Modulabschlussklausur Analysis II

Größe: px
Ab Seite anzeigen:

Download "Modulabschlussklausur Analysis II"

Transkript

1 Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen Sie die ersten und zweiten partiellen Ableitungen von f a. b) Geben Sie allgemein die Formel für die Taylorentwicklung der Ordnung im Entwicklungspunkt x 0 einer hinreichend oft differenzierbaren Funktion f : R n R an. Für die Funktion f a und den Entwicklungsmittelpunkt (0, a, 0) definiert diese eine Funktion g a : R 3 \ {(0, a, 0)} R mit g a (x, y, z) = T fa,,(0,a,0)(x, y, z). Bestimmen Sie ein maximales Intervall I R so dass g a für alle a I nur positive Werte annimmt. Lösungsvorschlag a) Die partiellen Ableitungen sind ➄ f a x = x cos(y) (z + ay a y) sin(x) f a y = x sin(y) + z 3 cos(y) + a(y a) cos(x) f a z = 3z sin(y) + z cos(x) f a x = cos(y) (z + ay a y) cos(x) f a y = x cos(y) z 3 sin(y) + a cos(x) f a z = 6z sin(y) + cos(x) f a = x sin(y) a(y a) sin(x) x y 1

2 f a = z sin(x) x z f a y z = 3z cos(y) b) Es sei f : R n R hinreichend of differenzierbar und x 0 R n. Dann gilt allgemein für x R n Es ist und T f,,x 0(x) = f(x 0 ) + gradf(x 0 ), x x (x x0 ) T Hf(x 0 ) (x x 0 ) f(0, a, 0) = a 3 + (0 + a 3 a 3 ) = 0 0 (a 3 a 3 ) 0 0 gradf a (x, y, x) = a(a a) = 0, einsetzen sowie cos(a) (a 3 a 3 ) 0 0 cos(a) + a Hf a (0, a, 0) = 0 a 0 = 0 a 0, so dass g a = T fa,,(0,a,0) gegeben ist durch x g a (x, y, z) = f a (0, a, 0) + gradf a (0, a, 0), y a z T + 1 x x y a Hf a (0, a, 0) y a z z T = 1 x cos(a) + a x y a 0 a 0 y a z 0 0 z = ( cos(a) + a 3 )x + a(y a) + z. g a ist eine quadratische Form und diese ist genau dann positiv, wenn alle Eigenwerte der Matrix positiv sind. Sie ist genau dann positiv definit, wenn a > 0, a 3 > cos(a). Wegen der ersten Bedingung ist I ]0, [. Für alle 0 < a < π ist cos(a) < 0 und a3 > 0, so dass die zweite Bedingung für a ]0, π [ erfüllt ist. Weiter ist a 3 > > cos(a) für alle a > 3, so dass die zweite Bedingung ebenfalls für a ] 3, [ erfüllt ist. Es ist 3 < π, denn 16 < 7 < π3. Damit ist ]0, π [ ] 3, [ = ]0, [ und damit I = R >0. ➃

3 Aufgabe [5/10 Punkte] Es sei M α R mit M α := {(α, y), (x, 0), (α + 1, y) } α x α + 1, 0 y. Weiter sei M = { Mα α ]0, 1[ Q } a) Skizzieren Sie M α und M. b) Zeigen Sie mit Begründung, dass M =, und bestimmen Sie M und M. Lösungsvorschlag a) Skizzen M α 1. für α = 1 4, 3 4. für α = k 0, 1 k 19: ➂+ Die Skizze und die Konstruktion liefern M ( ]0, 1[ ]1, [ ) [0, ] [0, ] b) zu M: Kein Punkt m M α M ist innerer Punkt. ➃, Sei m = (α, y) ( bzw. m = (α + 1, y) ) mit y ]0, ] und sei B ɛ (m) ein Ball um m. Zu α Q ( bzw. α + 1 Q ) gibt es stets ein irrationales x 0 R \ Q, so dass α x 0 < ɛ und x 0 > α ( bzw. α + 1 x 0 < ɛ und x 0 < α + 1 ). Damit ist dann (x 0, y) M aber (x 0, y) B ɛ (m). Insbesondere ist also jeder dieser Punkte ein Randpunkt. Sei m = (x, 0) M also 0 < x <. Dann gibt es zu jedem Ball B ɛ (m) ein ɛ < y 0 < 0 so dass (x, y 0 ) M aber (x, y 0 ) B ɛ (m). Insbesondere ist also jeder dieser Punkte ein Randpunkt. 3

4 zu M: Wir haben oben schon gezeigt, dass M M und wir zeigen M = [0, ] [0, ]. ( ) ➃ Wir müssen also noch zeigen, dass alle n = (x, y) mit x ]0, [ (R \ Q) {0, 1, } und y ]0, ] Randpunkte sind. Sei also n = (x, y) mit x ]0, [ (R\Q) und y ]0, ] und sei B ɛ (n) ein Ball um n. Zu x gibt es stets x 0, x 1 Q, x 1 > x > x 0 so dass x x 1 < ɛ, x x 0 < ɛ. Damit ist dann (x 0, y) B ɛ (x) M oder (x 1, y) B ɛ (x) M. Sei nun n = (0, y) ( bzw. n = (1, y) oder n = (, y) ) mit y ]0, ] und sei B ɛ (n) ein Ball um n. Zu 0 ( bzw. 1 oder ) gibt es stets x 0 Q mit x 0 < ɛ und x 0 > 0 ( bzw. x 0 1 < ɛ und x 0 < 1 oder x 0 < ɛ und x 0 < ). Damit ist dann (x 0, y) B ɛ (n) M. zu M: Wir haben bisher gezeigt, dass [0, ] M. Nehmen wir an, dass Gleicheit gilt, so folgt M = M M = [0, ]. Abschlussbemerkung: Wir haben bisher [0, ] M. Um zu zeigen, dass tatsächlich Gleicheit gilt, reicht es aus, zu zeigen, dass N := R \ [0, ] offen ist. Sei dazu (x, y) N mit y > (oder x > oder x < 0 oder y < 0), dann ist B ɛ (x, y) N für ɛ = y (oder ɛ = x oder ɛ = x oder ɛ = y ). 4

5 Aufgabe 3 [10/10 Punkte] a) Es sei M R offen und g : M R beliebig oft differenzierbar derart, dass in allen Nullstellen ein Vorzeichenwechsel vorliegt jedoch keine Wendestelle. Damit sei f : R M R mit f(x, y) = xg(y). Begründen Sie, warum alle möglichen Extremwerte von f Sattelpunkte sind. b) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y = xy xy y. Hinweis: homogene DGL und quadratische Ergänzung Lösungsvorschlag a) Es ist ( ) g(y) gradf(x, y) = xg (y) und damit gradf(x, y) = 0 g(y) = 0 xg (y) = 0 ( g(y) = 0 x = 0 ) ( g(y) = 0 g (y) = 0 ) Die zweite Bedingung kann nicht erfüllt werden, denn jeder Wert y mit g(y) = g (y) = 0 wäre wegen des Vorzeichenwechsels ein Wendepunkt. Also folgt gradf(x, y) = 0 (x, y) = (0, y 0 ) mit g(y 0 ) = 0 Es ist ( 0 g Hf(x, y) = ) (y) g (y) xg, (y) so dass det Hf(x, y) = g (y). Insbesondere ist in allen möglichen Extremwerten (0, y 0 ) immer g (y) 0, so dass dort det Hf(0, y 0 ) < 0 ist. b) Es ist für x 0 y = xy xy y y = y x + y ( y x x). Mit y = xu, d.h. y = u + xu, wird das zur DGL u + xu = u + u u xu = 1 (u 1) 5

6 u 0 u 1 (u 1) = 1 x. Eine Lösung ist die konstante Lösung u = 0 und die allgemeine Lösung ist implizit gegeben durch 1 1 du = 1 (u 1) x dx d.h. ➂ arcsin(u(x) 1) = ln x + c u(x) = 1 + sin(ln x + c). Für y liefert das die explizite Lösungen y(x) = x + x sin(ln x + c), und y(x) = 0. 6

7 Aufgabe 4 [5/5/5/5 Punkte] Gegeben sei die Funktionenfolge ( f n auf R mit )n 1 falls x < 4 n n x + 4 falls 4 n x < n f n (x) = n x + falls n x < n n x falls n x < 4 n falls x 4 n a) Skizzieren Sie den Graph von f n. b) Bestimmen Sie den punktweisen Limes der Funktionenfolge (f n ). c) Entscheiden Sie mit Begründung, ob (f n ) gleichmäßig konvergiert. d) Bestimmen Sie eine Zahlenfolge (b n ) so, dass die modifizierte Zahlenfolge (g n ) mit g n (x) := b n f n (x) gleichmäßig gegen eine konstante Funktion konvergiert. Lösungsvorschlag a) Die Skizzen für n = 1,, 3, 4, 5, 6: ➄ b) Der punktweise Limes ist f =. Das ist klar für x 4 und x = 0, denn dort ist f n (x) = für alle n. Ist 0 < x < 4 so gibt es immer ein n 0 N, so dass 4 n 0 < x. Für alle n > n 0 ist dann x > 4 n 0 > 4 n, so dass f(x) = für alle n > n 0 und damit auch lim f n(x) =. n 7

8 Ist 0 > x > 4 so gibt es immer ein n 0 N, so dass 4 n 0 > x. Für alle n > n 0 ist dann x < 4 n 0 < 4 n, so dass f(x) = für alle n > n 0 und damit auch lim f n(x) =. n c) Der einzig mögliche gleichmäßige Limes ist der punktweise, also f =. Wenn f gleichmäßig konvergent wäre, so müsste ɛ n 0 n > n 0 : f n < ɛ gelten, wobei die Supremumsnorm bezeichnet. Es ist jedoch f n = sup x R f n (x) = f n ( n ) ( = ) f n = 1 n so dass z.b. zu ɛ = 1 kein solches geforderte n 0 existiert. d) Es sei (b n ) eine beliebige Nullfolge, z.b. b n = 1 n, und g n(x) = b n f n (x). Dann ist für alle x R (g n ) punktweise konvergent gegen 0, denn lim g n(x) = lim b n lim f n(x) = 0 = 0. n n n Dass g n auch gleichmäßig konvergiert, sieht man wie folgt: Zunächst ist f n (x) < 3 für alle x R. Da b n eine Nullfolge ist, existiert zu ɛ 3 ein n 0, so dass b n < ɛ 3 für alle n > n 0. Damit folgt dann für alle x und für alle n > n 0 g n (x) = f n (x)b n = f n b n < 3 ɛ 3 < ɛ. Da ɛ beliebig vorgegeben war, folgt nun die gleichmäßige Konvergenz. Def + 8

9 Aufgabe 5 [3/7 Punkte] Es sei M := {(x, y) R y px = 0} und Q = (p, 4p) R für p R >0. a) Es sei P = (x, y) R ein beliebiger Punkt. Geben Sie eine Funktion an, die den Abstand von P zu Q beschreibt. b) Bestimmen Sie den minimalen Abstand von Q zu M. Lösungsvorschlag a) Der Abstand der Punkte P und Q ist durch f 0 (x, y) = ( ) ( ) ( x p OP OQ = = x p y 4p y 4p) = (x p) + (y 4p) gegeben. ➂ b) Gesucht ist das Minimum der positiven Funktion f 0 unter der Nebenbedingung g(x, y) = y 4px = 0. Die Extrema der Funktion f 0 entsprechen den Extrema der Funktion f = f0. Die Nebenbedingung läßt sich nach x auflösen und in f einsetzen. Die (globale) Auflösung ist x = y p, so dass die zu minimierende Funktion die Funktion ➂ ist. Es ist f(y) = f0 ( y p, y) = 1 4p (y p ) + (y 4p) f (y) = y p (y p ) + (y 4p) = 1 p (y3 p y + p y 8p 3 ) = 1 p (y3 8p 3 ). Damit ist f (y) = 0 y = p. Wegen f (y) = 3 p y ist f (p) > 0 und y = p das Minimum von f. Setzen wir zurück ein, so erhalten wir x = p als Minimum der Funktion f den Punkt (p, p) mit f(p, p) = 5p. Alternativlösung: Wir nutzen f(x, y) = (x p) + (y 4p) und g(x, y) = y px um das Problem mit Hilfe der Lagrangefunktion zu lösen: L = f + λg. y px 0 gradl(λ; x, y) = 0 (x p) λp = 0 (y 4p) + λy 0 9

10 Die letzten beiden Gleichungen liefern (λ + 1)p = x und (λ + 1)y = 4p. Es ist λ + 1 0, da p 0. deshalb können wir den zweiten Term zu y = 4p λ+1 umstellen. Das setzen wir in die erste Gleichung, d.h. in die Nebenbedingung ein und erhalten 16p (λ + 1) p (λ + 1) = 0 (λ + 1) 3 = 8 λ = 1. Das wiederum liefert x = p, y = p Dass das tatsächlich ein Minimum ist, kann man an mit Hilfe der Hessematrix von L überprüfen 0 p y HL(λ; x, y) = p x 0. y 0 (y + λ) Wegen n =, k = 1, n k = 1 brauchen wir nur die Determinante dieser Matrix an unsrer Stelle (p, p) untersuchen (siehe Satz 13.6) 0 p 4p det HL(1; p, p) = det p 4p 0 4p 0 4p + = p(( p(4p + )) + 4p( 16p ) = 8p (1 + 10p) < 0. Es ist ( 1) 1 det HL(1; p, p) > 0, also ist (p, p) ein Minumum mit f 0 (p, p) = f(p, p) = 5p. 10

11 Aufgabe 6 [7/13 Punkte] a) Zeigen Sie, dass die Menge N = kompakt ist. } {(x, y, z) R 3 x a + y b + z c = 1 b) Bestimmen Sie die globalen Maxima der Funktion f(x, y, z) = xyz unter der Nebenbedingung g(x, y, z) = x a + y b + z c 1 = 0. Lösungsvorschlag a) Die Menge N ist kompakt, denn sie ist abgeschlossen und beschränkt. Die Abbildung g ist stetig und daher ist N = g 1 ({0}) als Urbild einer abgeschlossenen Menge unter stetigen Abbildungen auch abgeschlossen. ➂ Ist nun R > max{a, b, c} so ist für alle (x, y, z) N 1 = x a + y b + z c x + y + z R also ist N beschränkt. = x + y + c R ➃ b) Die Lagrangefunktion ist ( ) x L(λ; x, y, z) = xyz + λ a + y b + z c 1. Die möglichen Extremwerte berechnen sich gemäß gradl(λ; x, y, z) = 0 0 = x a + y b + z c 1 0 = yz + λ a x 0 = xz + λ b y 0 = xy + λ c z Die Gleichungen seinen mit I-IV nummeriert. Wir multiplizieren die Gleichungen II,III und IV jeweils mit x, y und z und erhalten durch paarweises Subtrahieren der drei Gleichungen λ a x = λ b y, λ a x = λ c y, λ b y = λ c zz 11

12 also λ a x = λ b y = λ c z 1.Fall: λ = 0: hier werden I-IV zu x a + y b + z 1 = 0, xy = yz = xz = 0 c Dies wird nur gelöst von Punkten in denen mindestens zwei Komponenten verschwinden. Die dritte Komponente wird dann durch I festgelegt. Wir haben also (0, 0, ±c), (0, ±b, 0), (±a, 0, 0)..Fall: λ 0: Hier ist dann x a = y b = z und wegen I schließlich c x = a 3, y = b 3, z = c 3 das liefert die acht Punkte ( ) a b c ɛ 1 3, ɛ, ɛ mit ɛ 1 ɛ ɛ 3 {±1}. Da die Nebenbedingungsmenge N kompakt sind, sind die möglichen Extrema auch die tatsächlichen. Wir haben f(±a, 0, 0) = f(0, ±b, 0) = f(0, 0, ±c) = 0 und ( ) a b c f ɛ 1 3, ɛ, ɛ = ɛ 1 ɛ ɛ 3 abc Daher ist ɛ 1 ɛ ɛ 3 < 0. ( ) a ɛ 1 3 b, ɛ c 3, ɛ 3 3 ein Maxima bzw. Minimum, wenn ɛ 1 ɛ ɛ 3 > 0 bzw. 1

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: A. Kirchhoff, T. Pfrommer, M. Kutter, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Prof. Dr. M. Stroppel Prof. Dr. A. Sändig Lösungshinweise zu den Hausaufgaben: Aufgabe H.

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

Lösungen und Lösungshinweise zum Grundkurs Analysis 2

Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Lösungen und Lösungshinweise zum Grundkurs Analysis 2 Vorbemerkung: Bei einem Buchprojekt dauert meist alles etwas länger als geplant. So ging es mir mit dem Erscheinungdatum des zweiten Bandes, der sich

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Das Optimierungsverfahren mit Lagrange-Multiplikatoren. Robert Koschig (www.massmatics.de), 09/2012

Das Optimierungsverfahren mit Lagrange-Multiplikatoren. Robert Koschig (www.massmatics.de), 09/2012 Das Optimierungsverfahren mit Lagrange-Multiplikatoren Robert Koschig www.massmatics.de, 9/ Inhaltsverzeichnis Motivation. Wo taucht so etwas auf?...................................... Was ist das Problem?......................................

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2 Bei allen Aufgaben muss der Rechenweg erkennbar sein (auch beim Bruchrechnen mindestens Zwischenschritt). Ohne Rechnung gibt es auch bei richtigem Ergebnis keine Punkte. Lösungen der Probe-Vorklausur Aufgabe

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

4.4 Taylorentwicklung

4.4 Taylorentwicklung 4.4. TAYLORENTWICKLUNG 83 4.4 Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Lösungen zu Übung(11) Erster Teil A E=

Lösungen zu Übung(11) Erster Teil A E= Lösungen zu Übung Erster Teil a Betrachten Sie die Matrix A = Die Eigenwerte sind λ = mit algebraischer Vielfachheitundλ =mitalgebraischervielfachheit,unddiematrix A E= hatrang, alsokerndimensionnur, somitistdereigenraumzuλ

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x.

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls x x 0 g(x), beide Funktionen gegen Null konvergieren, d.h. x x 0 = x x 0 g(x) = 0 beide Funktionen gegen Unendlich

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Linearisierung 1 K. Taubert LINEARISIERUNG und das VERHALTEN

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher

Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

1.5 lineare Gleichungssysteme

1.5 lineare Gleichungssysteme 1.5 lineare Gleichungssysteme Inhaltsverzeichnis 1 Was ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten? 2 2 Wie lösen wir ein lineares Gleichungssystem mit zwei Unbekannten?

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr