Skript zur Vorlesung Technische Bildverarbeitung Machine Vision

Größe: px
Ab Seite anzeigen:

Download "Skript zur Vorlesung Technische Bildverarbeitung Machine Vision"

Transkript

1 Skript zur Vorlesung Technische Bildverarbeitung Machine Vision Prof. Dr.-Ing. Reiner Dudziak Dipl.-Ing. Dirk Mohr Kapitel 1 Seite 1

2 Dieses Skript ist eine Ergänzung zu der Vorlesung Technische Bildverarbeitung. Es ist kein Lehrbuch. Dieses Skript darf ausschließlich als begleitendes Lehrmittel für die Vorlesung genutzt werden. Andere Nutzungen sind mit den Verfassern abzuklären. Vervielfältigung, Übersetzungen, Mikroverfilmung und die Einspeicherung und Bearbeitung in elektronischen Systemen (auch auszugsweise) ist nur nach Rücksprache und mit Erlaubnis der Verfasser zulässig. In diesem Skript werden Produkte einzelner Firmen als Beispiel verwendet. Die Auswahl dieser Produkte stellt keine Bewertung dar, sondern erfolgte ausschließlich nach didaktischen Gesichtspunkten. Die angegebenen Preise sind als Orientierungshinweis zu sehen. Bei Fragen, Kritik, Verbesserungsvorschlägen : Dipl.-Ing. Dirk Mohr Raum C2 05 Tel.: Bochum, den Kapitel 1 Seite 2

3 Inhaltsverzeichnis 1. Biologische Bildverarbeitungssysteme 1.1 Aufbau und Funktionsweise des menschlichen Auges 1.2 Besondere Merkmale und Eigenschaften des menschlichen Bildverarbeitungssystem 1.3 Aufbau und Funktionsweise eines Facettenauges 2. Technische Bildverarbeitung 2.1 Begriffsdefinition 2.2 Übersicht 2.3 Beleuchtungssysteme Technologie Glühlampen, Glühfadenlampe, Glühbirne Halogenlampe Leuchtstofflampe, Leuchtstoffröhre LED (Light Emitting Diode), Leuchtdiode, Lumineszenz-Diode LASER, Laserdioden Anordnung von Beleuchtung und Kamerasystem in Bezug auf das zu betrachtende Objekt Durchlicht Auflicht Gerichtetes Licht (Hell- und Dunkelfeld) Diffuses Licht Weitere Beispiele 2.4 Technische Optik Abbildung Berechnungsbeispiel Entozentrische- und Telezentrische Objektive Spezielle Objektive Technische Daten von Objektiven (exemplarisch) Objektivfehler 2.5 Bildaufnahme Funktionsweise und Merkmale der CCD - Bildwandler Technologie Funktionsweise und Merkmale der CMOS - Bildwandler Technologie Gegenüberstellung CCD und CMOS Technologie in der Technischen Bildverarbeitung Geometrische Anordnung von Bildwandlern Abbildung und räumliche Auflösung Kapitel 1 Seite 3

4 Inhaltsverzeichnis Farbkamerasysteme Drei-CCD/CMOS Farbkamerasysteme Ein-CCD/CMOS Farbkamerasysteme Foveon X3 Image Sensor 2.6 Bildübertragung Analoge Bildübertragung Beispiel für eine analoge Kamera, die JAI A Beispiel für einen analogen Framegrabber, der TIS DFG-SV Beispiel für einen analogen Framegrabber, der Matrox Imaging Odyssey XA Digitale Bildübertragung CameraLink Beispiel für eine CameraLink Kamera, die Basler A Beispiel für einen CameraLink Framegrabber, der Coreco Imaging X64CL Universal Serial Bus (USB) Beispiel für eine USB-Kamera, die IDS µeye UI-1480-C FireWire, IEEE Beispiel für eine IEEE-1394 Kamera, die TIS DMK 21BF Gigabit Ethernet Vision GigE Beispiel für eine GigE Kamera, die DALSA Spyder Bildübertragung über herstellerspezifische (proprietäre) Schnittstellen Beispiel für ein Bildverarbeitungssystem mit herstellerspezifischer Schnittstelle der OMRON ZFV Intelligente Bildverarbeitungssysteme smart sensor Beispiel für ein Intelligentes Bildverarbeitungssystem NANOview Beispiel für ein Intelligentes Bildverarbeitungssystem DVT Vision Sensor Familie 2.7 Bildauswertung Funktionen zur Bildauswertung Histogramm Grauwertbereich spreizen Binarisierung Filteroperation Morphologische Operationen Linienprofile Blob Analyse Vermessung Lagebestimmung Mustervergleich, Mustererkennung (Pattern Matching, Pattern Recognition) Kapitel 2 Seite 4

5 Inhaltsverzeichnis Farbbildverarbeitung Erstellung von Software zur Technischen Bildverarbeitung 2.8 Mechanische Komponenten für die Technische Bildverarbeitung 2.9 Bildverarbeitungsapplikationen 2.10 Die Deutsche Bildverarbeitungstechnologie als Branche Kapitel 2 Seite 5

6 1. Biologische Bildverarbeitungssysteme 1.1 Aufbau und Funktionsweise des menschlichen Auges Abb. 1.1 Schnitt durch das menschliche Auge (schematisiert) Abb. 1.2 Augenhintergrund bei der Augenspiegelung Quelle : Kapitel 1 Seite 6

7 Bestandteile und Aufbau des menschlichen Auges (Oculus) (s. Abb. 1.1 und Abb. 1.2) Hornhaut (Cornea) - Glasklarer, gewölbter und von Tränenflüssigkeit benetzter vorderer Teil der äußeren Augenhaut - Lichteintrittsöffnung, Hauptanteil der Lichtbrechung zur Bildfokussierung (43 Dioptrien von ges. ca. 60 dpt) Augenkammern (Camera bulbi) - Mit Kammerwasser (spez. Flüssigkeit, die u. a. Nährstoffe enthält) gefüllte Hohlräume Pupille - Kreisförmige Öffnung der farbigen Regenbogenhaut (Iris) - Größenänderung der Pupille durch Muskeln zur Steuerung der Lichtmenge, die in das Innere des Auges einfallen kann (Adaption) Linse - Kristallklarer und elastischer Körper der konvex gekrümmt ist - Wirkt als Sammellinse, die das einfallende Licht an der Hinterseite des Auges (Netzhaut) bündelt Durch verstellbare Krümmung (Akkomodation) wird die Brechkraft verändert und somit eine Nah- und Ferneinstellung möglich Netzhaut (Retina) - Enthält die Lichtsinneszellen und wandelt Licht in Nervenimpulse; zwei Arten von Lichtsinneszellen - Stäbchen (1,25 * 10 8 ) : - Sehr lichtempfindlich (Max. bei ca. 500 nm) - keine Farbunterscheidung; Sehen in der Dämmerung - Zapfen (7 * 10 6 ) : - Drei Arten (Blau-, Grün- und Rotrezeptor) - Weniger empfindlich als Stäbchen - Ermöglichen Farbwahrnehmung und Kontrastunterscheidung Sehnerv (Nervus opticus) (1,2 * 10 6 ) - Ausstülpung des Zwischenhirns, zweiter Hirnnerv - Fortsetzung der Ganglienzellen der Netzhaut (Datenreduktion) - Sehnerven kreuzen, so dass der rechte Sehnerv zur linken Gehirnhälfte verläuft und umgekehrt Gelber Fleck (Macula lutea) - Stelle des schärfsten Sehens Papille - Stelle, an der der Sehnerv das Auge verlässt; Keine Lichtsinneszellen; Blinder Fleck des Gesichtsfeld Kapitel 1 Seite 7

8 Abb. 1.3 Helligkeitsempfindung des menschlichen Sehsystems Abb. 1.4 Modulationsübertragungsfunktion (MTF) des menschlichen Sehsystems für das Farb- und das Grauwertsehen Abb. 1.5 Spektrale Empfindlichkeit der Lichtsinneszellen Abb. 1.6 Wellenlängenbereiche Kapitel 1 Seite 8

9 1.2 Besondere Merkmale und Eigenschaften des menschlichen Bildverarbeitungssystems - Durch die Zusammenarbeit von Auge und Gehirn entstehen Bilder bzw. Wahrnehmungen - Wahrnehmungen sind subjektiv - Menschliches Bildverarbeitungssystem als Ergebnis der Evolution mit dem Optimierungskriterium ÜBERLEBEN Abb. 1.7 Besondere Fähigkeiten des menschlichen Bildverarbeitungssystem wie z.b. das Autovervollständigen haben das Überleben ermöglicht, können aber in einem anderen Zusammenhang zu Fehlinformationen bzw. Fehlinterpretationen sogenannte optische Täuschungen führen. Kapitel 1 Seite 9

10 Das menschliche Sehsystem verfügt über zwei deutlich unterschiedliche Auflösungen : mit dem hochauflösenden Netzhautbereich der Fovea centralis wird die interessierende Region erfasst (region-of-interest, ROI); das Umfeld wird grob gerastert mit niedrigem Informationsgehalt als Warnzone (Bewegungsdetektion) und als Steuerzone (Nachführung des Augapfels) eher unbewußt gesehen. Kapitel 1 Seite 10

11 Funktionen des menschlichen Sehsystems versus Technische Bildverarbeitung Menschliches Sehsystem Technische Bildverarbeitung Realisierungsgrad Optische Abbildung durch Hornhautlinse Linsen - Objektive hoch Steuerung der Belichtung durch muskelbetriebene Pupille Fokussierung durch muskelgesteuerte Veränderung der Brennweite Motorische Blenden Mechanisch-motorische Blenden Selbständige Fokussierung Mechanisch-motorische Fokussierung hoch Hochmobiler Augapfel Mechanisch nachgeführte Kameras niedrig Netzhaut mit Sehrezeptoren Sensoren mit diskreten Bildpunkten hoch In der Netzhaut integrierte Signal- /Informationsverarbeitung Grob/fein Rasterung der lichtempfindlichen Sensorelemente Intelligente Sensoren Ortsvariante Auflösung hoch hoch sehr niedrig sehr niedrig Dynamik 1:100 bei fester Blende / Pupille (!) Quantisierung 8 Bit hoch Trennung von Grauwert- und Farbsehen Schwarz/weiß- und Farbkameras hoch Bandpassverhalten des Farbkanals Wellenlängenbereich Blau bis Rot Bildgebende Sensoren praktisch immer mit Tiefpasseigenschaften Wesentlich weiterer Wellenlängenbereich hoch sehr hoch Kapitel 1 Seite 11

12 1.3 Aufbau und Funktion eines Facettenauges - Halbkugelförmiger Augentyp, bei dem ein Auge aus mehreren (bis zu einigen Zehntausend) Einzelaugen besteht - Jedes Einzelauge blickt in eine geringfügig andere Richtung - Facettenauge ist starr mit dem Kopf verbunden - Bild der Umgebung aus einzelnen Bildpunkten - Räumliche Auflösung weit geringer als beim menschlichen Auge, aber sehr großes Blickfeld - Zeitliche Auflösung sehr hoch mit bis zu 300 Bildern / sek (Mensch ca. 25 Bilder / sek) Abb. 1.8 Facettenauge Aufnahme Rasterelektronenmikroskop Mit frdl. Genehmigung von Univ. Prof. Dr.Paul Walther Universität Ulm, Zentr. Einrichtung Elektronenmikroskopie Abb. 1.9 Durch die geringe räumliche Auflösung des Facettenauges nimmt die Stechmücke das Zebra nicht als Ganzes wahr! Kapitel 1 Seite 12

13 Weitere Informationen finden Sie hier : Auge :http://de.wikipedia.org/wiki/auge Optische Täuschungen : Kapitel 1 Seite 13

14 2. Technische Bildverarbeitung 2.1 Begriffsdefinition 2.2 Übersicht 2.3 Beleuchtungssysteme Dieses Skript ist eine Ergänzung zu der Vorlesung Technische Bildverarbeitung / Machine Vision. Es ist kein Lehrbuch. Dieses Skript darf ausschließlich als begleitendes Lehrmittel für die Vorlesung genutzt werden. Andere Nutzungen sind mit den Verfassern abzuklären. Vervielfältigung, Übersetzungen, Mikroverfilmung und die Einspeicherung und Bearbeitung in elektronischen Systemen (auch auszugsweise) ist nur nach Rücksprache und mit Erlaubnis der Verfasser zulässig. In diesem Skript werden Produkte einzelner Firmen als Beispiel verwendet. Die Auswahl dieser Produkte stellt keine Bewertung dar, sondern erfolgte ausschließlich nach didaktischen Gesichtspunkten. Die angegebenen Preise sind als Orientierungshinweis zu sehen. Bei Fragen, Kritik, Verbesserungsvorschlägen : Dipl.-Ing. Dirk Mohr Raum C2 05 Tel.: Bochum, den Kapitel 2 Seite 14

15 2. Technische Bildverarbeitung 2.1 Begriffsdefinition Inhalt dieser Lehrveranstaltung ist die Technische Bildverarbeitung / Machine Vision wie sie vom VDMA (Verband Deutscher Maschinen- und Anlagenbau e.v.) definiert ist : Technische (Industrielle) Bildverarbeitung ist die Technologie des künstlichen Sehens. Kamera und Computer verleihen Maschinen die Fähigkeit, zu sehen, zu erkennen und die richtigen Entscheidungen zu treffen. Die von der Kamera aufgenommenen Daten werden von einem Rechner ausgewertet, die relevanten Informationen und die Ergebnisse an die Steuerung weitergegeben, die entsprechend reagieren kann. Typische Aufgabenstellungen der Technischen Bildverarbeitung sind - Oberflächenkontrolle z.b. Untersuchung von Blechen auf Kratzer und Beschichtungsfehler - Vollständigkeitskontrolle z.b. Vorhandensein von Bauteilen auf elektronischen Platinen (komplette Bestückung) - Messtechnik z.b. Ermittlung der Durchmesser und der Fasenwinkel bei Edelstahlrohren - Identifikation z.b. Unterscheidung von Werkstückvarianten zur Prozesslenkung - Positionserkennung (Robot Vision) z.b. Identifikation und Lageerkennung von Schrauben in einem ungeordneten Schraubenvorrat zur montagegerechten Roboterlenkung Kapitel 2 Seite 15

16 2.2 Übersicht Ein Technisches Bildverarbeitungssystem besteht in der Regel aus folgenden Komponenten: Kapitel 2 Seite 16

17 2.3 Beleuchtungssysteme Übersicht Kapitel 2.3 Seite 17

18 2.3 Beleuchtungssysteme Technologie Glühlampen, Glühfadenlampe, Glühbirne -Elektrischer Leiter wird durch elektrischen Strom aufgeheizt und emittiert, dadurch thermische Strahlung mit Komponenten im sichtbaren Bereich - Günstiger Einkaufspreis, hohe Verfügbarkeit aber entscheidende Nachteile für die TBV : - schlechter Wirkungsgrad (<10%, max. 15 lm*/w) - große Wärmeentwicklung - keine großen Formvarianten - abgegebenes Licht hat keine Zeitkonstanz bzgl. Helligkeit und Wellenlänge - kaum triggerbar - erschütterungsempfindlich - relativ kurze Lebensdauer (max. 1000h) * Lichtstrom Lumen lm : Gesamte von einer Strahlungsquelle ausgesandte sichtbare Strahlung Abb Glühlampe 230 V, 60 W, 720 lm, E27-Sockel Halogenlampe Kapitel 2.3 Seite 18

19 Halogenlampe - Aufbau und Funktion ähnlich Glühlampe. Zusatz der Halogene Brom oder Jod steigert die Lebensdauer und verbessert den Wirkungsgrad - Günstiger Einkaufspreis, hohe Verfügbarkeit aber entscheidende Nachteile für die TBV : - schlechter Wirkungsgrad (< 16%, max. 25 lm/w) - große Wärmeentwicklung - keine großen Formvarianten - abgegebenes Licht hat keine Zeitkonstanz bzgl. Helligkeit und Wellenlänge - kaum triggerbar - erschütterungsempfindlich - Lebensdauer max. 4000h Abb Halogen - Glühlampe Kapitel 2.3 Seite 19

20 Leuchtstofflampe, Leuchtstoffröhre - Niederdruck Gasentladungslampe, die innen mit einem fluoreszierenden Leuchtstoff beschichtet ist. Beim Anlegen einer Zündspannung wird die Gasfüllung ionisiert und somit leitfähig, es entsteht ein Plasma. Das Plasma emittiert überwiegend UV Strahlung. Der Leuchtstoff leuchtet bei UV Bestrahlung im sichtbaren Bereich. Eigenschaften : - Günstiger Einkaufspreis, hohe Verfügbarkeit (eingeschränkt) - Wirkungsgrad (bis 100 lm / W), Leistung von Baulänge abhängig - geringe Wärmeentwicklung - in verschiedenen Formen erhältlich - abgegebenes Licht hat keine Zeitkonstanz bzgl. Helligkeit und Wellenlänge - nicht triggerbar - Lebensdauer deutlich höher als bei Glühlampen max h (stark abhängig von Umgebungstemp.) - Vorschaltgerät erforderlich - mit Elektronischem Vorschaltgerät (EVG) kaum Lichtschwankungen bei Zündfrequenz von 40 KHz Abb Leuchtstoffröhren, Stab- und Ringform Abb Runde Leuchtstoffröhren mit Fassung zur direkten Objektivmontage Kapitel 2.3 Seite 20

21 LED (Light Emitting Diode), Leuchtdiode, Lumineszenz-Diode - Halbleiter-Bauelement, das bei Stromdurchfluss Licht in einem zum Teil eng begrenzten Spektralbereich abstrahlt. Eigenschaften : - kein Temperaturstrahler, sehr hoher Wirkungsgrad (max. 100 lm / W ) - geringe Wärmeentwicklung (bezogen auf die Lichtleistung) - sehr schmalbandiger Spektralbereich - Spektralbereich des emittierten Lichts lässt sich durch Herstellungsprozess bestimmen z. B. rot, infrarot, grün, Mischfarbe weiß - schmalbandiges Licht erlaubt effektiven Einsatz von optischen Komponenten wie z.b. Filter - sehr gut triggerbar (Modulationsfrequenz bis zu 100 MHz) - bei geeigneten Impulspausenzeiten und Maßnahmen zur Ableitung der Verlustwärme lassen sich LED s mit einem mehrfachen des Nominalstroms betreiben (Blitzbetrieb) - unempfindlich gegen Erschütterung - Lebensdauer sehr hoch max h - lässt sich in fast beliebiger Bauform kombinieren / anordnen - keine Baumarktware, meist anbieterspezifisch Abb Spektren von LED s Quelle : Kapitel 2.3 Seite 21

22 Bauform 4TE IR Aktive Fläche 224 * 25mm mm bei max. 10% Inhomogenität Farbe IR 880 nm 16 LED s Preis ca. 340 EUR <- Abb Verschiedene Bauformen von LED - Beleuchtungssystemen Quelle : Büchner Lichtsysteme GmbH Kapitel 2.3 Seite 22

23 Abb Modulares Beleuchtungssystem mit segmentweiser Beschaltung Quelle : Büchner Lichtsysteme GmbH Abb Beleuchtungssystem mit LED Tunnelkonzept für homogene Ausleuchtung von z.b. Rohren und Bolzen Quelle : Büchner Lichtsysteme GmbH Kapitel 2.3 Seite 23

24 Laserdioden Verwandt mit LEDs mit folgenden zusätzlichen Eigenschaften: - Licht mit sehr schmalbandigem Spektrum (monochromatisch) - Licht kohärent. Kohärente Lichtwellen schwingen alle in die gleiche Richtung, mit gleicher Frequenz und mit gleicher Phase. Dies ergibt einen sehr intensiven Strahl mit sehr reinem Licht - Licht polarisiert (schwingt nur in einer Richtung), dadurch lassen sich störende Reflexionen leicht ausfiltern - Punktstrahler mit Kollimator, sehr hohe Strahlbündelung - sehr hohe max. Einspeiseleistung, dadurch bei sehr gutem Wirkungsgrad sehr hohe Lichtleistung - monochromes Licht erlaubt sehr effektiven Einsatz von optischen Komponenten wie z.b. Filter - sehr gut triggerbar (Modulationsfrequenz bis zu >10 GHz) - Lebensdauer sehr hoch max h - keine Baumarktware, anbieterspezifisch Abb Gegenüberstellung des Spektralbereichs einer LED und einer Laserdiode gleicher Nennwellenlänge Kapitel 2.3 Seite 24

25 Eine typische Anwendung von Laserdioden ist die sog. Lasertriangulation. Dabei projiziert ein Laser unter einem bekannten Winkel eine Linie auf ein Objekt, dessen Oberfläche vermessen werden soll. Eine CCD- oder CMOS-Kamera registriert das Streulicht. Kennt man die Strahlrichtung und den Abstand zwischen Kamera und Laser, kann damit der Abstand Objektoberfläche zu Kamera bestimmt werden. Die Verbindung Kamera-Laser sowie die beiden Strahlen vom und zum Objekt bilden ein Dreieck, daher der Begriff Triangulation. Zur flächigen Vermessung wird das Verfahren Codierter Lichtansatz bzw. Lichtschnittverfahren angewendet. Dabei wird eine große Anzahl von Linien als engmaschiges Netzmuster auf ein Objekt projiziert und von einer Kamera aufgenommen. Über eine spezielle Software lässt sich das Abbild auswerten und sehr genau Höhenunterschiede detektieren. Abb Lasertriangulation zur Vermesssung von Werkstücken Kapitel 2.3 Seite 25

26 Abb D - Bodyscanner Kapitel 2.3 Seite 26

27 Abb Entwicklung von Größentabellen Kapitel 2.3 Seite 27

28 Dreidimensionale Erfassung von Objekten durch projizierte Farbmuster Verfahren zur dreidimensionalen Erfassung von Objekten, bei dem - auf das zu erfassende Objekt ein Farbmuster mit bekannten Projektionsdaten projiziert wird, - das auf das Objekt projizierte Farbmuster mit einer Kamera erfasst wird, und - das von der Kamera erzeugte Abbild in einer Auswerteeinheit zu dreidimensionalen Objektkoordinaten des Objekts verarbeitet wird (Projektionsdaten sind im Farbmuster mit Hilfe eines redundanten Codes codiert). Quelle und Patent : Siemens AG (DE) Kapitel 2.3 Seite 28

29 2.3.2 Anordnung von Beleuchtung und Kamerasystem in Bezug auf das zu betrachtende Objekt Je nach Aufgabenstellung ist es nötig, eine geeignete Anordnung der verwendeten Komponenten Lichtquelle und Kamerasystem zu finden. Bei der Erstellung einer Lösung in der Technischen Bildverarbeitung ist oftmals die Anordnung der Komponenten entscheidender als die Komponenten selbst. Im Folgenden werden Varianten aufgezeigt und mit Aufnahmen dokumentiert. Die hierbei verwendeten Komponenten sind : Abb Kamerasystem DVT Legend 520 mit integrierter ringförmiger roter LED - Beleuchtung Abb LED Beleuchtung mit blauen LED s Büchner Lichtsysteme TopLight L Abb EUR Stück und Alublech mit Folie beklebt Kapitel 2.3 Seite 29

30 Durchlicht Das zu betrachtende Objekt befindet sich zwischen Lichtquelle und Kamera. Das Licht wird im Bereich des Objekts unterbrochen. Es wird ein Schatten (Kontur) abgebildet. Sehr gut bei Vermessungsaufgaben, da eindeutige Trennung von Objekt und Hintergrund. Die Oberfläche wird nicht abgebildet Abb Durchlicht - Anordnung Abb Durchlicht Abbild Schatten, Kontur Kapitel 2.3 Seite 30

31 Auflicht Lichtquelle und Kamera befinden sich in Bezug auf das zu betrachtende Objekt auf der gleichen Seite. Das Licht wird von der Oberfläche des Objekts und des Hintergrunds reflektiert. Es wird ein Abbild des Objektes in verschiedenen Grautönen erzeugt. Die Oberfläche ist zu erkennen, die Kontur wird nicht so klar dargestellt. Anwendung bei z. B. Oberflächeninspektionen. Abb Auflicht Anordnung mit Ringbeleuchtung Abb Auflicht Abbild, Oberfläche, Struktur zu erkennen Kapitel 2.3 Seite 31

32 Gerichtetes Licht (Hell- und Dunkelfeld). Die Lichtquelle strahlt das Licht in einer Vorzugsrichtung ab. Das Objekt wird aus einer Vorzugsrichtung beleuchtet. Durch die Oberflächenstruktur (Erhöhung bzw. Vertiefung) des Objekts bilden sich Schatten bzw. hellere Bereiche, die bestimmte Merkmale deutlich hervortreten lassen. Verstärkung dieses Zusammenhangs durch Anwendung von Hell- bzw. Dunkelfeldanordnungen. Hellfeld Das Kamerasystem befindet sich im Strahlengang (Einfallswinkel = Ausfallswinkel) des reflektierten Lichts Abb Auflicht Hellfeld Anordnung mit LED Leuchte Abb wurde unter kleinerem Winkel aufgenommen, deshalb kleine Elipse Abb Auflicht Hellfeld Abbild Oberfläche, Strukturelemente betont Kapitel 2.3 Seite 32

33 Dunkelfeld Das Kamerasystem befindet sich nicht im Strahlengang (Einfallswinkel!= Ausfallswinkel) des reflektierten Lichts. Abb Auflicht Dunkelfeld Abbild Strukturelemente kaum sichtbar Abb Auflicht Dunkelfeld Anordnung mit LED - Leuchte Kapitel 2.3 Seite 33

34 Diffuses Licht. Das Objekt wird aus allen Richtungen (möglichst) gleichmäßig beleuchtet. Es treten kaum Schatten auf. Es entsteht ein Abbild, dessen Graustufen durch Oberflächeneigenschaften und nicht durch Höhenunterschiede verursacht werden. Als Beleuchtungsquelle z.b. Raumlicht (schwer,oftmals unmöglich, gleichmäßig auszuleuchten) oder spezielle Beleuchtungssysteme z.b. Abb Leuchttunnel. Abb Auflicht Diffus Abbild Deutliche Reflexionsunterscheidung Abb Auflicht Diffus Anordnung mit Raumlicht Kapitel 2.3 Seite 34

35 Weitere Beispiele Abb Alu Blech mit integriertem Ringlicht beleuchtet. Einzelne LED s werden gespiegelt. Abhilfe durch Diffusorscheibe vor LED s Kapitel 2.3 Seite 35

36 Abb Alu Blech mit blauer LED - Leuchte beleuchtet (Dunkelfeld). Beide Bilder wurden unter genau gleichen Bedingungen (Belichtungszeit, Anordnung...) aufgenommen. Das Blech wurde lediglich um 90 0 Grad gedreht. Da das Blech vom Walzen eine (mit dem menschlichen Auge kaum wahrnehmbare) Struktur hat, wird das Licht unterschiedlich reflektiert. Dass die Parameter nicht verändert wurden, ist auch an dem Barcode zu sehen, der in fast gleicher Intensität dargestellt wird. Kapitel 2.3 Seite 36

37 Weitere Informationen finden Sie hier : Kapitel 2.3 Seite 37

38 2.4 Technische Optik Dieses Skript ist eine Ergänzung zu der Vorlesung Technische Bildverarbeitung / Machine Vision. Es ist kein Lehrbuch. Dieses Skript darf ausschließlich als begleitendes Lehrmittel für die Vorlesung genutzt werden. Andere Nutzungen sind mit den Verfassern abzuklären. Vervielfältigung, Übersetzungen, Mikroverfilmung und die Einspeicherung und Bearbeitung in elektronischen Systemen (auch auszugsweise) ist nur nach Rücksprache und mit Erlaubnis der Verfasser zulässig. In diesem Skript werden Produkte einzelner Firmen als Beispiel verwendet. Die Auswahl dieser Produkte stellt keine Bewertung dar, sondern erfolgte ausschließlich nach didaktischen Gesichtspunkten. Die angegebenen Preise sind als Orientierungshinweis zu sehen. Bei Fragen, Kritik, Verbesserungsvorschlägen : Dipl.-Ing. Dirk Mohr Raum C2 05 Tel.: Bochum, den Kapitel 2.4 Seite 38

39 2.4 Technische Optik Abbildung In der Technischen Bildverarbeitung (wie z.b. auch in der Fotografie) muss auf einem Bildwandler ein reelle optische Abbildung eines Gegenstandes erzeugt werden. Von einem Objekt, das sich in endlicher Entfernung von dem Bildwandler befindet, gehen von jedem Punkt unzählige Lichtstrahlen in alle Richtungen aus (Strahler oder Reflektion). Diese treffen auf alle Punkte des Wandlers. Es entsteht keine reelle Abbildung. Um trotzdem eine reelle Abbildung zu bekommen, kann man die Anzahl der Lichtstrahlen, die auf den Wandler treffen, begrenzen. Das ist das Prinzip der Lochkamera (camera obscura). Hierbei erhält man eine (auf dem Kopf stehende) Abbildung des Objekts. Die Abbildung lässt bei geeignetem Abstand von dem Objekt, geeigneter Lochgröße und passender Gehäusetiefe Details des Objekts erkennen. Die Abbildung zeigt eine gewisse Schärfe. Abb Prinzip Lochkamera Quelle : Kapitel 2.4 Seite 39

40 Die Schärfe, also die Genauigkeit des mit der Lochkamera erzielten Abbildes, reicht nicht für die Technische Bildverarbeitung aus. Um die Schärfe zu verbessern, muss eine Komponente verwendet werden, die die Lichtstrahlen so lenkt, das die Strahlen, die von einem Punkt des Gegenstandes ausgehen, auch wieder in einem Punkt des Bildwandlers zusammengeführt werden. Solch eine Komponente ist eine Sammellinse. Diese bündelt die Lichtstrahlen in einer Ebene. Legt man in diese Ebene den Bildwandler, so bekommt man ein scharfes Abbild des Objekts. Um den Anforderungen der TBV gerecht zu werden, verwendet man mehrere Linsen, die in einem Objektiv kombiniert sind. Dabei sind folgende Größen zu beachten. G Gegenstandsgröße : Größe des abzubildenden Objekts g Gegenstandsweite : Abstand des Objekts von der Mitte des Linsensystems (Objektiv) f Brennweite : Kenngröße des Objektivs B Bildgröße : Größe des Abbilds, oftmals eine Dimension des Bildwandlers b Bildabstand : Kameraauszug Der Bildabstand b wird vom sog. Auflagemaß mitbestimmt. Das Auflagemaß ist der Abstand zwischen dem Bildwandler und dem Ende des Objektivgewindes. In der Industrie haben sich Standards für diese Abstände etabliert. C Mount : 17.5 mm CS Mount : 12.5 mm Abb Auflagemaß Quelle : The Imaging Source Europe GmbH Kapitel 2.4 Seite 40

41 Abb Linsenformel nach Descartes Kapitel 2.4 Seite 41

42 2.4.2 Berechnungsbeispiel Eine rechteckige Aluminiumplatte von 100 * 50 mm soll auf einem 1/3 Bildwandler (formatfüllend) abgebildet werden. Der Arbeitsabstand beträgt 1m. Welche Brennweite muss das zu verwendende Objektiv haben? -Gegeben : G1 = 100 mm, G2 = 50 mm, g = 1000 mm, B1 = 4.8 mm, B2 = 3.6 mm -Ges : f f = g / ( 1 + G / B) = 1000 mm / ( mm / 4.8 mm) = 45 mm Kontrolle für andere Wandlerseite : Verhältnis B1 / B2 = 1,33 Auf der Seite B2 werden also 100 mm / 1.33 = 75 mm abgebildet. Das sind mehr als die geforderten 50 mm. Kapitel 2.4 Seite 42

43 2.4.3 Entozentrische- und Telezentrische Objektive Die bisher besprochenen Objektive haben die Eigenschaft, dass sich bei Änderung der Gegenstandsweite (trotz konstanter Gegenstandsgröße) auch die Bildgröße ändert (entozentrische Perspektive). Dieser Sachverhalt ist in Abbildung dargestellt. Zusatz Abb Entozentrische Perspektive Kapitel 2.4 Seite 43

44 Nähert sich der Gegenstand dem Objektiv von g1 auf g2, so wird der Gegenstand in der Ebene b2 scharf abgebildet. Da sich der Bildwandler aber fest auf Position b1 befindet, ergibt sich hier eine unscharfe Abbildung. Dies hat meist auch eine Größenänderung der Bildgröße zur Folge. Wenn also in der Praxis ein Objekt abgebildet wird und sich der Abstand zum Bildverarbeitungssystem ändert (z.b. durch den Materialtransport), ändert sich bei gleichbleibender Objektgrösse die Bildgrösse. Welche Änderung der Gegenstandsweite zulässig ist, ohne das die Messung verfälscht wird, beschreibt die sog. Schärfentiefe. Ebenfalls Einfluss auf die Tiefenschärfe hat die Blende des Objektivs. Diese ist meist verstellbar und im Strahlengang vor dem Linsensystem angebracht. Durch konzentrische Verstellung lässt sich die einfallende Lichtmenge reduzieren und so das optische System an die Lichtverhältnisse anpassen. Wie in Abb zu erkennen ist, sind die achsparallelen Lichtstrahlen kaum an der Bildung der entozentrischen Perspektive beteiligt. Durch eine weiter geschlossenes Blende können nur achsparallele Strahlen passieren. So hat eine weiter geschlossene Blende (neben einer geringeren Helligkeit) eine größere Schärfentiefe zur Folge. Abb Prinzip der Blende Kapitel 2.4 Seite 44

45 Um die Änderung der Gegenstandsweite (Abb ) auszugleichen, müsste die Bildweite ebenfalls verändert werden. Da der Bildwandler in der Regel fest montiert ist, lässt sich der Kameraauszug bei Objektiven meist ändern und so auf veränderte Gegenstandsweiten einstellen. Die Einstellung ist durch die Bauart begrenzt. So geht der Einstellbereich meist von (minimaler Abstand Wandler Linsensystem) bis zur sog. Minimalen Objekt Distanz (MOD). Die MOD legt also die kleinste Gegenstandsweite fest, bei der ein Objekt noch scharf abgebildet wird. Reicht diese nicht aus, lässt sich durch Zwischenringe, die zwischen Kamera und Objektiv geschraubt werden, die MOD verkleinern. In der praktischen Anwendung lässt sich der Kameraauszug nicht immer an wechselnde Abstände anpassen. Wird z. B ein Blech kontrolliert, das sich auf Grund des Transportsystems und einer Eigendynamik wellenförmig bewegt (Hub in Richtung Bildverarbeitung), so ist eine Nachführung des Kameraauszugs oftmals nicht möglich. Für solche Anwendungsfälle wurden die sog. Telezentrischen Objektive entwickelt. Dies sind komplexe Linsensysteme, die einen erweiterten Schärfentiefenbereich haben. Dies wird allerdings mit einer geringen Lichtdurchlässigkeit, einer großen Bauform und einem höheren Preis erkauft. Abb Versuchsaufbau mit telezentrischem Objektiv Kapitel 2.4 Seite 45

46 Abbildung gleichgroßer Werkstücke mit entozentrischem (oben) und telezentrischem Objektiv Quelle : tm 4/ 98 Dr. Rainer Schuhmann, Thomas Thöniß Spindler & Hoyer GmbH, Göttingen Kapitel 2.4 Seite 46

47 2.4.4 Spezielle Objektive Perizentrische Objektive Durch spezielle Optiken 360-Grad-Bild in einer Aufnahme Keine Multi-Kamera-Systeme nötig Abb Perizentrisches Objektiv Quelle : Opto Engineering srl Kapitel 2.4 Seite 47

Skript zur Vorlesung Technische Bildverarbeitung Prof. Dr.-Ing. Reiner Dudziak Dipl.-Ing. Dirk Mohr

Skript zur Vorlesung Technische Bildverarbeitung Prof. Dr.-Ing. Reiner Dudziak Dipl.-Ing. Dirk Mohr Skript zur Vorlesung Technische Bildverarbeitung Prof. Dr.-Ing. Reiner Dudziak Dipl.-Ing. Dirk Mohr Kapitel 1 Seite 1 Dieses Skript ist eine Ergänzung zu der Vorlesung Technische Bildverarbeitung. Es ist

Mehr

2. Technische Bildverarbeitung 2.1 Begriffsdefinition 2.2 Übersicht 2.3 Beleuchtungssysteme

2. Technische Bildverarbeitung 2.1 Begriffsdefinition 2.2 Übersicht 2.3 Beleuchtungssysteme 2. Technische Bildverarbeitung 2.1 Begriffsdefinition 2.2 Übersicht 2.3 Beleuchtungssysteme Dieses Skript ist eine Ergänzung zu der Vorlesung Technische Bildverarbeitung. Es ist kein Lehrbuch. Dieses Skript

Mehr

Bildverarbeitung - Inhalt

Bildverarbeitung - Inhalt Bildverarbeitung Bildverarbeitung - Inhalt 1. Anfänge der industriellen Bildverarbeitung 2. Von der Kamera zum Vision Sensor 3. Hardware Konzepte in der BV 4. Beleuchtungssysteme 5. Auswerteverfahren (Software)

Mehr

LUMIMAX Beleuchtungsworkshop. iim AG 19.03.2015

LUMIMAX Beleuchtungsworkshop. iim AG 19.03.2015 LUMIMAX Beleuchtungsworkshop iim AG 19.03.2015 Bedeutung der Beleuchtung Der Einfluss der Beleuchtung auf die Bildverarbeitungslösung wird häufig unterschätzt. Jede BV-Applikation benötigt ein optimales

Mehr

Digitale Bildverarbeitung OPTONET Mastertour bei Allied Vision Technologies

Digitale Bildverarbeitung OPTONET Mastertour bei Allied Vision Technologies Digitale Bildverarbeitung OPTONET Mastertour bei Allied Vision Technologies Technische Universität Ilmenau Fachgebiet Qualitätssicherung Dr.-Ing. Maik Rosenberger 1 Inhalt 1 Grundbegriffe der Bildverarbeitung

Mehr

Elektronisches Auge wird wachsamer

Elektronisches Auge wird wachsamer Megapixelkameras erhöhen die Sicherheit Elektronisches Auge wird wachsamer Megapixel-Sensoren steigern die Lichtempfindlichkeit von Überwachungskameras deutlich. Das revolutioniert die Videoüberwachung

Mehr

Inhalte. Photogram. Aufnahmesysteme. HS BO Lab. für Photogrammetrie: Digitale Aufnahmesysteme 1

Inhalte. Photogram. Aufnahmesysteme. HS BO Lab. für Photogrammetrie: Digitale Aufnahmesysteme 1 Inhalte Photogram. Aufnahmesysteme Metrische Kameras (Definition der Inneren Orientierung) Analoge Messkameras Fotografische Aspekte Digitalisierung analoger Bilder Digitale Aufnahmesysteme (Grundlagen)

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Dr. Stefan Gehrig Dipl.-Physiker, Dipl.-Ing. (BA) Duale Hochschule Baden-Württemberg - Stuttgart Sommersemester 2015 S. Gehrig - Digitale Bildverarbeitung 1 S. Gehrig - Digitale

Mehr

Optik-Grundlagen 2003 The Imaging Source Europe GmbH Alle Rechte vorbehalten

Optik-Grundlagen 2003 The Imaging Source Europe GmbH Alle Rechte vorbehalten Optik-Grundlagen 003 The Imaging Source Europe GmbH Alle Rechte vorbehalten http://www.1394imaging.com/ Version: Dezember 003 Optik - kein Problem ist ja einfaches Schulwissen. Aber Hand auf's Herz gelingt

Mehr

HSI Kamera VIS. » High Performance Hyper Spectral Imaging. » Datenblatt. Kontinuierliche Echtzeit VIS Hyper-Spektral Kamera

HSI Kamera VIS. » High Performance Hyper Spectral Imaging. » Datenblatt. Kontinuierliche Echtzeit VIS Hyper-Spektral Kamera HSI Kamera VIS» High Performance Hyper Spectral Imaging» Datenblatt Das HSI VIS Kamera-System ist ein integriertes Laborgerät für die präzise Farbanalyse. Das System setzt die Chemical Color Imaging Technologie

Mehr

CCD. Autoren: Rupert Gratz - Daniel Kadir - Stefan Reischmann. CCD steht für "charge"

CCD. Autoren: Rupert Gratz - Daniel Kadir - Stefan Reischmann. CCD steht für charge Autoren: Rupert Gratz - Daniel Kadir - Stefan Reischmann CCD steht für "charge" charge-coupledcoupled device (zu deutsch etwa Ladungsgekoppeltes Bauelement ) Der erste CCD-Chip Chip mit 96x1 Pixel wurde

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Detektorprinzipien Videokamera

Detektorprinzipien Videokamera Detektorprinzipien Halbleiter-Photodetektion Im Inneren des Halbleiters: Auf den Detektor fallende Strahlung erzeugt Ladungspaare. Ladungspaare werden durch ein elektrisches Feld getrennt. Kumulation im

Mehr

Software in der Industriellen Bildverarbeitung

Software in der Industriellen Bildverarbeitung Software in der Industriellen Bildverarbeitung Technologieentwicklung am Beispiel Pattern Matching Dr. Olaf Munkelt MVTec Software GmbH MVTec Software GmbH Firma konzentriert sich auf Building Vision for

Mehr

Objektive. Auswahl und Montage. Inhalt

Objektive. Auswahl und Montage. Inhalt Objektive Auswahl und Montage Im Folgenden geben wir Ihnen allgemeine Hinweise zur Auswahl und Montage von C- und Objektiven. Weitere Informationen finden Sie im White Paper Optik-Grundlagen. Bitte beachten

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Einführung in die CCD-Technologie

Einführung in die CCD-Technologie 1. Grundprinzip eines Bildaufnahmesystems Das Grundprinzip eines CCD-Bildaufnahmesystems läßt sich mit dem Vergleich einer Filmkamera einfach erklären: Während in beiden Systemen die Komponenten Objektiv/Blende

Mehr

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2.1 Lichtquellen In Abb. 2.1 sind die Spektren einiger Lichtquellen dargestellt, die in spektroskopischen Apparaturen verwendet

Mehr

HSI Kamera VIS / VNIR

HSI Kamera VIS / VNIR HSI Kamera VIS / VNIR» High Performance Hyper Spectral Imaging» Datenblatt Das HSI VIS / VNIR Kamera-System ist ein integriertes Laborgerät für die kombinierte Farb- und chemische Analyse. Das System setzt

Mehr

Grundlagen der industriellen Bildverarbeitung und deren Anwendungsgebiete. Christoph Walter, MSc

Grundlagen der industriellen Bildverarbeitung und deren Anwendungsgebiete. Christoph Walter, MSc Grundlagen der industriellen Bildverarbeitung und deren Anwendungsgebiete Christoph Walter, MSc Agenda Kurzvorstellung Senmicro Einleitung Komponenten in der Bildverarbeitung Grundbegriffe Ablauf eine

Mehr

Wie es Euch gefällt Pixelvorverarbeitung oder RAW-Format

Wie es Euch gefällt Pixelvorverarbeitung oder RAW-Format Wie es Euch gefällt Pixelvorverarbeitung oder RAW-Format Je nach Anwendung werden an die Bilddaten unterschiedliche Anforderungen gestellt. Beim schnellen Schnappschuss möchte Sie ein fertiges Bild von

Mehr

9th NEMO-SpectroNet Collaboration Forum

9th NEMO-SpectroNet Collaboration Forum 9th NEMO-SpectroNet Collaboration Forum Jena, 15.12.2010 Color and Multi Spectral Imaging An Overview Dr. Ing. Thomas Fahlbusch, PhotonicNet GmbH, Hannover Farbaufnahme 1-Chipkamera Bayer Farbmosaik Chips

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Digitale Fotografie. Agfa. R. Wirowski (Agfa-Gevaert AG, FE-Film) 16. Dezember 1998. R. Wirowski. Agfa Lectures - Fachhochschule Köln 1

Digitale Fotografie. Agfa. R. Wirowski (Agfa-Gevaert AG, FE-Film) 16. Dezember 1998. R. Wirowski. Agfa Lectures - Fachhochschule Köln 1 Digitale Fotografie (-Gevaert AG, FE-Film) 16. Dezember 1998 Lectures - Fachhochschule Köln 1 Einleitung: Digitale Kamera Halbleiter-Sensor und Elektronik Gehäuse Optik und Verschluß Batteriehalterung

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Erste Hilfe bei der Auswahl einer Kamera für Machine Vision Systeme

Erste Hilfe bei der Auswahl einer Kamera für Machine Vision Systeme Kurzer Leitfaden Erste Hilfe bei der Auswahl einer Kamera für Machine Vision Systeme Die rasanten Entwicklungen der letzten Jahre sowohl im Hardware- als auch im Software- Bereich von bildverarbeitenden

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Sehen: Die Visuelle Wahrnehmung

Sehen: Die Visuelle Wahrnehmung Sehen: Die Visuelle Wahrnehmung 1 2 1 Aufbau der Retina Retinale Ganglien geben das Singnal weiter im Auge ( Chronobiologie!). Quelle: www.dma.ufg.ac.at 3 Anatomie des Auges: Pupille 2-8 mm (Helligkeitsanpassung);

Mehr

DALSA TDI Zeilenkameras überlisten die Dunkelheit

DALSA TDI Zeilenkameras überlisten die Dunkelheit TDI Zeilenkameras überlisten die Dunkelheit Zeilenkameras benötigen wegen der hohen Scan-Frequenzen im Betrieb viel Licht aber auch die beste Beleuchtung hat ihre Grenzen. TDI-Sensoren können mittels Mehrfachbelichtung

Mehr

Intelligenter Sensor F160

Intelligenter Sensor F160 10-Punkte-Plan-Fragebogen für Applikationsanfragen siehe Seite 35. Anwendungen OCR (Schrift lesen) Steuereinheit: F160 C15E Handkonsole: F160 KP Kameras: F160 S1 F150 SLC20 F150 SLC50 integr. intelligente

Mehr

Institut für Informatik Visual Computing SE Computational Photography

Institut für Informatik Visual Computing SE Computational Photography Kameramodelle und Grundlagen Institut für Informatik Visual Computing SE Computational Photography Prof. Eisert Vortrag von Juliane Hüttl Gliederung 1. Bilderfassung 1. Optische Abbildungsmodelle 2. Sensoren

Mehr

NÜTZLICHE TIPPS FÜR OPTIMALE SCANS

NÜTZLICHE TIPPS FÜR OPTIMALE SCANS Bedingungen, um gute Scans zu erhalten Die Faktoren, von denen das Ergebnis eines Scans abhängt, sind einerseits die Umgebung sowie die Konfiguration und Kalibrierung des Scanners, aber auch das zu scannende

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Bildwandler-Technologie für zukünftige Fernsehformate. Klaus Weber Senior Product Marketing Manager, Camera

Bildwandler-Technologie für zukünftige Fernsehformate. Klaus Weber Senior Product Marketing Manager, Camera Bildwandler-Technologie für zukünftige Fernsehformate Klaus Weber Senior Product Marketing Manager, Camera Agenda Anforderungen an ein zukünftiges Fernsehformat Spezifische Anforderungen an die Bildwandler

Mehr

CMOS Kameras. Jan Hegner Universität Mannheim. Seminar-Vortrag WS2003/2004

CMOS Kameras. Jan Hegner Universität Mannheim. Seminar-Vortrag WS2003/2004 CMOS Kameras Jan Hegner Universität Mannheim Seminar-Vortrag WS2003/2004 Übersicht 2 1. Anwendungsgebiete 2. CMOS 3. Aufbau Kamerachip 4. Fotodiode 5. Auslesemodi 6. Layout 7. Farbsensor 8. CCD 9. Spezialanwendungen

Mehr

Der EVMA 1288 Standard als Wegweiser zur richtigen Kamera mit der richtigen Bildqualität. Vortragender: Christoph Hoernlen Territory Account Manager

Der EVMA 1288 Standard als Wegweiser zur richtigen Kamera mit der richtigen Bildqualität. Vortragender: Christoph Hoernlen Territory Account Manager Der EVMA 1288 Standard als Wegweiser zur richtigen Kamera mit der richtigen Bildqualität Vortragender: Christoph Hoernlen Territory Account Manager Inhalt 1 Einführung in Bildqualität und ihre entscheidende

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Industrielle Bildverarbeitung Übungen 1. Aufgabe Ein Objektiv mit der Brennweite 12.5mm kann auf Entfernungen zwischen 0.5 m und eingestellt werden. Wie gross ist dann jeweils die Bildweite? Dieses Objektiv

Mehr

www.lichtathlet.de Crashkurs Fotografie

www.lichtathlet.de Crashkurs Fotografie www.lichtathlet.de Crashkurs Fotografie Inhaltsverzeichnis 1. Ziel 2. Vorraussetzung 3. Die wichtigsten Funktionen 4. Blende 5. Belichtungszeit 6. ISO-Empfindlichkeit 7. Brennweite 8. Fokus und Schärfentiefe

Mehr

Digitalkamera. CCD: Prinzip. Bildsensoren: CCD, CMOS. Photographie: Rasterfilme

Digitalkamera. CCD: Prinzip. Bildsensoren: CCD, CMOS. Photographie: Rasterfilme Digitalkamera CCD: Prinzip Objektiv, Verschluß, CCD, (32-bit) Rechner CCD: "charge coupled device": Si/Ge-Halbleiter sind lichtempfindlich Photonen erzeugen freie Ladungsträger spektrale Empfindlichkeit

Mehr

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V Trivialitäten Nicht mehr ganz so trivial Geheimwissen Welchen Stellenwert nimmt die Optik bei Bildverarbeitern oft ein? Trivialitäten: Wie groß ist der Sensor der Kamera? Deckt der Bildkreis des Objektivs

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

OPTOELEKTRONIK SENSORIK

OPTOELEKTRONIK SENSORIK OPTOELEKTRONIK SENSORIK Chip Scale Gehäuse Monolithischer Aufbau CCD und CMOS Technologie auf einem Chip ESPROS Photonics AG ESPROS Photonics AG bietet ein interessantes Spektrum an optoelektronischen

Mehr

MR-kompatible Kamera 12M

MR-kompatible Kamera 12M MR-kompatible Kamera 12M Benutzerhandbuch 1. Bestimmungsgemäßer Gebrauch Unsere MR-kompatiblen Kameras dienen der Anzeige und Aufnahme von Videobildern von Patienten und/oder Probanden in Kernspintomographen

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

PROSILICA Flächenkameras FireWire GigE Vision

PROSILICA Flächenkameras FireWire GigE Vision Flächenkameras FireWire GigE Vision GigE Vision Monochrom und Farbe bis 16 MegaPixel (4872 x 3248) bis 200 Vollbilder/s CCD & CMOS Sensoren 100% kompatibel mit GigE Vision, GenCam, IEEE 1394 Kameras

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit Vision 2008 Simone Weber Gliederung 1. Einleitung 2. Eigenschaften der telezentrischen Abbildung 3. Telezentriefehler 2ϕ 4. Quantifizierung

Mehr

2. Linsen und Linsensysteme

2. Linsen und Linsensysteme 2. Linsen und Linsensysteme 2.1. Sphärische Einzellinsen 2.1.1. Konvexlinsen Konvexlinsen sind Sammellinsen mit einer positiven Brennweite. Ein paralleles Lichtbündel konvergiert nach dem Durchgang durch

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Computer Graphik I (3D) Dateneingabe

Computer Graphik I (3D) Dateneingabe Computer Graphik I (3D) Dateneingabe 1 3D Graphik- Pipeline Anwendung 3D Dateneingabe Repräsenta

Mehr

Hochgeschwindigkeitsaufnahmen mit hoher Bildqualität und Auflösung Technologie und Einsatzbereiche. Peter Köller Dr. Gerhard Holst

Hochgeschwindigkeitsaufnahmen mit hoher Bildqualität und Auflösung Technologie und Einsatzbereiche. Peter Köller Dr. Gerhard Holst Hochgeschwindigkeitsaufnahmen mit hoher Bildqualität und Auflösung Technologie und Einsatzbereiche Peter Köller Dr. Gerhard Holst Überblick Hochgeschwindigkeit - mit welchem Bildsensor Kamerasystem Einsatzgebiete

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Skript zur Vorlesung Technische Bildverarbeitung Machine Vision

Skript zur Vorlesung Technische Bildverarbeitung Machine Vision Skript zur Vorlesung Technische Bildverarbeitung Machine Vision Prof. Dr.-Ing. Reiner Dudziak Dipl.-Ing. Dirk Mohr 14.09.2015 Kapitel 1 Seite 1 Dieses Skript ist eine Ergänzung zu der Vorlesung Technische

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

Grundlegender Aufbau einer 3D Kamera

Grundlegender Aufbau einer 3D Kamera Grundlegender Aufbau einer 3D Kamera Stefan Schwope, 05.08.2010 D B C E F A Abbildung 1) Systemkomponenten einer 3D Kamera Eine 3D Kamera besteht aus folgenden grundlegenden Systemkomponenten (siehe Abbildung

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Augenmodell. 1 Einleitung. 1.1 Der Sehvorgang. 1.2 Grundlagen zur optischen Abbildung. Versuchsvorbereitung:

Augenmodell. 1 Einleitung. 1.1 Der Sehvorgang. 1.2 Grundlagen zur optischen Abbildung. Versuchsvorbereitung: 1 Augenmodell Versuchsvorbereitung: Kenntnisse über geometrische Optik, (dünne) Linsen, Konstruktion von Strahlengängen mit Konkav- und Konvexlinsen, Abbildungsgleichung und Abbildungsmaßstab, Brechung,

Mehr

Modulares ZBS - Weiterbildungsprogramm Industrielle Bildverarbeitung für die Automatisierung und Qualitätssicherung Modul 1

Modulares ZBS - Weiterbildungsprogramm Industrielle Bildverarbeitung für die Automatisierung und Qualitätssicherung Modul 1 Modul 1 Lichttechnik / Beleuchtungstechnik Licht- und strahlungstechnische Grundlagen (spektrale und integrale Strahlungsgrößen, lichttechnische Grundgrößen, lichttechnische Stoffkennzahlen und Wirkungsgrade,

Mehr

meisten DSLRs und zeigt dank ihrer großen Sensorpixel ein ausgezeichnetes Rauschverhalten. Wie ist der Zusammenhang zwischen Pixelgröße,

meisten DSLRs und zeigt dank ihrer großen Sensorpixel ein ausgezeichnetes Rauschverhalten. Wie ist der Zusammenhang zwischen Pixelgröße, Damit in der Digitalkamera ein Bild entstehen kann, muss der Sensor von einer definierten Lichtmenge getroffen werden. Diese Menge wird von drei Faktoren beeinflusst. Neben der Belichtungszeit und der

Mehr

Aufbau des Sehsystems

Aufbau des Sehsystems Das Auge Abbildender Apparat (Linse etc) Photorezeptoren (Zapfen und Stäbchen) Photorezeptormosaik Dunkeladaptation Sehschärfe Laterale Hemmung und Konvergenz Aufbau des Sehsystems Lichtreize Das Sehsystem

Mehr

HDRC-Quotienten-PyroCam Anwendung des HDRC- Prinzips in der bildgebenden Temperaturmesstechnik

HDRC-Quotienten-PyroCam Anwendung des HDRC- Prinzips in der bildgebenden Temperaturmesstechnik HDRC-Quotienten-PyroCam Anwendung des HDRC- Prinzips in der bildgebenden Temperaturmesstechnik Thermografie mit hohem Dynamikumfang Franz X. Hutter, Daniel Brosch, Joachim N. Burghartz, Heinz-Gerd Graf,

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Eine Gemeinschaftsveranstaltung der Control und der Vision Academy Erfurt. Aussagekräftige Bilder Rohstoff für BV-Inspektion.

Eine Gemeinschaftsveranstaltung der Control und der Vision Academy Erfurt. Aussagekräftige Bilder Rohstoff für BV-Inspektion. 13.05.2015 Eine Gemeinschaftsveranstaltung der Control und der Vision Academy Erfurt. Aussagekräftige Bilder Rohstoff für BV-Inspektion Tipps & Tricks Dipl.-Ing. Ingmar Jahr Schulungsleiter www.vision-academy.org

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Fachartikel. Optimal abgestimmte Optik- und Beleuchtungsbaugruppen für die industrielle Bildverarbeitung

Fachartikel. Optimal abgestimmte Optik- und Beleuchtungsbaugruppen für die industrielle Bildverarbeitung Vision & Control GmbH Mittelbergstraße 16 98527 Suhl. Germany Telefon: +49 3681 / 79 74-0 Telefax: +49 36 81 / 79 74-33 www.vision-control.com Fachartikel Klein und leistungsfähig Optimal abgestimmte Optik-

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Praktikum 6. Digitale Bildverarbeitung

Praktikum 6. Digitale Bildverarbeitung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_06 ImageJ.doc Praktikum 6 Digitale Bildverarbeitung Industrielle Bildverarbeitung (Machine Vision) Fertigungskontrolle von Unterlegscheiben

Mehr

Versuchsanleitung. Labor Mechatronik. Versuch BV_3 Grundlagen der Bildverarbeitung. Labor Mechatronik Versuch BV-3 Grundlagen der Bildverarbeitung

Versuchsanleitung. Labor Mechatronik. Versuch BV_3 Grundlagen der Bildverarbeitung. Labor Mechatronik Versuch BV-3 Grundlagen der Bildverarbeitung Fachbereich 2 Ingenieurwissenschaften II Labor Mechatronik Steuerungund Regelung Lehrgebiet: Mechatronik Versuchsanleitung Versuch BV_3 Grundlagen der Bildverarbeitung Foto: Firmenschrift Fa. Rauscher

Mehr

e2v Zeilenkameras Monochrom Farbe

e2v Zeilenkameras Monochrom Farbe e2v Zeilenkameras Monochrom Farbe Auflösungen 512 bis 16.384 Pixel/Zeile Zeilenfrequenzen bis zu 210 khz CCD- und CMOS-Sensoren Single- und Multi-Line, GigE Vision, CoaXPress Telefon 0 8142 / 4 90 45 Fax

Mehr

Ein Kameraobjektiv besteht aus einem Linsensystem und einer oder mehreren Blenden

Ein Kameraobjektiv besteht aus einem Linsensystem und einer oder mehreren Blenden Kameraobjektive Ein Kameraobjektiv besteht aus einem Linsensystem und einer oder mehreren Blenden Wichtige Parameter eines Objektivs sind die Brennweite f, die Vergrößerung m und die Brechkraft D die minimale

Mehr

präsentiert: Der Weg des Lichts!

präsentiert: Der Weg des Lichts! präsentiert:! Beleuchtung Objekt Objektiv Kamera Termine: > München 17.06. > Stuttgart 18.06. > Frankfurt 19.06. > Köln 24.06. > Hannover 25.06. > Berlin 26.06. Die genauen Veranstaltungsorte in den jeweiligen

Mehr

-Pixelgrafik, Rastergrafik Beispiele: bmp (Bitmap) tiff (Tagged Image File Format, u. a. Rastergrafik, aber auch mehr) raw (reine Pixeldaten)

-Pixelgrafik, Rastergrafik Beispiele: bmp (Bitmap) tiff (Tagged Image File Format, u. a. Rastergrafik, aber auch mehr) raw (reine Pixeldaten) Multimediale Werkzeuge, Bildobjekte -Beispiel für ein Programm zur Bearbeitung von Bildern: Adobe Photoshop. Speichern in unterschiedlichen Formaten, Bearbeiten z.b. unscharf filtern, scharf filtern...

Mehr

EIN KLEINES DIGITALES FOTO-ABC

EIN KLEINES DIGITALES FOTO-ABC I h r O n l i n e F o t o l a b o r EIN KLEINES DIGITALES FOTO-ABC Ein kleines digitales Foto-ABC A/D-Wandlung Bei der Analog/Digital-Wandlung werden die von den einzelnen Pixeln erzeugten elektrischen

Mehr

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Kompression und Datenformate Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Digitale Speicherung von Bildern Digitalisierung Informationsgehalt Speicherbedarf Kompression von Multimediadaten

Mehr

HDR Aufnahmetechniken. B.Eng. Paschá Kulijew Limelight Photography

HDR Aufnahmetechniken. B.Eng. Paschá Kulijew Limelight Photography HDR Aufnahmetechniken B.Eng. Paschá Kulijew Limelight Photography Teil 1: Vorüberlegungen Was bedeuten DR? Absolute Definition : Dynamic Range DR ist das Verhältnis von einer maximaler physikalischer Größe

Mehr

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe

Zusammenfassung Graphik - Formate. Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Zusammenfassung Graphik - Formate Vektorgraphik - PS, EPS, WMF geometrische Figuren, exakte Berechnung auf beliebige Größe Rastergraphik - BMP, GIF, JPEG, PNG feste Anzahl von Bildpunkten (ppi) Wiedergabe

Mehr

LED Beleuchtung - Fehlerbetrachtung bei der Beleuchtungsstärkemessung

LED Beleuchtung - Fehlerbetrachtung bei der Beleuchtungsstärkemessung LED Beleuchtung - Fehlerbetrachtung bei der Beleuchtungsstärkemessung Bei einem Beleuchtungsstärkemessgerät ist eines der wichtigsten Eigenschaften die Anpassung an die Augenempfindlichkeit V(λ). V(λ)

Mehr

Prof. Dr. Gregor Fischer Institut für Medien- und Phototechnik Fachhochschule Köln. G. Fischer

Prof. Dr. Gregor Fischer Institut für Medien- und Phototechnik Fachhochschule Köln. G. Fischer Prof. Dr. Gregor Fischer Institut für Medien- und Phototechnik Fachhochschule Köln Überblick Raw Problematik: Aktuelle Situation Standardisierung Raw Vergleich Raw / JPG: Workflow Vor- und Nachteile Besonderheiten

Mehr

Linsen und Augenmodell (O1)

Linsen und Augenmodell (O1) Linsen und Augenmodell (O) Ziel des Versuches Im ersten Versuchsteil werden Brennweiten von dünnen Sammel- und Zerstreuungslinsen mit zwei Verfahren, dem Besselverfahren und der Autokollimation, bestimmt.

Mehr

WHITE PAPER. Moderne CMOS-Kameras als Ersatz für CCD-Kameras. www.baslerweb.com. 1. Was unterscheidet die beiden. Sensortechnologien?

WHITE PAPER. Moderne CMOS-Kameras als Ersatz für CCD-Kameras. www.baslerweb.com. 1. Was unterscheidet die beiden. Sensortechnologien? WHITE PAPER www.baslerweb.com Moderne CMOS-Kameras als Ersatz für CCD-Kameras Anfang 2015 hat Sony, der weltgrößte Hersteller für CCD-Sensoren, alle auf dieser Technologie basierenden Sensoren abgekündigt.

Mehr

VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras

VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras Willkommen bei Vision Components The Smart Camera People VC Smart Reader: Neue Data Matrix-Software auf Smart Kameras Referent: Klaus Schneider, Vision Components Das Unternehmen Wer ist VC: VC ist innovativer

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Die neue Cyber-shot DSC-F55

Die neue Cyber-shot DSC-F55 Die neue Cyber-shot DSC-F55 Carl Zeiss MIC Distagon 2,6/6,85 Technical Marketing i Inhaltsverzeichnis Cyber-shot DSC-F55 Die Komponenten 3 Carl-Zeiss-Objektiv Distagon 4 Die Bildauflösung 5 Digitale Zoom-Möglichkeiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop Zoom-Mikroskop ZM Das universell einsetzbare Zoom-Mikroskop Die Vorteile im Überblick Zoom-Mikroskop ZM Mikroskopkörper Kernstück des ZM ist ein Mikroskopkörper mit dem Zoom-Faktor 5 : 1 bei einem Abbildungsmaßstab

Mehr

Beugung und Laserspeckles

Beugung und Laserspeckles Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Wahlfach Technische Optik Beugung und Laserspeckles Gliederung Seite 1. Versuchsziel... 1

Mehr

Modulare Systemlösungen Qualitätssicherung für die Untersuchungen von Beschichtungen

Modulare Systemlösungen Qualitätssicherung für die Untersuchungen von Beschichtungen Modulare Systemlösungen Qualitätssicherung für die Untersuchungen von Beschichtungen Präparation Mikroskopie und digitale Bildvermessung dünner Schichten: Lacke auf Metall- oder Kunststoffträger Metall-Kunststoffverbunde

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Vision & Motion Industrielle Bildverarbeitung in modernen ethernetbasierten Netzwerken

Vision & Motion Industrielle Bildverarbeitung in modernen ethernetbasierten Netzwerken Vision & Motion Industrielle Bildverarbeitung in modernen ethernetbasierten Netzwerken View Summit 2015 - Stuttgart 30.10.2015 Ingmar Jahr Vision & Control GmbH Vision & Control GmbH Vision & Control -

Mehr

Grundlagen der Bildbearbeitung

Grundlagen der Bildbearbeitung Grundlagen der Bildbearbeitung Voraussetzungen zur Bildbearbeitung Eingabegeräte Scanner Digitale Kameras Ausgabegeräte Speichermedien Index Voraussetzungen zur Bildbearbeitung Um Bilder auf elektronischem

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

Konfokale Chromatische Wegsensoren und Mess-System

Konfokale Chromatische Wegsensoren und Mess-System Konfokale Chromatische Wegsensoren und Mess-System Nanometer-genaue lineare Messung: optische Messung von Glas und reflektierenden Oberflächen, Dickenmessung transpartenter Objekte Berührungslose Optische

Mehr

Beleuchtung ist das A und O!

Beleuchtung ist das A und O! Beleuchtung ist das A und O! Auswahl der geeigneten Beleuchtung für Anwendungen in der industriellen Bildverarbeitung Tutorial Die Bedeutung der geeigneten Beleuchtung für ein Bildverarbeitungs-System

Mehr

Oberflächeninspektion

Oberflächeninspektion Oberflächeninspektion 1.Allgemeines Bei der Oberflächeninspektion oder Oberflächenprüfung wird die sichtbare Hülle eines Werkstückes geprüft. Beschädigungen im Inneren des Objekts sind nicht mit Oberflächeninspektion

Mehr