WS 2008/09. Diskrete Strukturen

Größe: px
Ab Seite anzeigen:

Download "WS 2008/09. Diskrete Strukturen"

Transkript

1 WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München

2 Kapitel III- Kombinatorik Kombinatorische Strukturen und Algorithmen Ziehen von Elementen aus einer Menge Kombinatorische Beweisprinzipien Fundamentale Zählkoeffizienten Bälle und Urnen 2

3 Kapitel III Kombinatorik Fundamentale Zählkoeffizienten Im letzten Kapitel haben wir gesehen, dass die Binomialkoeffizienten die Anzahl k-elementiger Teilmengen einer n-elementigen Menge zählen. n k 3

4 Kapitel III Kombinatorik Fundamentale Zählkoeffizienten Im letzten Kapitel haben wir gesehen, dass die 4 Binomialkoeffizienten die Anzahl k-elementiger Teilmengen einer n-elementigen Menge zählen. Der Name Binomialkoeffizient resultiert daher, dass diese Zahlen in der Exponentiation von binomialen Ausdrücken (a+b) n vorkommen. n k

5 Kapitel III Kombinatorik Die Binomische Formel 5 Theorem: Für alle n 2 N 0 gilt: (a + b) n = nx k=0 µ n a (n k) b k k Beweis: Aus (a+b) n = (a+b)(a+b) (a+b) (n-mal) und aus dem Distributivgesetz folgt X (a + b) n = x 1 x 2 : : : x n (x 1 ;:::;x n )2fa;bg n

6 Kapitel III Kombinatorik Die Binomische Formel 6 Beweis (Fort.): Wir bestimmen die Anzahl der Tupeln (x 1,x 2,,x n ) 2 {a,b} n mit x 1 x 2 x n =a (n-k) b k. Es gilt: x 1 x 2 x n = a (n-k) b k gdw. der Term b genau k Mal in x 1 x 2 x n vorkommt. Das ist genau dann der Fall, wenn die Menge der Positionen der b s genau k-elemente enthält.

7 Kapitel III Kombinatorik Die Binomische Formel Beweis (Fort.): Damit gibt es eine Bijektion zwischen den Tupeln (x 1,x 2,,x n ) mit x 1 x 2 x n =a (n-k) b k und den k-untermengen von {1,,n}. Daraus folgt: die Anzahl der Tupeln ist n k 7

8 Kapitel III Kombinatorik Die Binomische Formel Beispiel: Was ist der Koeffizient von x 12 y 13 in der Expansion von (2x-3y) 25 Antwort: Da x ( 3 y) (2 x) j ( 3 y) j j 0 erhalten wir den Koeffizient von x 12 y 13 für j =13, also (25!/(13! 12!)) 2 12 (-3) 13. j

9 Kapitel III Kombinatorik Anwendung der Binomischen Formel: Korollar: Sei n N 0, dann gilt: n n k 0 k 2 n. 9

10 Kapitel III Kombinatorik Anwendung der Binomischen Formel: 10 Korollar: Sei n N 0, dann gilt: n n k 0 k 2 n. Beweis: Unter Verwendung der Binomischen Formel mit a = 1 und b = 1 erhalten wir: n n n n n n k k n 2 (1 1) 1 1. k k k 0 k 0

11 Kapitel III Kombinatorik Eigenschaften der Binomialkoeffizienten - die Pascalsche Identität: Theorem: Sei n, k mit n k. Dann gilt n n 1 n 1 k k 1 k 0 11

12 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität. Sei T eine n-elementige Menge. Es gibt k-untermengen von T. Sei a 2 T und S = T \{a}. Jede k-teilmenge von T enthält entweder a und k-1 Elemente aus S, oder k Elemente aus S (und so nicht das Element a). n k 12 Forts. n. Seite.

13 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: 13 Da es n k 1 1 Teilmengen von S mit k-1 Elementen gibt, gibt es n 1 k 1 Teilmengen von T mit k Elementen, die a enthalten. Forts. n. Seite.

14 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: Da es n 1 14 k Teilmengen von S mit k Elementen gibt, gibt es n 1 k Teilmengen von T mit k Elementen, die a nicht enthalten. Forts. n. Seite.

15 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: Daraus folgt mit der Summenregel: n n 1 n 1 k k 1 k 15

16 Kapitel III Kombinatorik Das Pascalsche Dreieck: Die Pascalsche Identität ist die Basis für eine geometrische Anordnung der Binomialkoeffizienten in Form eines Dreiecks: Werden zwei benachbarte Koeffizienten addiert, dann ergibt dies den Koeffizienten in der nächsten Zeile zwischen diesen beiden. 16

17 Kapitel III Kombinatorik Die Vandermode Identität In unserem Vorlesungsaal befinden sich n+m Studierende, davon sind n in München geboren und m nicht. Wieviele Möglichkeiten M gibt es, k Studierende auszuwählen? 17 Lösung 1: durch ungeordnetes Ziehen ohne Zurücklegen erhalten wir n m M k

18 Kapitel III Kombinatorik Lösung 2: Wir nehmen j Elemente aus der ersten Menge und dann k-j Elemente aus der zweiten Menge, wobei 0 j k gilt. Aus der Produktregel folgt, dass es für ein k n m j k j 18 Möglichkeiten gibt.

19 Kapitel III Kombinatorik Da im vorhergehenden Beispiel die erste Lösung gleich der zweiten Lösung sein muss, wenn man die Möglichkeiten für alle Werte von j addiert, ergibt sich der folgende Satz: Satz (Vandermonde Identität): k n m n m k j k j j 0 19

20 Kapitel III Kombinatorik Aufgabe: Betrachte den Punkt der xy-ebene mit Koordinaten (m,n) 2 N 0 N 0. Wieviele Pfade gibt es vom Punkt (0,0) zu (m,n), die aus Schritten der Länge 1 nach rechts oder nach oben bestehen? Da ein Pfad aus m Schritten nach rechts und n Schritten nach oben besteht, kann jeder Pfad als Zeichenfolge der Länge m+n mit m 0en und n 1en dargestellt werden. 20

21 Kapitel III Kombinatorik Die Anzahl von Zeichenfolgen der Länge m+n, die genau n 1en beinhalten, ist gegeben durch die Anzahl Positionen, an denen die n 1en stehen oder die m 0en stehen. Hieraus folgt, dass die Anzahl von Zeichenfolgen gegeben ist durch m n m n n m 21

22 Die Stirlingzahlen der zweiten Art Definition: Eine k-partition einer n-elementigen Menge A={s 1,,s n } ist eine Zerlegung von A in k disjunkte, nichtleere Teilmengen (oder Blöcke) A 1,,A k, so dass gilt: k i 1 A i A 22

23 Die Stirlingzahlen der zweiten Art Beispiel für n = 5 und k = 4: { 1, 2, 3,4, 5 } { 1, 5, 2, 3, 4 } { 1, 2,3, 4, 5 } { 1, 2, 5, 3, 4 } { 1, 2,4, 3, 5 } { 1, 2, 3, 5, 4 } { 1,2, 3, 4, 5 } { 1, 2, 3, 4, 5 } { 1,3, 2, 4, 5 } 23 1,4, 2, 3, 5

24 Die Stirlingzahlen der zweiten Art 24 Die Anzahl der k-partitionen einer n-elementigen Menge = Die Anzahl der Möglichkeiten, n unterscheidbare Objekte in k gleiche Fächer zu verteilen (jedes Fach bekommt mindestens ein Objekt!). = (Warum?) (1/k!) Anzahl der surjektiven Funktionen f: A! B mit A =n und B =k

25 Die Stirlingzahlen der zweiten Art Die Anzahl von k-partitionen wird durch die sogenannten Stirlingzahlen zweiter Art angegeben und mit S n,k bezeichnet. Insbesondere gilt: S n,k = 0 für k>n, S n,0 = 0 für n>0, S 0,0 = 1. Frage: Wie lassen sich diese Zahlen berechnen? 25

26 Die Stirlingzahlen der zweiten Art Wir teilen die k-partitionen in zwei disjunkte Klassen auf (siehe Beweis der Pascalschen Identität): Klasse 1: alle Partitionen, in denen sich das Element s n alleine in einem Block befindet. Klasse 2: alle Partitionen, die nicht in der ersten Klasse sind. 26

27 Kapitel III Kombinatorik Die Stirlingzahlen der zweiten Art Klasse 1: alle Partitionen, in denen sich das Element s n alleine in einem Block befindet. Dann müssen die Elemente s 1,,s n-1 auf die übrigen k-1 Blöcke verteilt werden. Dies sind dann genau die S n-1,k-1 Partitionen. 27

28 Die Stirlingzahlen der zweiten Art Klasse 2: alle Partitionen, die nicht in der ersten Klasse sind. Dann befindet sich s n in einem der k Blöcke, auf die die Elemente s 1,,s n-1 verteilt wurden es gibt dann also k S n-1,k Partitionen in der zweiten Klasse. 28

29 Die Stirlingzahlen der zweiten Art 29 Durch Anwenden der Summenregel ist damit der folgende Satz bewiesen: Satz: Die Anzahl der k-partitionen einer n- elementigen Menge für alle k,n N und n k ist durch die Stirlingzahlen S n,k zweiter Art gegeben, wobei gilt: Sn, k Sn 1, k 1 ksn 1, k

30 Die Stirlingzahlen der zweiten Art 30

31 Die Stirlingzahlen der ersten Art 31 Werden verwendet zum Zählen von Permutationen. Eine Permutation einer Menge A = {a 1,,a n } ist eine bijektive Abbildung : A A, d.h. jedem Element a A entspricht ein Bild (a) und jedes Element von A ist das Bild genau eines a: a a... a 1 2 n (a ) (a )... (a ) 1 2 n

32 Die Stirlingzahlen der ersten Art Die Menge aller Permutationen einer n- elementigen Menge wird als symmetrische Gruppe G n bezeichnet. Da es n! Permutationen einer n-elementigen Menge gibt, ist G n = n! 32

33 Die Stirlingzahlen der ersten Art Beispiel: Man sieht, dass 3 und 9 Fixpunkte von sind (sie werden auf sich selber abgebildet), und das 1,5,2,8 einen Zyklus der Länge 4 bilden, d.h. ( ( ( (1))) = 1.

34 Die Stirlingzahlen der ersten Art Definition: Ein Zyklus (i 1,,i t ) einer Permutation ist eine Folge i 1,,i t, wobei (i j ) = i j+1 für alle 1 j < t gilt, und (i t ) = i 1 ist

35 Die Stirlingzahlen der ersten Art Jede Permutation lässt sich als Menge von Zyklen darstellen. Beispiel: = {( ),(3),(4 6 7),(9),(10 11)} 35

36 Die Stirlingzahlen der ersten Art Sei s n,k die Anzahl Permutationen mit k Zyklen. Da jede Permutation mindestens einen und höchstens einen Zyklus hat, gilt 36 k n 1 s n, k n Die Zahlen s n,k heißen Stirlingzahlen erster Art.!

37 Die Stirlingzahlen der ersten Art Beispiel für n = 4 und k = 3: {(1),(2 3),(4)} {(1 4),(2),(3)} {(1 2),(3),(4)} {(1),(2 4),(3)} {(1 3),(2),(4)} {(1),(2),(3 4)} 37

38 Die Stirlingzahlen der ersten Art Satz: Die Anzahl der Permutationen von n Elementen mit genau k Zyklen für alle k,n N und n k ist durch die Stirlingzahlen s n,k gegeben, wobei gilt: s s ( n 1) s n, k n 1, k 1 n 1, k 38

39 Die Stirlingzahlen der ersten Art 39 Beweis: Eine Permutation von n Elementen mit k Zyklen kann auf zwei Arten entstehen: 1. Aus einer Permutation von n-1 Elementen mit k-1 Zyklen, indem das n-te Element einen neuen Zyklus der Länge 1 bildet. 2. Indem das n-te Element in einen der k Zyklen einer Permutation von n-1 mit k Zyklen hinzugefügt wird. Dafür gibt es aber genau n-1 Möglichkeiten.

40 Die Stirlingzahlen der ersten Art 40

41 Ungeordnete Zahlpartitionen Ähnlich zur disjunkten Vereinigung von Mengen kann auch eine natürliche Zahl n N als Summe von k positiven ganzen Zahlen geschrieben werden: n = n 1 + n n k. Eine solche Zerlegung nennen wir Zahlpartition, und sie kann auf zwei unterschiedliche Arten dargestellt werden: 41

42 Ungeordnete Zahlpartitionen Eine Zahlpartition kann auf zwei unterschiedliche Arten dargestellt werden: 1: n = n 1 + n n k. 2: als Liste (m 1,m 2,,m n ), wobei m i angibt, wie oft die Zahl i in der Summe von 1 vorkommt. Dabei gilt: 42 i n m k und i m n i 1 i 1 n i

43 Ungeordnete Zahlpartitionen 43 Die Listendarstellung der Zahlpartitionen ermöglicht es, den folgenden Satz zu beweisen. Satz: Für die Anzahl der ungeordneten k-partitionen P n,k einer Zahl n gilt (mit P n,k = 0 für k > n, P n,0 = 0 für n 1, P 0,0 := 1): k i 1 P n, i Pn k, k Beweis siehe Übung!

44 Geordnete Zahlpartitionen Wir nehmen nun an, dass die gesuchten k-zahlpartitionen geordnet sein sollen, d.h. 4 = 3+1 = 1+3 = 2+2 lässt sich durch drei unterschiedliche 2-Partitionen darstellen. Entspricht das Problem: wie viele Möglichkeiten gibt es, n Euro (nicht unterscheidbar) unter k Kinder (unterscheidbar) zu verteilen, wenn kein Kind leer ausgehen soll. 44

45 Geordnete Zahlpartitionen 45 Da jede Zahl n in der Form n n x 1 x 2 geschrieben werden kann, kann jede geordnete Zahlpartition eindeutig durch die + bestimmt werden, die die x i s trennen. Dies ist gleich der Anzahl von Möglichkeiten k-1 + aus den n-1 + auszuwählen! x k

46 Geordnete Zahlpartitionen Daraus folgt der folgende Satz. Satz: Die Anzahl der geordneten k-partitionen von n ist gleich n k

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Übungsblatt 5 12. September 2011 Diskrete Strukturen

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Aufgaben und Lösungen

Aufgaben und Lösungen Aufgaben und Lösungen Aufgabe Aus einer Schulklasse von 3 Schülern soll eine Abordnung von Schülern zum Direktor geschickt werden. Auf wie viele Arten kann diese Abordnung gebildet werden? ( ) 3 = 33.649

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Institut fu r Informatik

Institut fu r Informatik Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2013 Aufgabenblatt 3 18. November

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Kombinatorik Andreas Siegling Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Einstieg Es gibt ca. 6.7 x 10 21 verschiedene 9x9 Standard-Sudokus. Für Tic

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen,

1 Die reellen Zahlen. 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, 1 Die reellen Zahlen 1. Ziele des Mathematikstudiums: Die Studierenden sollen lernen, präzise und logisch zu denken, komplexe Strukturen schnell und gründlich zu erfassen, Dinge kritisch zu hinterfragen

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Irrfahrten und Phänomene des Zufalls

Irrfahrten und Phänomene des Zufalls Irrfahrten und Phänomene des Zufalls von Dipl.-math. oec. Bruno Ebner Inhaltsverzeichnis 1 Einführung 3 1.1 Zufallsexperiment, Ergebnismenge und Wahrscheinlichkeit.......... 3 1.2 Irrfahrten 1....................................

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln

Objektorientierte Programmierung. Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass: OOP (Java), 3. Syntaxdiagramme und Grammatikregeln 1/32 Objektorientierte Programmierung Kapitel 3: Syntaxdiagramme und Grammatikregeln Stefan Brass Martin-Luther-Universität Halle-Wittenberg

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Vorlesungsnotizen Einführung in die Stochastik Hanspeter Schmidli Mathematisches Institut der Universität zu Köln INHALTSVERZEICHNIS iii Inhaltsverzeichnis 1. Diskrete Wahrscheinlichkeitsräume 1 1.1.

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Mathematik wirklich verstehen

Mathematik wirklich verstehen Mathematik wirklich verstehen Eine Einführung in ihre Grundbegriffe und Denkweisen Von Arnold Kirsch 3. verbesserte Auflage Aulis Verlag Deubner & Co KG Köln Inhaltsverzeichnis Vorwort 11 Teil A Zahlen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Lösungen zur Vorrundenprüfung 2006

Lösungen zur Vorrundenprüfung 2006 Lösungen zur Vorrundenprüfung 2006 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Kompositionen von Baumreihen-Transformationen

Kompositionen von Baumreihen-Transformationen Kompositionen von Baumreihen-Transformationen Andreas Maletti 1 Lehrstuhl: Grundlagen der Programmierung Institut für Theoretische Informatik Technische Universität Dresden 4. November 2005 1 Finanziell

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Stirlingzahlen erster und zweiter Art

Stirlingzahlen erster und zweiter Art Stirlingzahlen erster und zweiter Art Proseminararbeit von Sven Kurras zur Analysis bei Prof. Hilgert version.2 kurras@upb.de 4. Juli 25 Universität Paderborn Inhaltsverzeichnis Motivation und Roter Faden

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

(a) Der untenstehende Ausdruck ist soweit als möglich zu vereinfachen: (n + 1)! + 3

(a) Der untenstehende Ausdruck ist soweit als möglich zu vereinfachen: (n + 1)! + 3 Kombinatorik 1. Lottoprobleme Beim Schweizer Zahlenlotto werden aus den Zahlen 1,..., 45 sechs Zahlen gezogen. (a Mit welcher Wahrscheinlichkeit erzielt man einen Sechser, wenn man auf alle möglichen Kombinationen

Mehr

Der Golay-Code und das Leech-Gitter

Der Golay-Code und das Leech-Gitter Der Golay-Code und das Leech-Gitter Vortrag zum Seminar Gitter und Codes Nils Malte Pawelzik.5.5 Inhaltsverzeichnis Designs 3. Elementare Eigenschaften eines Designs und die Eindeutigkeit eines - (, 5,

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre.

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre. Fakultät IV Elektrotechnik/Informatik Klausur Einführung in die Informatik I für Elektrotechniker Name:... Matr.-Nr.... Bearbeitungszeit: 120 Minuten Bewertung (bitte offenlassen : ) Aufgabe Punkte Erreichte

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Übung zur Algebra WiSe 2008/2009, Blatt 1

Übung zur Algebra WiSe 2008/2009, Blatt 1 Aufgabe 1: Zeigen Sie, dass die Untergruppe der Permutationsmatrizen in GL(n, R) isomorph zur symmetrischen Gruppe S n ist. Es sei Perm n die Menge der Permutationsmatrizen in GL(n, R). Der Isomorphismus

Mehr

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER EIN LEMMA ÜBER PERLENKETTEN VON Andreas DRESS UND Christian SIEBENEICHER Abstract: We establish a diagram providing various bijections related to the theory of necklaces (or aperiodic words ) and clarifying

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr