Extremwertverteilungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Extremwertverteilungen"

Transkript

1 Seminar Statistik Institut für Stochastik 12. Februar 2009

2 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

3 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

4 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

5 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

6 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

7 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel Darstellung von multivariaten, max-stabilen Verteilungsfunktionen Darstellung mit Exponentenmaß De Haan-Resnick Darstellung

8 Sei X 1, X 2, X 3,... eine Folge von iid ZVen mit gemeinsamer Verteilungsfunktion F. Definition Stichprobenmaximum M 1 := X 1 und M n := max(x 1,..., X n ), n 2 Definition Rechter Endpunkt x F := sup{x IR : F(x) < 1} Definition: Tail F := 1 F

9 Wir erhalten damit sofort für alle x < x F, P(M n x) = F n (x) 0, n und in dem Fall x F < erhalten wir für x x F, daß P(M n x) = F n (x) = 1. P Daher M n xf für n, falls x F ist. Weil die Folge (M n ) nicht absteigend ist in n, konvergiert sie fast sicher und daher schließen wir, daß M n f.s. x F, n.

10 Zentraler Grenzwertsatz Sei (X k ) k IN eine Folge von reellen unabhängig identisch verteilten (iid) Zufallsvariablen mit IEX 2 k < und Var(X i) > 0, dann gilt n k=1 X k niex 1 nvarx1 d N(0, 1).

11 In der Extremwertheorie stellt man sich die Frage, ob für das Maximum von unabhängig identisch verteilten ZV (X n ) n IN mit Verteilungsfunktion F eine Art ZGWS existiert, d.h. existieren Folgen c n > 0, d n IR, so dass c 1 n (M n d n ) d G, wobei G eine Verteilungsfunktion ist.

12 Definition Maxstabile Verteilung Eine ZV X (und ihre dazugehörige Verteilungsfunktion) nennen wir Maxstabil, wenn sie die Gleichung max(x 1,..., X n ) d = c n X + d n, n > 0, d n IR n 2. für iid X, X 1,...,X n und geeignete Konstanten c n und d n erfüllt.

13 Grenzwerteigenschaften Grenzwerteigenschaften von Maxstabilen Gesetzen Die Klasse der max-stabilen Verteilungen stimmt mit der Klasse aller möglichen Grenzverteilungen für Maxima von iid ZVen überein.

14 Für zwei ZV X und Y schreiben wir X d = Y wenn X, Y die gleiche Verteilung haben. Zwei ZV gehören zum selben Typ, falls Konstanten existieren a IR und b > 0 so dass. X d = by + a

15 Konvergenztypen-Theorem Seien A, B, A 1, A 2,... ZVen und b n > 0, β n > 0 und a n, α n IR sind Konstanten. Wenn dann gilt die Relation genau dann wenn b 1 n (A n a n ) d A, β 1 n (A n α n ) d B, (1) b n a n α n lim = b [0, ), lim = a IR, (2) n β n n β n

16 Konvergenztypen-Theorem Falls (1) gilt, dann ist B d = ba + a und a,b sind die einzigen Konstanten für welche dies gilt. Wenn (1) gilt, dann ist A nicht-entartet genau dann wenn b > 0, und dann gehören A und B zum selben Typ.

17 Fisher-Tippett Theorem, Grenzwertsatz von Maxima Sei (X n ) eine Folge von iid ZVen. Falls Normierungskonstanten c n > 0, d n IR existieren und eine Verteilungsfunktion H, so dass c 1 n (M n d n ) d H, dann gehört H zu einem der drei folgenden Typen von Verteilungsfunktionen:

18 Fisher-Tippett Theorem, Grenzwertsatz von Maxima { 0, x 0 Fréchet: Φ α (x) = exp ( x α α > 0. { ), x > 0 exp { ( x α )}, x 0 Weibull: Ψ α (x) = α > 0. 1, x > 0 Gumbel: Λ(x) = exp{ e x } x IR

19 Beweis impliziert für t > 0, c 1 n (M n d n ) d H, F [nt] (c [nt] x + d [nt] ) H(x), x IR wobei[*] die Gaußklammer bezeichnet. Jedoch, F [nt] (c n x + d n ) = (F n (c n x + d n )) [nt] n H t (x), mit dem Konvergenztypen Theorem folgt dann: Es existieren Funktionen γ(t) > 0, δ(t) IR die lim n c n c [nt] = γ(t), d n d [nt] lim = δ(t), t > 0 n c [nt]

20 Beweis-Fortsetzung: H t (x) = H(γ(t)x + δ(t)) Es ist nicht schwierig daraus zu folgern, daß für s, t > 0 γ(st) = γ(s)γ(t), δ(st) = γ(t)δ(s) + δ(t).

21 Beispiel: Sei (X i ) eine Folge von iid Standard-Cauchy-ZV. Die Standard-Cauchy-Verteilung ist absolut stetig mit der Dichte: Mit l Hospital erhalten wir lim n f (x) = (π(1 + x 2 )) 1, x IR F (x) = lim (πx) 1 n f (x) π 1 = lim x 2 n Damit erhalten wir F (πx) 1. Dies impliziert: ( P M n nx π ) = ( 1 F exp{ x 1 } = Φ 1 (x), x > 0 πx 2 π(1 + x 2 ) = 1, ( )) nx n ( = 1 1 ( )) 1 n π n x + o(1)

22 MDA Fréchet MDA Weibull MDA Gumbel Defintion Wir sagen daß die ZV X (die Verteilungsfunktion F von X, Die Verteilung von X) zu dem gleichem Maximum Domain of Attraction der Extremwertverteilung H gehört, falls Konstanten c n > 0, d n IR existieren, so dass cn 1 (M n d n ) d H gilt. Wir schreiben X MDA(H)

23 MDA Fréchet MDA Weibull MDA Gumbel Poisson-Approximation Für gegebenes τ [0, ] und eine Folge (u n ) von reellen Zahlen sind folgende Aussagen Äquivalent. nf(u n ) τ, P(M n u n ) exp ( τ),

24 MDA Fréchet MDA Weibull MDA Gumbel Zur Erinnerung: Die sind stetig auf IR, daher ist cn 1 (M n d n ) d H äquivalent zu lim P(M n c n x + d n ) = lim F n (c n x + d n ) = H(x), n n x IR

25 MDA Fréchet MDA Weibull MDA Gumbel Charakterisierung der MDA(H) Die Verteilungsfunktion F gehört zum MDA von der Extremwertverteilung H mit den Normierungskonstanten c n > 0, d n IR genau dann wenn lim nf(c nx + d n ) = ln H(x), x IR n. Falls H(x) = 0 interpretieren wir den Grenzwert als.

26 MDA Fréchet MDA Weibull MDA Gumbel Definition Regulär Variierend Ein Verteilungs-Tail F heißt regulär variierend, mit Index α für ein α > 0, falls F(xt) lim x F(x) = t α, t > 0 Schreibweise: F R α Falls α = 0 heißt der Verteilungs-Tail langsam variierend.

27 MDA Fréchet MDA Weibull MDA Gumbel Definition Tail-äquivalent Zwei Verteilungsfunktionen F und G werden Tail-äquivalent, falls sie den selben rechten Endpunkt besitzen, z.b. x F = x G, und für Konstanten 0 < c < gilt. lim x x F F(x) G(x) = c

28 MDA Fréchet MDA Weibull MDA Gumbel Mit der Taylorentwicklung erhalten wir 1 φ(x) = 1 exp{( x α )} x α, x Für F MDA(φ α ) kann die Konstante d n = 0 gewählt werden und c n mit Hilfe der Quantilfunktion. Genauer: c n = F (1 n 1 ) = inf {x IR : F(x) 1 n 1 } = inf {x IR : ( 1 F )(x) n} = ( 1 F ) (n)

29 MDA Fréchet MDA Weibull MDA Gumbel MDA der Fréchet-Verteilung Die Verteilungsfunktion F gehört zum MDA(Φ α ), α > 0, genau dann wenn F (x) = x α L(x) für eine langsam variierende Funktion L gilt. Falls F MDA(Φ α ), dann ist cn 1 d M n Φα wobei die Normierungskonstante c n entsprechend dem obigem gewählt werden kann. F MDA(Φ α ) F R α

30 MDA Fréchet MDA Weibull MDA Gumbel Von vorher wissen wir das die Standard-Cauchy-Verteilung mit l Hospital zu folgender Relation führt: F (πx) 1 F R 1 MDA(Φ 1 ) und als Normierungskonstante wählen wir c n = (πn). Damit folgt: (πn) 1 M n d Φ1 (x)

31 MDA Fréchet MDA Weibull MDA Gumbel MDA der Weibull-Verteilung Die Verteilungsfunktion F gehört zum MDA(Ψ α ), α > 0, genau dann wenn x F < und F(x F x 1 ) = x α L(x) für eine langsam variiernde Funktion L. Falls F MDA(Ψ α ), dann ist cn 1 (M n x F ) d Ψ α wobei die Normierungskonstanten c n = x F F (1 n 1 ) und d n = x F gewählt werden können.

32 MDA Fréchet MDA Weibull MDA Gumbel Die Verteilungsfunktion mit rechtem Endpunkt x F gehört zu dem MDA(Λ) genau dann wenn ein x x F existiert, so daß F folgende Darstellung besitzt x g(t) F(x) = c(x) exp z a(t) dt, z < x x F wobei c und g meßbare Funktionen sind die c(x) c > 0, g(x) 1 genügen, wenn x x F und a(x) eine positive absolut setige Funktion (in Bezug auf das Lebesguemaß) ist mit der Dichte a (x) für die gilt lim x xf a (x) = 0. Für ein F mit der obigen Darstellung können wir d n = F (1 n 1 ) und c n = a(d n ) als Normierungskonstanten wählen.

33 Verallgemeinerte Extremewertverteilung Führen wir noch einen Parameter ξ ein, so können wir die drei Standardfälle in einer Familie von Verteilungsfunktionen darstellen. ξ = α 1 > 0 entspricht Fréchetverteilung Φ α ξ = 0 entspricht Gumbel Λ ξ = α 1 < 0 entspricht Weibull Ψ α

34 Verallgemeinerte Extremewertverteilung (GEV) Verallgemeinerte Extremwertverteilung Definiere { die Verteilungsfunktion H ξ so: exp{ (1 + ξx) 1 ξ }, f ür ξ 0 H ξ (x) = wobei 1 + ξx > 0. exp{ exp{ x}}, f ür ξ = 0 Der Fall ξ = 0 folgt aus ξ 0 für ξ 0, (1 + ξx) 1 ξ 0 ξ e x da Wir nennen H ξ die verallgemeinerte Extremwertverteilung (GEV).

35 Charakterisierung der MDA(H ξ ) Für ein ξ IR sind folgende Aussagen äquivalent: 1 F MDA(H ξ ). 2 Es existiert eine positiv messbare Funktion a( ) so daß für 1 + ξx > 0 gilt: lim u xf F (u+xa( )) F (u) = { (1 + ξx) 1 ξ, f ür ξ 0 exp{ x}, f ür ξ = 0

36 Sei X eine ZV mit Verteilungsfunktion F MDA(H ξ ), dann kann man Punkt 2 folgendermaßen umschreiben: ( ) { X u lim P u x F a(u) > x X > u (1 + ξx) 1 ξ, f ür ξ 0 = exp{ x}, f ür ξ = 0

37 Definition Verallgemeinerte Paretoverteilung (GPD) Definiere die Verteilungsfunktion G ξ mit G ξ = { 1 (1 + ξx) 1 ξ, f ür ξ 0 1 exp{ x}, f ür ξ = 0 wobei { x 0, f ür ξ 0 0 x 1 ξ f ür ξ < 0 Wir nennen G ξ die verallgemeinerte Paretoverteilung (GPD).

38 Zusammenfassung Die GEV H ξ, ξ IR beschreibt die Grenzwertverteilung der Maxima. Die GPD G ξ, ξ IR beschreibt die Grenzwertverteilung der Überschreitungen von hohen Schwellwerten.

39 Der Multivariate Fall Im folgenden sind alle Operationen Komponentenweise zu verstehen. z.b. x < y x (i) < y (i), 1 i d (a, b] = {x IR d : a < x b} = {(x 1,..., x d ) : a i < x i b i } Definition d-variater Maxima Sei X i = (X i,1,..., X i,d ), i n eine Folge von iid d-variaten Vektoren mit gemeinsamer Verteilungsfunktion F. Das d-variate Maximum is definiert als: ( ) M n = max i n (X i ) := max i n (X i,1 ),..., max i n (X i,d )

40 Multivariate Definition MDA und Extremwertverteilung Die Verteilungsfunktion F gehört zum MDA einer Funktion G, genau dann wenn, x IR d, n gilt: F n (c n,1 x 1 + d n,1,..., c n,d x d + d n,d ) G(x) für geeignete Vektoren c n > 0 und d n. G heißt multivariate Extremwertverteilung. Für die j-ten Randverteilungen F j und G j gilt: F n j (c n,j x j + b n,j ) G j (x j )

41 Max Stabil Definition Max-stabile Verteilung Eine Verteilung F heißt max-stabil, falls n IN gilt: F n (d n + c n x) = F(x) für geeignete Vektoren c n > 0 und d n. Satz Die Familie der stimmt exakt mit der Familie der max-stabilen Funktionen überein.

42 Definition Einfach Eine max-stabile Verteilungsfunktion F heißt einfach, falls alle ihre Randverteilungen Fréchet verteilt sind. d.h. F 1.α (x) = exp( x α ), x > 0, α > 0 Definition max-id Eine Verteilungsfunktion F(x) IR d heißt max-id falls es n IN F n (x) IR d gibt, so daß: F(x) = F n n (x) d.h. falls F 1/n (x) eine Verteilungsfunktion ist.

43 Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Definition unterer Endpunkt Der untere Endpunkt einer max-id d-variaten Verteilungsfunktion F ist definiert durch: α = (α 1,..., α d ) wobei α j den linken Endpunkt der j-ten Randverteilung F j (x) bezeichnet, für 0 < F j (x) < 1.

44 Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Definition Exponenten Maß Das Exponentenmaß ν von einer max-id VF F ist definiert, mit x (α, ] durch: ν([α, ) \ [α, x]) := ln F(x) wobei α der untere Endpunkt von F ist.

45 Darstellung mit ν Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Darstellung mit Exponentenmaß Eine max-id VF F kann dargestellt werden durch: { exp( ν([, x] c )), x α; F(x) = 0, sonst mit α [, ) := [, ) d und ν der zu F gehörige Exponentenmaß. Aus F(x) > 0 für x > α folgt das α der untere Endpunkt ist.

46 Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Eigenschaften von ν Das Maß ν hat folgende Eigenschaften: (a) ν ist konzentriert auf [α, ) \ {α} (b) ν([, t] c ) < t > α

47 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Betrachte eine einfache, d-variate max-stabile VF F. Dann gilt, für n IN und x IR d : Daraus folgt: F n (n 1/α x) = F (x) F n/m ((n/m) 1/α x) = F(x), n, m IN, x IR d Wähle n,m so daß n/m t α > 0. Dann folgt, mit der Stetigkeit von F: F tα (tx) = F(x), t > 0, x IR d Da F auch max-id ist, folgt aus der vorherigen Darstellung: F(x) = exp( ν([0, x] c ))

48 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung mit ν der zu F gehörige Exponentenmaß, der konzentriert ist auf E := [0, ) \ {0} Es gilt: ν([0, x] c ) = t α ν([0, tx] c ) = t α ν(t[0, x] c ) Nun können wir diese Gleichung erweitern zu: ν(b) = t α ν(tb) wobei B eine Borelmenge ist und tb := {tx : x B} Für t > 0 und eine beliebige Borel Untermenge A von S E := {z E : z = 1} in E folgt: ν( { x E : x t, x }) x A

49 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung = t α ν( { y E : y 1, φ ist das Winkelmaß. y y A } ) := t α φ(a). x Definiere T : E (0, ) S E durch T (x) := ( x, x ) Das Maß (T ν)(b) := ν(t 1 (B)) erfüllt: { } (T ν)([t, ) A) = ν( ) x x E : x t, x A = 1 t α φ(a) = [t, ) A α 1 r (α+1) dr dφ(a)

50 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Es gilt: ν([o, x] c ) = ν([o, x] c E) = (T ν)(t [o, x] c E) Und T ([o, x] c E) = T ({y E : y i > x i für manche i d}) = {(r, a) (o, ) S E : (ra) i > x i für manche i d} = {(r, a) (o, ) S E : ra i > x i für manche i d} = {(r, a) (o, ) S E : r > min i d (x i /a i )}

51 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Insgesamt erhalten wir: ν([o, x] c ) = (T ν) ( {(r, a) (0, ) S E : r > min i d (x i /a i )} ) = S E (min i d (x i /a i, )) α 1 r (α+1) dr dφ(a) = S E 1 min i d (x i /a i ) α dφ(a) = S E max i d ( ai x i ) α dφ(a)

52 De Haan-Resnick Darstellung Darstellung mit Exponentenmaß De Haan-Resnick Darstellung Somit haben wir die De Haan-Resnick Darstellung hergeleitet: ( ) (a F(x) = exp max i ) αdφ(a) i d, x [0, ) S E x i für eine einfache, max-stabile Verteilungsfunktion F.

Analyse von Extremwerten

Analyse von Extremwerten Analyse von Extremwerten Interdisziplinäres Seminar: Statistische Verfahren in den Geowissenschaften Anna Hamann betreut durch Prof. Dr. Helmut Küchenhoff, Institut für Statistik Ludwig Maximilians Universität

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Technische Universität München. Zentrum Mathematik. Multivariate Value at Risk. von Zins Swap Sätzen

Technische Universität München. Zentrum Mathematik. Multivariate Value at Risk. von Zins Swap Sätzen Technische Universität München Zentrum Mathematik Multivariate Value at Risk Schätzung von Zins Swap Sätzen Diplomarbeit von Gabriel Kuhn Themenstellung: Prof. Dr. Claudia Klüppelberg Betreuung: Prof.

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Eine Anwendung der Block Maxima Methode im Risikomanagement. Diplomarbeit. vorgelegt von Birgit Woeste

Eine Anwendung der Block Maxima Methode im Risikomanagement. Diplomarbeit. vorgelegt von Birgit Woeste Eine Anwendung der Block Maxima Methode im Risikomanagement Diplomarbeit vorgelegt von Birgit Woeste Betreuer: Privatdozent Dr Volkert Paulsen Mathematisches Institut für Statistik Fachbereich Mathematik

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Extremwerttheorie II Ann Schmidt Mathematisches Institut der Universität zu Köln Wintersemester 09/10 Betreuung: Prof. Schmidli, J. Eisenberg Inhaltsverzeichnis 1

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

2. Prinzipien der Datenreduktion

2. Prinzipien der Datenreduktion 2. Prinzipien der Datenreduktion Man verwendet die Information in einer Stichprobe X 1,..., X n, um statistische Inferenz über einen unbekannten Parameter zu betreiben. Falls n groß ist, so ist die beobachtete

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie VARIOUS KINDS OF CONVERGENCES OF SEQUENCES OF RANDOM VARIABLES 10 Dezember, 2012 1 Bekannte Konvergenzarten 2 3 1 Bekannte Konvergenzarten 2 3 Wahrscheinlichkeitsraum Im Folgenden betrachten wir immer

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Strassen Type Theorems Proseminar Stochastik

Strassen Type Theorems Proseminar Stochastik Strassen Type Theorems Proseminar Stochastik Cecelie Hector Universität Hamburg Fachbereich Mathematik SoSe 2004 Vortrag am 25.06.04 Definition (a). Ein topologischer Raum E heißt polnisch, wenn es eine

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Kapitel 5 GRENZWERTE

Kapitel 5 GRENZWERTE Kapitel 5 GRENZWERTE Fassung vom 3. Februar 2006 Mathematik für Humanbiologen und Biologen 69 5. Der Begri des Grenzwertes 5. Der Begri des Grenzwertes An den Messungen der Hefevermehrung (vgl. Beispiel

Mehr

Abhängigkeiten zwischen Großschäden

Abhängigkeiten zwischen Großschäden Abhängigkeiten zwischen Großschäden Holger Drees, Universität Hamburg I. Typen von Abhängigkeiten II. Modelle für abhängige Großschäden III. Fallstudie: Dänische Feuerversicherung I. Typen von Abhängigkeiten

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Signifikanztests Optimalitätstheorie

Signifikanztests Optimalitätstheorie Kapitel Signifikanztests Optimalitätstheorie Randomisierte Tests In einem statistischen Modell M, A, P ϑ sei ein Testproblem gegeben: H : ϑ Θ gegen H : ϑ Θ ; wobei also durch Θ Θ Θ eine Zerlegung des Parameterbereichs

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr