich Problem

Das lineare H-unendlich Problem Das lineare H-unendlich Problem Salah-Eddine Sessou Seminarvorrag vom. Juli 6. Problemsellung Bild z P x u K Der Regler (Konroller)K ha zei Eingänge, x und den exogenen Eingang. Das H-unendlich Problem

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Flugzeugaerodynamik I Lösungsblatt 3

Flugzeugaerodynamik I Lösungsblatt 3 Flugzeugaerodynam I Lösungsbla 3 Lösung Aufgabe 5 geg: dünnes Profil a) ges: A 1 mi m (1) f 0.01 () Annahme Amosphärendaen: Abschäzung der Ansrömmachzahl U 1 50m/s (3) ρ 1 1.kg/m 3 (4) α 1 10 o (5) dc

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt.

Diese 3 Signale haben als Anregungssignale am Eingang eines Systems besondere Bedeutung für die lineare Systemtheorie erlangt. 16 2.3 Sprungfunkion, Rampenfunkion Delafunkion Diese 3 Signale haben als Anregungssignale am Eingang eines Sysems besondere Bedeuung für die lineare Sysemheorie erlang. Sprungfunkion: ( σ ( ), 1( ) )

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Kapitel 7. Exponentialfamilien. 7.1 Wahrscheinlichkeitsverteilungen

Kapitel 7. Exponentialfamilien. 7.1 Wahrscheinlichkeitsverteilungen Kapiel 7 Exponenialfamilien Exponenialfamilien sind dominiere saisische Räume, deren Likelihoodfunkion eine besonders einfache Srukur besiz, ihr Logarihmus is von affiner Gesal. Neben der daraus resulierenden

Mehr

Herleitung: Effektivwerte

Herleitung: Effektivwerte Herleing: Effekivwere elekre.gihb.io December 16, 1 1 Definiion Der Effekivwer is die Spannng einer Wechselgröße im zeilichen Miel, drch die mi einer Gleichqelle die selbe Leisng an einem Verbracher abfallen

Mehr

1 Liesche Gruppen: Grundlegendes und Beispiele

1 Liesche Gruppen: Grundlegendes und Beispiele 1 Liesche Gruppen: Grundlegendes und Beispiele In dieser Vorlesung verstehen wir unter einer differenzierbaren Mannigfaltigkeit einen Hausdorff- Raum mit abzählbarer Basis und mit einem maximalen C -Atlas.

Mehr

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen.

Restkapazität. = O( V ) mal kritisch. Also gibt es insgesamt höchstens O( V E ) Augmentierungen. Lemma 4.5.9. Der Algorihmu von Edmond-Karp führ höchen O( V E ) Augmenierungen durch. Bewei. Eine Kane (u, v) heiße kriich auf augmenierenden Weg p gdw. c f (u, v) = c f (p). Rekapaziä Eine kriiche Kane

Mehr

Übungsblatt 4 Lösungsvorschläge

Übungsblatt 4 Lösungsvorschläge Insiu für Theoreische Informaik Lehrsuhl Prof. Dr. D. Wagner Übungsbla 4 Lösungsvorschläge Vorlesung Algorihmenechnik im WS 09/10 Problem 1: Flüsse [vgl. Kapiel 4.1 im Skrip] ** Gegeben sei ein Nezwerk

Mehr

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:

Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht: Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:

Mehr

Die Lie-Algebra einer Untergruppe von Matrizen

Die Lie-Algebra einer Untergruppe von Matrizen Die Lie-Algebra einer Untergruppe von Matrizen Technische Universität Dortmund Fakultät für Mathematik Lehrstuhl VII: Dierentialgeometrie Seminar Geometrie für Lehramt (SS 2) Prof. Dr. Lorenz Schwachhöfer

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Satz von Rademacher und weiterführende Resultate

Satz von Rademacher und weiterführende Resultate S E M I N R R B E I T Saz von Rademacher und weierführende Resulae ausgeführ am Insiu für nalysis und Scienific Compuing TU Wien uner der nleiung von o.univ.prof. Dipl.-Ing. Dr.echn. Michael Kalenbäck

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

Lösungen zur Klausur über Lie-Algebren

Lösungen zur Klausur über Lie-Algebren Universität zu Köln Sommersemester 2017 Mathematisches Institut 19. Juli 2017 Prof. Dr. P. Littelmann Lösungen zur Klausur über Lie-Algebren Dies ist keine Muster -Lösung, sondern eine Hilfe um die Lösung

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Musterlösung Serie 10

Musterlösung Serie 10 Prof. D. Salamo Aalysis I MATH, PHYS, CHAB HS 04 Muserlösug Serie 0. a Wir bereche mi der biomische Formel e cos ix + e ix x = = =0 =0 e ix e i x = =0 e i x Da = gil, öe wir i der leze Summe die Terme

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Fortsetzung eines formellen Zusammenhangs auf G m nach O. Gabber und N. Katz

Fortsetzung eines formellen Zusammenhangs auf G m nach O. Gabber und N. Katz Forsezung eines formellen Zusammenhangs auf G m nach O. Gabber und N. Kaz Diplomarbei von Kay Rülling Universiä Essen 2 Vorab möche ich mich bei Frau Prof. Dr. Esnaul bedanken, uner deren Anleiung diese

Mehr

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3

Lösung zur Hausaufgabe in Topologie und Differentialrechnung mehrerer Variablen SS x 1. x 2. x 1+x 2+x 3 Bl Nr. 11 Simon Reisser Lösung zur Husufgbe in Topologie und Differenilrechnung mehrerer Vriblen SS 17 Aufgbe () Sei f(x 1, x, x 3 ) = (y 1, y, y 3 ) = (e x1x x3, e x1x+x3, e xx3 ) und dg(y 1, y, y 3 )

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorihmen II Vorleung am 24.10.2013 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Univeriä de Lande Baden-Würemberg und Algorihmen naionale Forchungzenrum II Wineremeer 2013/2014

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

Allgemeines über Lie-Algebren

Allgemeines über Lie-Algebren Kapitel I Allgemeines über Lie-Algebren Sophus Lie 1842 1899 Wilhelm Killing 1847 1923 Elie Cartan 1869 1951 Hermann Weyl 1885 1955 1 Einleitung Die meisten Studierenden sind wohl vertrauter mit Beispielen

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Charakterisierung des Systems R C. Faltungsintegral. Faltungsintegral (anschaulich) Faltungsintegral (anschaulich) 1. Übertragungsfunktion zb

Charakterisierung des Systems R C. Faltungsintegral. Faltungsintegral (anschaulich) Faltungsintegral (anschaulich) 1. Übertragungsfunktion zb Charakerisierung des Sysems. Überragungsfunkion zb Falungsinegral 2. Impulsanwor (Anwor auf δ()) δ() R C h() Gleiche Ergebnis wie Spannungseiler! Impulsanwor: Inverse Fourierransformaion Falung_4_2_5.pp

Mehr

Anhang G - Bemerkungen zur Weylgruppe

Anhang G - Bemerkungen zur Weylgruppe 32 Anhang G - Bemerkungen zur Weylgruppe Anhang G - Bemerkungen zur Weylgruppe Sei G eine kompakte zusammenhängende (halbeinfache) Liegruppe, T G ein maximaler Torus, W = W T (G) = N G (T )/T die zugehörige

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

Stochastische Analysis und Finanzmathematik

Stochastische Analysis und Finanzmathematik Sochasische Analysis und Finanzmahemaik Vorlesung im Winersemeser 211/212 von Dr. Markus Schulz Inhalsverzeichnis 1 Sochasische Prozesse 1 1.1 Grundlagen................................ 1 1.2 Die Brownsche

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Semantik. Es ergibt sich die rekursive Bildungsmenge der komplexen Typen: Semantik

Semantik. Es ergibt sich die rekursive Bildungsmenge der komplexen Typen: Semantik Typheorie: Einführung zusäzlicher nich-logischer Ausdrücke uner Erweierung der Synax und der denoaionellen. Besandeile: zwei elemenare Typen zum Aufbau von Säzen/Formeln und der semanischen Komposiion:

Mehr