Statistischer Mittelwert und Portfoliorendite

Größe: px
Ab Seite anzeigen:

Download "Statistischer Mittelwert und Portfoliorendite"

Transkript

1 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl von Forderungen an ihre Kapitalanlagen: Sicherheit, dass zumindest die Rückzahlung des eingesetzten Kapitals gewährleistet ist, Ertrag, der zusätzlich zum eingesetzten Kapital, wenn möglich mit gewisser Garantie, erzielt wird, Ausstiegsmöglichkeit bei unvorhergesehenen Ereignissen, wenig Steuerabzüge sowie geringe Spesen. Die Kursentwicklung bei Wertpapieren ist ungewiss und somit stellt die realisierbare Rendite eine Zufallsvariable mit verschiedenen möglichen Ausgängen dar. Teilt ein Investor einen Anlagebetrag zum Beispiel auf zwei Wertpapiere auf, so berechnet sich die Rendite aus: Anteil Wertpapier 1 Rendite Portfolio = Gesamtinvestition R 1 + Anteil Wertpapier 2 Gesamtinvestition R 2 Die mittleren Werte der Renditeausgänge R 1 und R 2 werden durch Stichproben ermittelt: _ Anteil Wertpapier 1 E (Rendite Portfolio ) = Gesamtinvestition _ Anteil Wertpapier 2 E (R 1 ) + Gesamtinvestition _ E (R 2 ) Wenn man annimmt, dass die Renditen zeitlich unabhängig voneinander und ident verteilt sind, dann stellt das arithmetische Mittel einen Schätzwert für zukünftige Renditen dar. Z8.1 Ein Portfolio besteht aus 100 Mengeneinheiten (ME) der Aktie A. Dabei wurde in drei von zehn Jahren eine Rendite von 4 %, in fünf von zehn Jahren eine Rendite von 5 % und in zwei von zehn Jahren eine Rendite von 8 % beobachtet. Zusätzlich gehören 80 ME der Bundesanleihe B mit einer gesicherten Verzinsung von 9 % zu diesem Portfolio. Berechne einen Schätzwert für die zu erwartende Rendite. Lösung: _ E (RenditeA ) = , = 0,053 = 5,3 % _ E (RenditeB ) = 9 % _ E (erwartete Rendite) = , , , ,09 Berechnung des Schätzwerts = 0, ,94 % 18

2 Will man die tatsächliche Renditenentwicklung über einen für den beobachteten Zeitpunkt konstant bleibenden Mittelwert beschreiben, verwendet man das geometrische Mittel, wie das folgende Beispiel zeigen soll. Datum Fond A Kapitalfaktoren Renditen , , % , , % , , % , , % Somit ergibt sich: _ 4 E = 1, , , , = 1, p Quartal = 3,02 % Z8.2 An der Börse werden an 250 Tagen die Tageskurse einer bestimmten Aktie festgehalten und dabei folgende Beobachtungen gemacht: Eine Rendite von 3 % wurde an 117 Tagen, eine Rendite von 5 % wurde an 53 Tagen, eine Rendite von 2 % wurde an 38 Tagen und eine Rendite von 1,5 % an 42 Tagen beobachtet. Welche Rendite darf im Mittel für diese Aktie pro Tag erwartet werden? Z8.3 Ein Portfolio setzt sich folgendermaßen zusammen: 250 ME der Siemens-Aktie und 180 ME der Deutschen Telekom-Aktie wurden pro Quartal mit den rechts angegebenen Kursentwicklungen für 2010 investiert. Wie groß ist die zu erwartende Portfoliorendite pro Quartal? Datum Telekom Siemens ,62 63, ,24 72, ,70 71, ,03 75, ,05 85,58 Z8.4 1) Berechne die zu erwartende Rendite einer Investition, die sich wie folgt zusammensetzt: 100 ME einer Aktie, von welcher folgende Jahresrenditen beobachtet wurden: In zwei von zehn Jahren wurde eine Rendite von 3 %, in sechs von zehn Jahren eine Rendite von 7 % und in zwei von zehn Jahren eine Rendite von 9 % erreicht. 2) Wie verändert sich die zu erwartende Rendite, wenn die Investorin beschließt, das Portfolio um 40 ME einer Bundesanleihe mit einer gesicherten Rendite von 7 % zu erweitern? Begründe zuerst das Ergebnis mit eigenen Worten und berechne anschließend. 3) Um wie viele ME einer sicheren Bundesanleihe mit 10 % Rendite pro Jahr hat die Investorin ihr Portfolio erweitert, um auf eine erwartete Rendite von 7,73 % zu kommen? 19

3 Streuungsmaße Die gewünschte mittlere Rendite stellt für den Kapitalanleger den so genannten Erwartungswert (Benchmark) dar, das Anlagerisiko wird dann als Schwankungsbreite um die erwartete Rendite verstanden. Da zum Zeitpunkt der Anlage diese Schwankungsbreite noch ungewiss ist, lässt sich nur aufgrund von Schätzungen eine erwartete Verzinsung berechnen. Anstelle der bisher verwendeten einfachen prozentuellen Renditen wird in der Finanzmathematik häufig den logarithmischen Renditen der Vorzug gegeben. Die Gründe liegen vor allem darin, dass diese symmetrisch bezüglich Null liegen (Symmetrieeigenschaft) und dass sich die logarithmische Rendite über einen Zeitraum hinweg sehr einfach als Summe der logarithmischen Einzelrenditen innerhalb dieses Zeitraums berechnen lässt (Additivitätseigenschaft). Aus diesem Grund werden in nachstehenden Aufgaben stets die logarithmischen Renditen für weitere Berechnungen verwendet. Als Maß für das Risiko gilt die (n 1)-gewichtete Standardabweichung der Renditen. Dies wird als Volatilität der Aktie bezeichnet, wobei das Risiko umso kleiner ist, je kleiner die Volatilität ist. Als problematisch dabei gilt jedoch, dass durch die Berechnung der Varianz und daraus resultierend der Standardabweichung keine Aussage mehr über den Renditeverlauf gemacht werden kann, da die Vorzeichen der Abweichungsquadrate alle positiv sind. Da als Volatilität die auf ein Jahr hochgerechnete Standardabweichung bezeichnet wird, die Stichprobenwerte meist jedoch täglich, wöchentlich oder monatlich berechnet werden, muss an dieser Stelle erwähnt werden, dass die Gesamtvarianz der Summe der Einzelvarianzen entspricht. Es gilt somit für die Umrechnung: Periode Tagesstandardabweichung Tag Wochenstandardabweichung Woche Monatsstandardabweichung Monat Quartalsstandardabweichung Quartal Umrechnung in Volatilität 360 Tag 52 Woche 12 Monat 4 Quartal 20

4 Z8.5 Bewerte aus den gegebenen Kursen das Risiko des Fonds A durch die Berechnung der Volatilität. Dokumentiere deine Vorgehensweise. Datum Fond A Lösung: Da die logarithmierten Renditen im Gegensatz zu den beobachteten absoluten Renditen eher als normalverteilt angesehen werden können, wird mit diesen gerechnet. Durch diese Linearisierung der Abweichungen wird bei der Berechnung des Mittelwerts dann allerdings wieder das arithmetische Mittel berechnet. Datum Fond A Kapitalfaktoren K ln (K) , ln 1, = 0, , ln 1, = 0, , ln 0, = 0, , ln 0, = 0, Der Erwartungswert der logarithmierten Kapitalisierungsfaktoren ist das arithmetische Mittel der Werte aus der Spalte ln(k). ln (K) = 0, Für die Berechnung der Standardabweichung wird folgende Hilfstabelle angelegt. Stichprobenwert Mittelwert Differenz Abweichungsquadrate 0, , , , , , , , , , , , , , , , Summe: 0, Die Varianz wird mit 2 Summe der Abweichungsquadrate = berechnet. (n 1) 2 0, = 3 = 0, Die Standardabweichung Quartal wird berechnet. = 0, = 0, Die Volarität wird berechnet. 4 0, = 0,

5 Z8.6 Beurteile das Risiko der Aktien von Siemens und jener der deutschen Telekom durch Berechnung der Volatilität. Verwende dafür die Werte aus Z8.3 von Seite 19. Z8.7 (Fortsetzung von Z8.6) Berechne im Vergleich dazu die Volatilität unter Verwendung der absoluten Kapitalisierungsfaktoren. Begründe, weshalb bei der logarithmischen Berechnung eher eine Normalverteilung gegeben ist. Z8.8 Bereite die angegebenen Aktienkurse statistisch auf und bewerte sie: Datum DAX-Schlusskurs , , , , , , , , , , , ,79 Datum ATX-Schlusskurs , , , , , , , , , , , ,53 Z8.9 Folgende Monatsrenditen wurden im Laufe des Jahres 2010 beobachtet , , , , , , , , , , , ,8 1) Berechne die entsprechenden logarithmischen Kapitalisierungsfaktoren. Berechne den Erwartungswert der Jahresrendite sowie die Volatilität und ermittle unter Annahme einer Normalverteilung folgende Werte. 2) Wie groß ist die Wahrscheinlichkeit der Unterschreitung der gewünschten Mindestrendite von 0 % (Verlustrisiko)? 3) Wie groß ist die Wahrscheinlichkeit, dass die Jahresrendite den Erwartungswert um 25 % überschreitet? Z8.10 Suche aus dem Internet bzw. aus einer Zeitung Monatsrenditen bekannter Aktien und bewerte sie durch Berechnung des Erwartungswertes der Jahresrendite und der Volatilität. Verfolge diese Kurse weiter und beurteile deine Bewertung. 22

6 Value-at-Risk-Modelle Da die Portfolios der Banken zusehends komplexer und umfangreicher werden, was auf die fortschreitende Globalisierung und Technologisierung der Finanzmärkte zurückzuführen ist, wurde von amerikanischen Investmentbanken ein neuer Ansatz entwickelt, der es ermöglicht, das Risiko solcher Bündel von Investitionen mit einer einzigen Kennzahl zu beschreiben. Die Risiken der Finanzmärkte sollen dadurch etwas übersichtlicher beschrieben werden können, weshalb sich dieses Value-at-Risk-Verfahren auch als internationaler Standard zur Risikosteuerung und -überwachung etabliert hat. Grenzen, die der Value-at-Risk nicht überschreiten darf, werden sowohl auf Gesamtbankebene als auch für einzelne Geschäftsbereiche definiert und bilden somit eine wesentliche Grundlage für Bankgeschäfte. Der Value-at-Risk (VaR) gibt den durch Kursschwankungen an den Finanzmärkten maximal möglichen Wertverlust (in Geldbeträgen bzw. in Prozent des eingesetzten Kapitals angegeben) bis zum Ende einer vorgegebenen Haltedauer an. Da es sich dabei immer nur um Schätzungen handelt, die durch unerwartete Ereignisse stark beeinflusst werden können, handelt es sich bei dem Value-at-Risk um eine Prognose, also eine Verlustschätzung, die mit einer bestimmten Wahrscheinlichkeit, dh. für ein vorgegebenes Konfidenzniveau (üblicherweise 95 % bzw. 99 %), nicht überschritten wird. 1 % Value-at-Risk (VaR) = 99 % E(r) = r In der obigen Grafik wird von einer Normalverteilung ausgegangen, wobei die Markierung ein Konfidenzniveau von 99 % zeigt. Es ist jene Rendite r min, die mit 99 %-iger Wahrscheinlichkeit innerhalb der vorgegebenen Haltedauer nicht überschritten wird, gekennzeichnet. Links der Linie liegen die Möglichkeiten, die nicht durch den Value-at-Risk gedeckt werden. Bereits in der Definition wird ersichtlich, dass die zwei wesentlichen Parameter die Haltedauer und das Konfidenzniveau sind. Daraus ergibt sich folgende Formel: Value-at-Risk: VaR = Anlagebetrag ( + z ) Dabei sind Erwartungswert und Standardabweichung zu schätzen, der z-wert ergibt sich aus der vorgegebenen Wahrscheinlichkeit der standardisierten Normalverteilung. 23

7 Da r min aber die logarithmische Rendite beschreibt, muss sie eigentlich noch in eine einfache prozentuelle Rendite R min umgerechnet werden: R min = e r min 1 Da für kleine Renditen r min R min gilt, wird in diesen Fällen auf die Umrechnung verzichtet. Ist die Haltedauer sehr kurz (häufig ein oder zehn Tage), so setzt man die erwartete Rendite gleich 0 % und damit entspricht die oben gekennzeichnete Linie direkt dem prozentuellen Verlust, der mit 99%iger Wahrscheinlichkeit nicht überschritten wird. In diesem Fall beschreibt dieser Wert direkt den prozentuellen VaR. VaR = Anlagewert ( + z ) bei Rechnung mit einfachen prozentuellen Renditen VaR = Anlagewert (e ( + z ) 1).... bei Rechnung mit logarithmischen Renditen Z8.11 1) Angenommen die mittlere Jahresrendite eines Fonds beträgt 8 %, die Standardabweichung hat einen Wert von 10 %. In welchem Bereich um den Mittelwert = 0,08 liegt mit 95%iger Wahrscheinlichkeit die erwartete Rendite pro Jahr? Berechne den Gewinn- bzw. Verlustbereich anhand einer Investition von ,00. 2) Berechne den VaR für ein Investitionsvolumen von ,00 und eine Haltedauer von zehn Tagen bei einem Konfidenzniveau von 99 %. Lösung: 1) (z) = 0,025 z = 1,96 x = 0,116 (z) = 0,975 z = 1,96 x = 0,276 e 0,116 1 = 0, = 10,95 % e 0,276 1 = 0, = 31,78 % ,00 0, = , ,00 0, = ,57 Der Verlust- bzw. Gewinnbereich liegt zwischen einem Verlust von ,96 und einem Gewinn von ,57. 2) Rendite 10 Tage = 0, = 0, ,1 Standardabweichung 10 Tage = 10 = 0,2 = 2 % 250 (z) = 0,01 z = 2,33 R min = e 0, ,33 0,02 1 = 0, VaR = ,00 R min = 8 494, ,34 Symmetrieeigenschaften der Normalverteilung verwenden Bereich, in dem die zu erwartende Rendite liegt Jahresrendite und Volatilität auf eine Haltedauer v. 10 Tagen umrechnen standardisierte Normalverteilung 24 Sollte der VaR einen positiven Wert haben, dann ist dieser Wert so zu interpretieren, dass auf dem gewählten Konfidenzniveau innerhalb der vorgegebenen Haltedauer mit einer Wertsteigerung zu rechnen ist und der VaR daher als null anzusehen ist. Dies bedeutet jedoch nicht, dass keinerlei Risiko besteht. Z8.12 Finde im Internet Informationen über die Kennzahl des Value-at-Risk und seine Entstehung. Schreibe jeweils eine kurze Erklärung für die Begriffe Kritikpunkte, Haltedauer in der Praxis und Limits des VaR.

8 Z8.13 Aus den gegebenen Monatskursen der deutschen Continental- Datum Kurs Aktie (Tabelle rechts) sollen die wichtigsten statistischen ,31 Kennzahlen ermittelt werden. Berechne die gesuchten Größen, ,81 gib die Antworten in Euro bzw. in Prozent an ,42 1) Erwartete Jahresrendite, 2) Volatilität, 3) VaR für eine ,01 Haltedauer von zehn Tagen und einem Konfidenzniveau von ,7 95 % und 99 %, 4) VaR für eine Haltedauer von 20 Tagen ,95 und einem Konfidenzniveau von 95 % und 99 % ,78 Z8.14 Leite anhand der Symmetrieeigenschaften der ,38 Normalverteilung die Formel der Berechnung der VaR her ,53 Z8.15 Formuliere allgemein deine Überlegungen zu Z ,54 Z8.16 Ein Industrieller hat in der Höhe von ,00 in einen ,71 Fonds investiert, welcher nach Stichprobenergebnissen mit einer erwarteten Rendite von 10 % p. a. bewertet wurde und eine Standardabweichung von 12 % aufweist. 1) Berechne, mit welchem maximalen Wertverlust bei einem Konfidenzniveau von 97,5 % und einer Haltedauer von zehn Tagen der Investor zu rechnen hat. 2) Mit welcher Wahrscheinlichkeit kommt der Investor ohne Verlust davon? Poisson-Verteilung: Schadensminimierung Noch nicht besonders lange werden die Methoden der Stochastik dazu genutzt, das Ausfallrisiko bei Krediten zu berechnen. In jüngster Zeit wurde deutlich, wie wichtig eine richtige Kalkulation einer fairen Prämie für das vom Kreditinstitut getragene Ausfallrisiko sowie die Minimierung der Gesamtrisiken ist. Angenähert kann das Ausfallrisiko wegen der sehr geringen Ausfallrisiken bei Einzelkrediten mit der Poisson-Verteilung dargestellt werden. Wichtig ist bei der Berechnung nicht nur die Anzahl der Ausfälle, sondern auch die damit verbundene Schadenshöhe. Erwähnenswert ist, dass der Erwartungswert aufgrund der Schiefe der Verteilung deutlich rechts vom Median bzw. Modus liegt. Falls die tatsächlich eintretenden Verluste über dem Erwartungswert liegen, muss die Bank ein ausreichend großes Eigenkapital zur Verfügung haben, um die Insolvenzwahrscheinlichkeit auf ein Niveau unter 0,03 % zu drücken. Nur in diesem Fall kann die Bank ein optimales Rating erhalten. Z8.17 Eine Bank mit höchster Bonitätsstufe ist im Besitz eines Portfolios aus Krediten mit dem Ausfallrisiko (Default Risk) 0,05 %. Hier kann die Binomialverteilung wegen der geringen Wahrscheinlichkeit und der großen Anzahl von Krediten mit der Poisson- Verteilung angenähert werden. 1) Berechne die Wahrscheinlichkeit, dass mehr als ein Tausendstel der Kredite ausfällt. 2) Wie groß ist die Anzahl der ausgefallenen Kredite bei einer Sicherheitswahrscheinlichkeit von 99,99 %? Z8.18 Angenommen ein Portfolio setzt sich aus Krediten zusammen, deren einzelne, unabhängige Ausfallwahrscheinlichkeiten 1 % betragen. Berechne die Wahrscheinlichkeit, dass 1) mehr als 1 %, 2) mehr als 2 % der Kredite ausfallen. 25

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110

einfache Rendite 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Übungsbeispiele 1/6 1) Vervollständigen Sie folgende Tabelle: Nr. Aktie A Aktie B Schlusskurs in Schlusskurs in 0 145 85 1 160 90 2 135 100 3 165 105 4 190 95 5 210 110 Arithmetisches Mittel Standardabweichung

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

CAPM Die Wertpapierlinie

CAPM Die Wertpapierlinie CAPM Die Wertpapierlinie Systematisches und unsystematisches Risiko Von Dong Ning Finanzwirtschaft 6. Sem. Inhalt Wertpapierlinie (CAPM) Erwartungswert für f r die Rendit Risiken messen 1.Standardabweichung-

Mehr

Portfoliotheorie. Von Sebastian Harder

Portfoliotheorie. Von Sebastian Harder Portfoliotheorie Von Sebastian Harder Inhalt - Begriffserläuterung - Allgemeines zur Portfoliotheorie - Volatilität - Diversifikation - Kovarianz - Betafaktor - Korrelationskoeffizient - Betafaktor und

Mehr

Risikodiversifikation. Steffen Frost

Risikodiversifikation. Steffen Frost Risikodiversifikation Steffen Frost 1. Messung Risiko 2. Begriff Risiko 3. Standardabweichung 4. Volatilität 5. Gesamtrisiko 6. Systematische & unsystematisches Risiko 7. Beta und Korrelation 8. Steuerung

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Kapitalmarkttheorie: Vorbereitungen

Kapitalmarkttheorie: Vorbereitungen 0 Kapitel Kapitalmarkttheorie: Vorbereitungen Kapitelübersicht 1 Renditen 2 Renditen und Halteperioden 3 Rendite-Kennzahlen 4 Durchschnittliche Aktienrenditen und risikofreie Renditen 5 Risiko-Kennzahlen

Mehr

Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29.

Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29. Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29. Januar 2008 Prüfungsmodus Prüfungsdauer schriftliche Klausur 60 Minuten Punktemaximum:

Mehr

Materialien zur Vorlesung. Rendite und Risiko

Materialien zur Vorlesung. Rendite und Risiko Materialien zur Vorlesung Rendite und Risiko Burkhard Erke Quellen: Brealey/Myers, Kap. 7 Mai 2006 Lernziele Langfristige Rendite von Finanzanlagen: Empirie Aktienindizes Messung von Durchschnittsrenditen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, lister@actuarial-files.com Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise:

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Name: Matrikelnummer: Bank I/II (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur und auf jeden Bogen. Als Hilfsmittel ist

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

6522: Capital Markets and Risk Management

6522: Capital Markets and Risk Management (Bitte in Blockschrift) Name... Vorname... Matrikelnummer... Punkte Aufgabe 1:... Aufgabe 2:... Aufgabe 3:... Aufgabe 4:... Aufgabe 5:... Aufgabe 6:... Total :... UNIVERSITÄT BASEL Dr. Patrick Wegmann

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

ZERTIFIKATE spielend beherrschen

ZERTIFIKATE spielend beherrschen UDI ZAGST / MICHAEL HUBER RUDI ZAGST / MICHAEL HUBER ZERTIFIKATE ZERTIFIKATE spielend beherrschen spielend beherrschen Der Performance-Kick Der Performance-Kick für Ihr für Portfolio Ihr Portfolio inanzbuch

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH)

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH) Value-at-Risk Kann man das Risiko steuern? Gliederung I. Was versteht man unter Value-at-Risk? II. Anwendung des Value-at-Risk III. Grenzen des Value-at-Risk IV. Fazit V. Literatur Was versteht man unter

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

ANLAGEFONDS Arbeitsauftrag

ANLAGEFONDS Arbeitsauftrag Verständnisfragen Aufgabe 1 Welcher Definition passt zu welchem Begriff? Tragen Sie bei den Definitionen die entsprechenden Buchstaben A H ein. A B C D E F G H Fondsvermögen Anteilschein Rendite Zeichnung

Mehr

Die drei Kernpunkte der modernen Portfoliotheorie

Die drei Kernpunkte der modernen Portfoliotheorie Die drei Kernpunkte der modernen Portfoliotheorie 1. Der Zusammenhang zwischen Risiko und Rendite Das Risiko einer Anlage ist die als Varianz oder Standardabweichung gemessene Schwankungsbreite der Erträge

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Depot-Optimierung nach Markowitz

Depot-Optimierung nach Markowitz Depot-Optimierung nach Markowitz Depot: Mustermann Ziel ist die Optimierung Ihres Depot mit Neuanlage von 25000,00 Portfolio-Wizard ist ein Produkt der EDISoft GmbH wb.portfolio-wizard.de 2004-2005 EDISoft

Mehr

CAPM Die Wertpapierlinie

CAPM Die Wertpapierlinie CAPM Die Wertpapierlinie Systematisches und unsystematisches Risiko Frank von Oppenkowski 6. Semester Betriebswirtschaftslehre SP Finanzwirtschaft 1 Die Wertpapierlinie (= CAPM) Gliederung 2 Wie man Erträge

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Begriffe zur Detailanalyse

Begriffe zur Detailanalyse Begriffe zur Detailanalyse ANALYSE Interesse Das thescreener Sterne-Rating ist so angelegt, dass man schnell qualitativ einwandfreie Aktien, Branchen und Indizes erkennen kann. Das Rating-System verteilt

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Überprüfung der Zielgrösse der Wertschwankungsreserve

Überprüfung der Zielgrösse der Wertschwankungsreserve Aon Hewitt Investment Consulting Urheberrechtlich geschützt und vertraulich Überprüfung der Zielgrösse der Wertschwankungsreserve Pensionskasse XY, Januar 2015 Risk. Reinsurance. Human Resources. Inhaltsverzeichnis

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 2013

Mehr

Internationale Finanzierung 6. Bewertung von Aktien

Internationale Finanzierung 6. Bewertung von Aktien Übersicht Kapitel 6: 6.1. Einführung 6.2. Aktienbewertung mittels Kennzahlen aus Rechnungswesen 6.3. Aktienbewertung unter Berücksichtigung der Wachstumschancen 6.4. Aktienbewertung mittels Dividenden

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zinskurve Forward-Rates Zeitwert des Geldes Zinsgeschäfte und der zugehörige Cashflow

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1 Abstract

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Test 1 (zu den Kapiteln 1 bis 6)

Test 1 (zu den Kapiteln 1 bis 6) Test 1 1 Test 1 (zu den Kapiteln 1 bis 6) Bearbeitungszeit: 90 Minuten Aufgabe T1.1: Bekanntmachung EUR 1.000.000.000,- Anleihe mit variablem Zinssatz der Fix AG von 2003/2013, Serie 111 Zinsperiode: 12.10.2006

Mehr

Family-Report. Kundennummer. Zürich, 23. Februar 2010 EUR. Referenzwährung: Verwaltungsart: Anlagestrategie: konservativ.

Family-Report. Kundennummer. Zürich, 23. Februar 2010 EUR. Referenzwährung: Verwaltungsart: Anlagestrategie: konservativ. Verwaltungsart: Mandat Referenzwährung: EUR Anlagestrategie: konservativ Geschätzter Kunde Als Beilage erhalten Sie Ihre Vermögensaufstellung per 31.12.2009 mit folgendem Inhalt: - Konsolidierte Gesamtübersicht

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t Kapitalwertmethode Art: Ziel: Vorgehen: Dynamisches Investitionsrechenverfahren Die Kapitalwertmethode dient dazu, die Vorteilhaftigkeit der Investition anhand des Kapitalwertes zu ermitteln. Die Kapitalwertverfahren

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Risiko- und Kapitalsteuerung in Banken. MN-Seminar 12.05.2009 Martina Böhmer

Risiko- und Kapitalsteuerung in Banken. MN-Seminar 12.05.2009 Martina Böhmer Risiko- und Kapitalsteuerung in Banken MN-Seminar 12.05.2009 Martina Böhmer Risiko- und Kapitalsteuerung in Banken Basel II Risiko- und Kapitalsteuerung in Banken 25 a Absatz 1 KWG Kreditinstitute sind

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Kammer der Architekten und Ingenieurkonsulenten für Wien, Niederösterreich und Burgenland

Kammer der Architekten und Ingenieurkonsulenten für Wien, Niederösterreich und Burgenland Kammer der Architekten und Ingenieurkonsulenten für Wien, Niederösterreich und Burgenland Handlungsrahmen für externe Vermögensverwaltung (Fassung: 18. Juli 2001) INHALTSVERZEICHNIS 1. ZIELE...1 2. VERANTWORTLICHKEITEN...1

Mehr

Die Performance von Stillhaltergeschäften

Die Performance von Stillhaltergeschäften Thomas Schmidt Die Performance von Stillhaltergeschäften Covered Call Writing im Backtest Masterarbeit Schmidt, Thomas: Die Performance von Stillhaltergeschäften: Covered Call Writing im Backtest. Hamburg,

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006 TU Bergakademie Freiberg Fakultät für Wirtschaftswissenschaften Matrikel-Nr.: Name (optional): Studienrichtung: Fakultät: Semesterzahl: DIPLOMPRÜFUNG Prüfungsfach: Prüfer: Examen Bankbetriebslehre (PO99-120

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen?

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Portfolioselection Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Investieren in Aktien ist riskant Risiko einer Aktie kann in 2 Teile zerlegt werden: o Unsystematisches Risiko

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Abschlussklausur des Kurses Bank I, II: Finanzintermediation und Regulierung / Risiko- und Ertragsmanagement der Banken

Abschlussklausur des Kurses Bank I, II: Finanzintermediation und Regulierung / Risiko- und Ertragsmanagement der Banken Seite 1 von 18 Abschlussklausur des Kurses Bank I, II: Finanzintermediation und Regulierung / Risiko- und Ertragsmanagement der Banken Hinweise: o o o o o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer

Mehr

Cost-Average-Effekt. Gezieltes Investieren für die Altersvorsorge. Januar 2013

Cost-Average-Effekt. Gezieltes Investieren für die Altersvorsorge. Januar 2013 Cost-Average-Effekt Gezieltes Investieren für die Altersvorsorge Januar 2013 Herausgeber: VZ VermögensZentrum GmbH Bleichstraße 52 60313 Frankfurt am Main Ansprechpartner/Initiator: Michael Huber, mhu@vzde.com,

Mehr

Operations Strategie und Management. - Projektmanagement - Helmut M. Dietl 1

Operations Strategie und Management. - Projektmanagement - Helmut M. Dietl 1 Operations Strategie und Management - Projektmanagement - Helmut M. Dietl 1 Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter einem Projekt versteht was Projektmanagement bedeutet wie

Mehr

Vergleich verschiedener Optimierungsansätze

Vergleich verschiedener Optimierungsansätze Vergleich verschiedener Optimierungsansätze Inhaltsverzeichnis 1 Einleitung... 2 2 Welchen Nutzen schafft munio?... 3 3 Analysen... 3 3.1 Schritt 1: Optimierung anhand von Indizes... 3 3.2 Schritt 2: Manuell

Mehr

LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank I, II am 11.02.2004. Teil I: Aufgaben zu Bank I. Aufgabe 1 (Risikoanreiz und Bankgeschäfte; 30P)

LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank I, II am 11.02.2004. Teil I: Aufgaben zu Bank I. Aufgabe 1 (Risikoanreiz und Bankgeschäfte; 30P) Universität Hohenheim Institut für Betriebswirtschaftslehre Lehrstuhl für Bankwirtschaft und Finanzdienstleistungen Matthias Johannsen Stuttgart, 11.02.2004 LÖSUNGSSKIZZE: Aufgaben für die Klausur Bank

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

9. VTAD Frühjahrskonferenz. Frankfurt, 23. März 2013

9. VTAD Frühjahrskonferenz. Frankfurt, 23. März 2013 9. VTAD Frühjahrskonferenz Frankfurt, 23. März 2013 9. VTAD Frühjahrskonferenz Frankfurt, 23. März 2013 Portfoliomanagement für Privatanleger Ein Vorgehensmodell Benjamin Bruch Benjamin Bruch 26 Jahre,

Mehr

Systematik und ökonomische Relevanz traditioneller Performancemaße

Systematik und ökonomische Relevanz traditioneller Performancemaße Systematik und ökonomische Relevanz traditioneller Performancemaße Vortrag an der Universität Hamburg am 18. Juni 2001 PD Dr. Marco Wilkens IFBG der Georg-August-Universität Göttingen 1 Gliederung 1. Einleitung

Mehr

Überblick. Überblick

Überblick. Überblick Agenda Überblick Risikomessung anhand zweier Aktienpositionen Exkurs: Risikominimale Investmentstrategie im Zwei-Aktien Aktien-Fall Risikoberechnung Karsten Hackler, Juli 008 Agenda 3 Überblick 4 Überblick

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff.

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff. FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft Name: Vorname: Klausur: Prüfer: Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff Termin: 06. September 2012 11:30 13:30

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Peter Malec Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin Econ Boot Camp, SFB 649, Berlin, 4. Januar 2013 1. Einführung 2 29 Motivation

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Prof. Dr. Nikolaus Hautsch Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin CASE, CFS, QPL Econ Boot Camp, SFB 649, Berlin, 8. Januar

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr