WS 2008/09. Diskrete Strukturen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "WS 2008/09. Diskrete Strukturen"

Transkript

1 WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München

2 Kapitel III- Kombinatorik Kombinatorische Strukturen und Algorithmen Ziehen von Elementen aus einer Menge Kombinatorische Beweisprinzipien Fundamentale Zählkoeffizienten Bälle und Urnen 2

3 Kapitel III Kombinatorik Fundamentale Zählkoeffizienten Im letzten Kapitel haben wir gesehen, dass die Binomialkoeffizienten die Anzahl k-elementiger Teilmengen einer n-elementigen Menge zählen. n k 3

4 Kapitel III Kombinatorik Fundamentale Zählkoeffizienten Im letzten Kapitel haben wir gesehen, dass die 4 Binomialkoeffizienten die Anzahl k-elementiger Teilmengen einer n-elementigen Menge zählen. Der Name Binomialkoeffizient resultiert daher, dass diese Zahlen in der Exponentiation von binomialen Ausdrücken (a+b) n vorkommen. n k

5 Kapitel III Kombinatorik Die Binomische Formel 5 Theorem: Für alle n 2 N 0 gilt: (a + b) n = nx k=0 µ n a (n k) b k k Beweis: Aus (a+b) n = (a+b)(a+b) (a+b) (n-mal) und aus dem Distributivgesetz folgt X (a + b) n = x 1 x 2 : : : x n (x 1 ;:::;x n )2fa;bg n

6 Kapitel III Kombinatorik Die Binomische Formel 6 Beweis (Fort.): Wir bestimmen die Anzahl der Tupeln (x 1,x 2,,x n ) 2 {a,b} n mit x 1 x 2 x n =a (n-k) b k. Es gilt: x 1 x 2 x n = a (n-k) b k gdw. der Term b genau k Mal in x 1 x 2 x n vorkommt. Das ist genau dann der Fall, wenn die Menge der Positionen der b s genau k-elemente enthält.

7 Kapitel III Kombinatorik Die Binomische Formel Beweis (Fort.): Damit gibt es eine Bijektion zwischen den Tupeln (x 1,x 2,,x n ) mit x 1 x 2 x n =a (n-k) b k und den k-untermengen von {1,,n}. Daraus folgt: die Anzahl der Tupeln ist n k 7

8 Kapitel III Kombinatorik Die Binomische Formel Beispiel: Was ist der Koeffizient von x 12 y 13 in der Expansion von (2x-3y) 25 Antwort: Da x ( 3 y) (2 x) j ( 3 y) j j 0 erhalten wir den Koeffizient von x 12 y 13 für j =13, also (25!/(13! 12!)) 2 12 (-3) 13. j

9 Kapitel III Kombinatorik Anwendung der Binomischen Formel: Korollar: Sei n N 0, dann gilt: n n k 0 k 2 n. 9

10 Kapitel III Kombinatorik Anwendung der Binomischen Formel: 10 Korollar: Sei n N 0, dann gilt: n n k 0 k 2 n. Beweis: Unter Verwendung der Binomischen Formel mit a = 1 und b = 1 erhalten wir: n n n n n n k k n 2 (1 1) 1 1. k k k 0 k 0

11 Kapitel III Kombinatorik Eigenschaften der Binomialkoeffizienten - die Pascalsche Identität: Theorem: Sei n, k mit n k. Dann gilt n n 1 n 1 k k 1 k 0 11

12 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität. Sei T eine n-elementige Menge. Es gibt k-untermengen von T. Sei a 2 T und S = T \{a}. Jede k-teilmenge von T enthält entweder a und k-1 Elemente aus S, oder k Elemente aus S (und so nicht das Element a). n k 12 Forts. n. Seite.

13 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: 13 Da es n k 1 1 Teilmengen von S mit k-1 Elementen gibt, gibt es n 1 k 1 Teilmengen von T mit k Elementen, die a enthalten. Forts. n. Seite.

14 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: Da es n 1 14 k Teilmengen von S mit k Elementen gibt, gibt es n 1 k Teilmengen von T mit k Elementen, die a nicht enthalten. Forts. n. Seite.

15 Kapitel III Kombinatorik Kombinatorischer Beweis der Pascalschen Identität: Daraus folgt mit der Summenregel: n n 1 n 1 k k 1 k 15

16 Kapitel III Kombinatorik Das Pascalsche Dreieck: Die Pascalsche Identität ist die Basis für eine geometrische Anordnung der Binomialkoeffizienten in Form eines Dreiecks: Werden zwei benachbarte Koeffizienten addiert, dann ergibt dies den Koeffizienten in der nächsten Zeile zwischen diesen beiden. 16

17 Kapitel III Kombinatorik Die Vandermode Identität In unserem Vorlesungsaal befinden sich n+m Studierende, davon sind n in München geboren und m nicht. Wieviele Möglichkeiten M gibt es, k Studierende auszuwählen? 17 Lösung 1: durch ungeordnetes Ziehen ohne Zurücklegen erhalten wir n m M k

18 Kapitel III Kombinatorik Lösung 2: Wir nehmen j Elemente aus der ersten Menge und dann k-j Elemente aus der zweiten Menge, wobei 0 j k gilt. Aus der Produktregel folgt, dass es für ein k n m j k j 18 Möglichkeiten gibt.

19 Kapitel III Kombinatorik Da im vorhergehenden Beispiel die erste Lösung gleich der zweiten Lösung sein muss, wenn man die Möglichkeiten für alle Werte von j addiert, ergibt sich der folgende Satz: Satz (Vandermonde Identität): k n m n m k j k j j 0 19

20 Kapitel III Kombinatorik Aufgabe: Betrachte den Punkt der xy-ebene mit Koordinaten (m,n) 2 N 0 N 0. Wieviele Pfade gibt es vom Punkt (0,0) zu (m,n), die aus Schritten der Länge 1 nach rechts oder nach oben bestehen? Da ein Pfad aus m Schritten nach rechts und n Schritten nach oben besteht, kann jeder Pfad als Zeichenfolge der Länge m+n mit m 0en und n 1en dargestellt werden. 20

21 Kapitel III Kombinatorik Die Anzahl von Zeichenfolgen der Länge m+n, die genau n 1en beinhalten, ist gegeben durch die Anzahl Positionen, an denen die n 1en stehen oder die m 0en stehen. Hieraus folgt, dass die Anzahl von Zeichenfolgen gegeben ist durch m n m n n m 21

22 Die Stirlingzahlen der zweiten Art Definition: Eine k-partition einer n-elementigen Menge A={s 1,,s n } ist eine Zerlegung von A in k disjunkte, nichtleere Teilmengen (oder Blöcke) A 1,,A k, so dass gilt: k i 1 A i A 22

23 Die Stirlingzahlen der zweiten Art Beispiel für n = 5 und k = 4: { 1, 2, 3,4, 5 } { 1, 5, 2, 3, 4 } { 1, 2,3, 4, 5 } { 1, 2, 5, 3, 4 } { 1, 2,4, 3, 5 } { 1, 2, 3, 5, 4 } { 1,2, 3, 4, 5 } { 1, 2, 3, 4, 5 } { 1,3, 2, 4, 5 } 23 1,4, 2, 3, 5

24 Die Stirlingzahlen der zweiten Art 24 Die Anzahl der k-partitionen einer n-elementigen Menge = Die Anzahl der Möglichkeiten, n unterscheidbare Objekte in k gleiche Fächer zu verteilen (jedes Fach bekommt mindestens ein Objekt!). = (Warum?) (1/k!) Anzahl der surjektiven Funktionen f: A! B mit A =n und B =k

25 Die Stirlingzahlen der zweiten Art Die Anzahl von k-partitionen wird durch die sogenannten Stirlingzahlen zweiter Art angegeben und mit S n,k bezeichnet. Insbesondere gilt: S n,k = 0 für k>n, S n,0 = 0 für n>0, S 0,0 = 1. Frage: Wie lassen sich diese Zahlen berechnen? 25

26 Die Stirlingzahlen der zweiten Art Wir teilen die k-partitionen in zwei disjunkte Klassen auf (siehe Beweis der Pascalschen Identität): Klasse 1: alle Partitionen, in denen sich das Element s n alleine in einem Block befindet. Klasse 2: alle Partitionen, die nicht in der ersten Klasse sind. 26

27 Kapitel III Kombinatorik Die Stirlingzahlen der zweiten Art Klasse 1: alle Partitionen, in denen sich das Element s n alleine in einem Block befindet. Dann müssen die Elemente s 1,,s n-1 auf die übrigen k-1 Blöcke verteilt werden. Dies sind dann genau die S n-1,k-1 Partitionen. 27

28 Die Stirlingzahlen der zweiten Art Klasse 2: alle Partitionen, die nicht in der ersten Klasse sind. Dann befindet sich s n in einem der k Blöcke, auf die die Elemente s 1,,s n-1 verteilt wurden es gibt dann also k S n-1,k Partitionen in der zweiten Klasse. 28

29 Die Stirlingzahlen der zweiten Art 29 Durch Anwenden der Summenregel ist damit der folgende Satz bewiesen: Satz: Die Anzahl der k-partitionen einer n- elementigen Menge für alle k,n N und n k ist durch die Stirlingzahlen S n,k zweiter Art gegeben, wobei gilt: Sn, k Sn 1, k 1 ksn 1, k

30 Die Stirlingzahlen der zweiten Art 30

31 Die Stirlingzahlen der ersten Art 31 Werden verwendet zum Zählen von Permutationen. Eine Permutation einer Menge A = {a 1,,a n } ist eine bijektive Abbildung : A A, d.h. jedem Element a A entspricht ein Bild (a) und jedes Element von A ist das Bild genau eines a: a a... a 1 2 n (a ) (a )... (a ) 1 2 n

32 Die Stirlingzahlen der ersten Art Die Menge aller Permutationen einer n- elementigen Menge wird als symmetrische Gruppe G n bezeichnet. Da es n! Permutationen einer n-elementigen Menge gibt, ist G n = n! 32

33 Die Stirlingzahlen der ersten Art Beispiel: Man sieht, dass 3 und 9 Fixpunkte von sind (sie werden auf sich selber abgebildet), und das 1,5,2,8 einen Zyklus der Länge 4 bilden, d.h. ( ( ( (1))) = 1.

34 Die Stirlingzahlen der ersten Art Definition: Ein Zyklus (i 1,,i t ) einer Permutation ist eine Folge i 1,,i t, wobei (i j ) = i j+1 für alle 1 j < t gilt, und (i t ) = i 1 ist

35 Die Stirlingzahlen der ersten Art Jede Permutation lässt sich als Menge von Zyklen darstellen. Beispiel: = {( ),(3),(4 6 7),(9),(10 11)} 35

36 Die Stirlingzahlen der ersten Art Sei s n,k die Anzahl Permutationen mit k Zyklen. Da jede Permutation mindestens einen und höchstens einen Zyklus hat, gilt 36 k n 1 s n, k n Die Zahlen s n,k heißen Stirlingzahlen erster Art.!

37 Die Stirlingzahlen der ersten Art Beispiel für n = 4 und k = 3: {(1),(2 3),(4)} {(1 4),(2),(3)} {(1 2),(3),(4)} {(1),(2 4),(3)} {(1 3),(2),(4)} {(1),(2),(3 4)} 37

38 Die Stirlingzahlen der ersten Art Satz: Die Anzahl der Permutationen von n Elementen mit genau k Zyklen für alle k,n N und n k ist durch die Stirlingzahlen s n,k gegeben, wobei gilt: s s ( n 1) s n, k n 1, k 1 n 1, k 38

39 Die Stirlingzahlen der ersten Art 39 Beweis: Eine Permutation von n Elementen mit k Zyklen kann auf zwei Arten entstehen: 1. Aus einer Permutation von n-1 Elementen mit k-1 Zyklen, indem das n-te Element einen neuen Zyklus der Länge 1 bildet. 2. Indem das n-te Element in einen der k Zyklen einer Permutation von n-1 mit k Zyklen hinzugefügt wird. Dafür gibt es aber genau n-1 Möglichkeiten.

40 Die Stirlingzahlen der ersten Art 40

41 Ungeordnete Zahlpartitionen Ähnlich zur disjunkten Vereinigung von Mengen kann auch eine natürliche Zahl n N als Summe von k positiven ganzen Zahlen geschrieben werden: n = n 1 + n n k. Eine solche Zerlegung nennen wir Zahlpartition, und sie kann auf zwei unterschiedliche Arten dargestellt werden: 41

42 Ungeordnete Zahlpartitionen Eine Zahlpartition kann auf zwei unterschiedliche Arten dargestellt werden: 1: n = n 1 + n n k. 2: als Liste (m 1,m 2,,m n ), wobei m i angibt, wie oft die Zahl i in der Summe von 1 vorkommt. Dabei gilt: 42 i n m k und i m n i 1 i 1 n i

43 Ungeordnete Zahlpartitionen 43 Die Listendarstellung der Zahlpartitionen ermöglicht es, den folgenden Satz zu beweisen. Satz: Für die Anzahl der ungeordneten k-partitionen P n,k einer Zahl n gilt (mit P n,k = 0 für k > n, P n,0 = 0 für n 1, P 0,0 := 1): k i 1 P n, i Pn k, k Beweis siehe Übung!

44 Geordnete Zahlpartitionen Wir nehmen nun an, dass die gesuchten k-zahlpartitionen geordnet sein sollen, d.h. 4 = 3+1 = 1+3 = 2+2 lässt sich durch drei unterschiedliche 2-Partitionen darstellen. Entspricht das Problem: wie viele Möglichkeiten gibt es, n Euro (nicht unterscheidbar) unter k Kinder (unterscheidbar) zu verteilen, wenn kein Kind leer ausgehen soll. 44

45 Geordnete Zahlpartitionen 45 Da jede Zahl n in der Form n n x 1 x 2 geschrieben werden kann, kann jede geordnete Zahlpartition eindeutig durch die + bestimmt werden, die die x i s trennen. Dies ist gleich der Anzahl von Möglichkeiten k-1 + aus den n-1 + auszuwählen! x k

46 Geordnete Zahlpartitionen Daraus folgt der folgende Satz. Satz: Die Anzahl der geordneten k-partitionen von n ist gleich n k

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (4)

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (4) WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (4) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Berechnung von Teilmengen

Berechnung von Teilmengen Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Prinzip der Inklusion- Exklusion

Prinzip der Inklusion- Exklusion Prinzip der Inklusion- Exklusion Ziel: Zählen von Elementen in nicht-disjunkten Mengen. 2 Mengen A 1, A 2 : Zählen zunächst die Elemente in A 1. Addieren dazu die Anzahl der Elemente in A 2. Zählen damit

Mehr

WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1)

WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1) WS 2016/17 Diskrete Strukturen Kapitel 3: Kombinatorik (1) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte)

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 007/08 Lösungsblatt 7

Mehr

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Verteilen von Bällen auf Urnen

Verteilen von Bällen auf Urnen Verteilen von Bällen auf Urnen Szenario: Wir verteilen n Bälle auf m Urnen, d.h. f : B U mit B = {b 1,..., b n } und U = {u 1,..., u m }. Dabei unterscheiden wir alle Kombinationen der folgenden Fälle

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt04.doc

Prof. S. Krauter Kombinatorik. WS Blatt04.doc Prof. S. Krauter Kombinatorik. WS-05-06 Blatt04.doc Mengenpartitionen:. Auf dem Tisch liegen 7 verschiedene Gegenstände. Wie viele verschiedene Möglichkeiten gibt es, diese 7 Gegenstände in 3 gleiche Schachteln

Mehr

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen

2.6 Zahlpartitionen. 2.7 Mehr Rekursionsformeln - Catalanzahlen Beweis. (kombinatorisch): Links steht die Anzahl der k-partitionen einer n-elementigen Menge. Wie entstehen diese? Wir wählen wieder ein festes Element e n aus M. Man kann die k-partitionen von M dann

Mehr

Technische Universität München. Kombinatorik. Christian Fuchs

Technische Universität München. Kombinatorik. Christian Fuchs Kombinatorik Christian Fuchs 1.Definition Kombinatorik 2.Grundlegende Zählmethoden 3.Binomialkoeffizienten 4.Permutationen 5.Stirling-Zahlen 6.Catalan-Zahlen 7.Zahlpartitionen 8.Aufgaben 9.Literatur Technische

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

Kapitel 2. Kapitel 2 Zählen (Kombinatorik)

Kapitel 2. Kapitel 2 Zählen (Kombinatorik) Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Kombinatorik. Matthias Bayerlein Matthias Bayerlein Kombinatorik / 34

Kombinatorik. Matthias Bayerlein Matthias Bayerlein Kombinatorik / 34 Kombinatorik Matthias Bayerlein 25.6.2010 Matthias Bayerlein Kombinatorik 25.6.2010 1 / 34 Überblick Grundlagen aus der Schule Spezielle Zahlenfolgen Zusammenfassung Matthias Bayerlein Kombinatorik 25.6.2010

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner Kombinatorik: Abzählverfahren Teschl/Teschl 7 Fragestellung: Wie viele verschiedene Möglichkeiten gibt es, Elemente auszuwählen, z. B. Anzahl verschiedener möglicher Passwörter, IPAdressen, Zahlenkombinationen

Mehr

Kombinatorik. Hallo Welt Philip Kranz. 12. Juli Philip Kranz () Kombinatorik 12. Juli / 47

Kombinatorik. Hallo Welt Philip Kranz. 12. Juli Philip Kranz () Kombinatorik 12. Juli / 47 Kombinatorik Hallo Welt 2011 Philip Kranz 12. Juli 2011 Philip Kranz () Kombinatorik 12. Juli 2011 1 / 47 Inhalt 1 Einführung 2 Grundlagen Permutationen Variationen Kombinationen Binomialkoeffizient /

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 22. Dezember 2010 ZÜ DS ZÜ IX Übersicht: 1.

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Partitionen natürlicher Zahlen

Partitionen natürlicher Zahlen Partitionen natürlicher Zahlen wgnedin@math.uni-koeln.de 9. Oktober 03 In dieser Notiz wird der Beweis des Satzes über die Anzahl der Partitionen einer natürlichen Zahl vorgestellt. Die Darstellung folgt

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Einleitung Grundlagen spez. Zahlenfolgen Zusammenfassung Kombinatorik. im Rahmen Hallo Welt für Fortgeschrittene. Johannes Simon

Einleitung Grundlagen spez. Zahlenfolgen Zusammenfassung Kombinatorik. im Rahmen Hallo Welt für Fortgeschrittene. Johannes Simon Kombinatorik im Rahmen Hallo Welt für Fortgeschrittene Johannes Simon - 27.06.2008 TODO 1 / 41 Kombinatorik ist ein Teilgebiet der Mathematik, das sich mit der Bestimmung der Zahl möglicher Anordnungen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Diskrete Mathematik I

Diskrete Mathematik I Diskrete Mathematik I Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 08/09 DiMa I - Vorlesung 01-13.10.2008 Mengen, Relationen, Funktionen, Indirekter Beweis 1 / 365 Organisatorisches

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51 Kombinatorik Simon Rainer sr@mail25.de 21. Juli 2015 Simon Rainersr@mail25.de Kombinatorik 21. Juli 2015 1 / 51 Was ist Kombinatorik? Teilgebiet der diskreten Mathematik Endliche oder abzählbar unendliche

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Strukturen. Abgabetermin: 15. Januar 2013, 14 Uhr in die DS Briefkästen

Diskrete Strukturen. Abgabetermin: 15. Januar 2013, 14 Uhr in die DS Briefkästen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Wintersemester 2012/13 Übungsblatt 11 7. Januar 2013 Diskrete Strukturen

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

Kombinatorik und Polynommultiplikation

Kombinatorik und Polynommultiplikation Kombinatorik und Polynommultiplikation 3 Vorträge für Schüler SS 2004 W. Plesken RWTH Aachen, Lehrstuhl B für Mathematik 2 Mengen und Abbildungen: Die Sprache der Mathematik Wir haben in der ersten Vorlesung

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o

4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o *) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Übungsblatt 5 12. September 2011 Diskrete Strukturen

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr