4.5 Wechselstromkreise

Größe: px
Ab Seite anzeigen:

Download "4.5 Wechselstromkreise"

Transkript

1 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator 9

2 Φ mag = B A = B A cosθ ( ) Φ mag = B A cos ω t + δ Induktionsspannung: (A ist die Fläche der Leiterschleife) θ = ω t + δ ind (d Startwinkel) π ω = πf = d = Φ mag Kreisfrequenz dt ( ) ( t ) =+ B A ω sin ω t + δ = sin ω + δ 3

3 Wechselspannung, Wechselstrom echnische Wechselspannung in 35 V ; f = 5 Hz Beachte: ist nicht der Effektivwert eff = 3 V (siehe kommenden Abschnitt) I = It ( ) = I sin ω t+ ϕ R ( ) Beachte: Strom und Spannung können relativ zueinander in der Phase verschoben sein! 3

4 Zeitliche Mittelungsmöglicheiten glicheiten () ) Einfacher zeitlicher Mittelwert = tdt ( ) dt = Die gleichgroßen positiven und negativen Beiträge heben sich auf. 3

5 Zeitliche Mittelungsmöglicheiten glicheiten () ) Gleichrichtwert Alle negativen Anteile werden zuerst positiv gerichtet und erst dann wird gemittelt. = / t ( ) dt / = ( ) sin ω t dt = dt cos( ωt) ω = π =

6 Zeitliche Mittelungsmöglicheiten glicheiten (3) 3) Effektivwert Der Effektivwert eines Wechselstroms erzeugt in einem Ohmschen Widerstand die gleiche mittlere Wärmeleistung wie ein Gleichstrom mit I = I eff P I I R t dt ( ) = = = mit = eff = R dt eff = = = sin ( ω t) dt / 34

7 Zeitliche Mittelungsmöglicheiten glicheiten (4) 3) Effektivwert (Fortsetzung) Ergebnis: eff = V 35 V eff = 3 V Analog: I I eff = I eff = I. 77 I 35

8 Widerstände im Wechselstromkreis () Im Wechselstromkreis schwingen und I i.allg. nicht gleichphasig. Je nach Bedeutung der relativen Phasen zwischen Strom und Spannung unterscheiden wir drei Kategorien von Widerständen: () Wirkwiderstand: Im Wirkwiderstand wird die elektrische Energie vollständig in nichtelektrische Energie (Wärme) umgewandelt. Da Stromrichtung hierbei keine Rolle spielt, gelten für den Wirkwiderstand im Wechselstromkreis die Gesetze des Gleichstromkreises: t t eff RΩ = () It = sinω = = () I sinωt I I Strom und Spannung sind in Phase. eff 36

9 Widerstände im Wechselstromkreis () () Induktiver Blindwiderstand: Betrache Spule mit Induktivität L und vernachlässigbarem Ohmschen Widerstand R Ω (t) Beim Anlegen einer Gleichspannung würde es also zum Kurzschluss kommen. Beim Anlegen einer Wechselspannung entsteht durch die Selbstinduktionsspannung ein induktiver Widerstand: L di L = = L di ( sin ω t ) = L I ω cosω t dt dt = L I + ω sin ωt π Folgerungen: Spannung eilt dem Strom um 9 voraus. L,max = ω L I eff = RL = ω L = ω L I I eff eff eff 37

10 Widerstände im Wechselstromkreis (3) () Induktiver Blindwiderstand (Fortsetzung): Wie groß ist die Wirkleistung des induktiven Widerstands? M.a.W.: Wieviel Energie wird in Wärme umgewandelt? P L = t () It () dt= I Induktive Wirkleistung ist Null! sinωt cosω t dt = 38

11 Widerstände im Wechselstromkreis (4) (3) Kapazitiver Blindwiderstand Betrache Kondensator mit Kapazität C Anlegen einer Gleichspannung Ladestrom, bis I = ; D.h.: Zu Beginn zeigt der Kondensator einen endlichen Widerstand, der langsam auf ansteigt. Wechselspannung ständige mladung, d.h. ständiger Strom Es scheint, als habe der Kondensator einen endlichen Widerstand It () dq() t dct ( ()) C d () = = = t = C d sinω t dt dt dt dt = ω C cos ωt (t) = ω C ω + π sin t 39

12 Widerstände im Wechselstromkreis (5) (3) Kapazitiver Blindwiderstand (Fortsetzung) Folgerungen: t ( ) = sin t ω It ( ) = ω C sin ωt+ π Strom eilt der Spannung um 9 voraus. (t) I eff eff = ω C = ω C = R C R C = ω C Kapazitive Wirkleistung ist Null, da auch hier keine elektrische Energie in Wärme umgewandelt wird. 4

13 Frequenzverhalten von Spulen und Kondensatoren R L = ω L für w d.h. hohe Frequenzen werden blockiert für w d.h. lässt Gleichstrom ungehindert hindurch R C = ω C für w d.h. lässt Höchstfrequenzen ungehindert hindurch für w d.h. blockiert Gleichstrom 4

14 Widerstände im Wechselstromkreis (6) (4) Scheinwiderstand (Impedanz): Sei nun der Ohmsche Widerstand der Spule nicht vernachlässigt (in der Realität ist das immer so): L Ω R L R L R Ω I(t) I(t) Ersatzschaltbild Spannungsabfall an R Ω ist phasengleich mit dem Strom I(t) Spannungsabfall an R L eilt dem gemeinsamen Strom I(t) um 9 voraus, damit auch dem Spannungsabfall an R Ω. 4

15 Widerstände im Wechselstromkreis (7) (4) Scheinwiderstand (Fortsetzung): Veranschaulichung von Strom und Spannung im Zeigerdiagramm: L R L Ges Ω R Ω I(t) L =I w L j Ges Ω =I R Ω I(t) Beide Spannungen addieren sich in jedem Augenblick 43

16 Widerstände im Wechselstromkreis (8) (4) Scheinwiderstand (Fortsetzung): L =I w L j Ges Ω =I R Ω I(t) L R L Ges I(t) Ω R Ω Beide Spannungen addieren sich in jedem Augenblick ( ) + ( ) = Ω, + L, = I R I ωl Ω I eff = = R Ω + ω L = Z I eff = I R + ω L Ω Quotient Z ist konstant und gleich dem Scheinwiderstand (Impedanz) der Spule mit dem Ohmschen Widerstand R Ω 44

17 Widerstände im Wechselstromkreis (9) (4) Scheinwiderstand (Fortsetzung): L =I w L j Ges Ω =I R Ω I(t) L R L Ges I(t) Ω R Ω Phasenverschiebung j zwischen Strom und Spannung:, tanϕ = L I ω L ω L = = Ω, I R R Ω Ω 45

18 Widerstände im Wechselstromkreis () (4) Scheinwiderstand - allg. Serienschaltung: L =I w L L Ges Ω C Ω =I R Ω I(t) R L R Ω C =I/w C j Ges I(t) Scheinwiderstand (Impedanz): Z = R + L Ω ω ωc Wirkwiderstand Blindwiderstand Phasenverschiebung zwischen Ges und I: tanϕ = ωl ωc R Ω 46

19 Widerstände im Wechselstromkreis () (4) Scheinwiderstand - allg. Parallelschaltung: I L hinkt nach I C eilt voraus I Ω gleichphasig j (t) IGes ( ) ( ) Ges Ω C L IGes = IΩ + IC IL I = I + I I I Ω I L I C = + ωc R ωl Ω Jetzt ist die Spannung an allen Bauelementen gleich! Y = Scheinleitwert = /Z 47

20 Widerstände im Wechselstromkreis () (4) Scheinwiderstand - allg. Parallelschaltung: I L hinkt nach I C eilt voraus I Ω gleichphasig j (t) IGes Jetzt ist die Spannung an allen Bauelementen gleich! Phasenschiebung zwischen der Gesamtstromstärke I und : ωc IC IL tanϕ = = ωl = R I Ω ωc Ω ωl R Ω V: Phasenschiebung 48

21 Zusammenfassung & Resonanz Reihenschaltung von R, L, C: Scheinwiderstand: Phasenverschiebung: Z = R + L ωl Ω ω ωc tanϕ = ωc R Parallelschaltung von R, L, C: Ω Y Scheinleitwert: = = C Z R + ω ωl Ω Phasenverschiebung: tanϕ = R ω Ω C ωl Scheinwiderstand (Impedanz) und Scheinleitwert jeweils minimal für ω L r = ω = ω C r r LC 49

22 Resonanz Reihenresonanz Z: Scheinwiderstand wird minimal, I =/Z I wird maximal bei Resonanz, und hängt dann nur noch von R Ω ab Hohe eilspannungen an L,C (heben sich nach außen gegenseitig auf) Parallelresonanz Y: Scheinleitwert minimal I = Y I wird minimal bei Resonanz, und hängt dann nur noch von R Ω ab Hohe eilsströme an L,C Gefahr für Bauelemente, Maximale Leistung wird umgesetzt 5

23 Resonanzversuch w klein L & L3 leuchten w groß L & L3 leuchten V: Resonanz/Sperrkreis w=w r L3 aus, L und L leuchten gleich hell (Sperrkreis) Schaltung wirkt als Filter, d.h.: Der Durchgang von Störfrequenzen wird gesperrt 5

24 Resonanz - Ein Beispiel L = H C = µf R = 5 Ω = V Res.-Frequenz: ω r = = LC 6 s- = 77 s - = π f f = s Res.-Stromstärke: I r = = Z = V R 5 Ω = A r (maximal) Einzelspannungen im Resonanzfall: Ir A Cr, = = ω C 77 6 Ω = 88 V! Lr, = Ir ω L = 77 V = 88 V Ω, r = Ir R= 5 = V! 5

25 Leistung im Wechselstromkreis - Blindleistung, Scheinleistung, Leistungsfaktor - Gleichstromkreis: P= I Nur in einem Ohmschen Widerstand wird elektrische Energie in Wärme umgesetzt Wirkwiderstand Momentanleistung im Wechselstromkreis: a) Ohmscher Widerstand: Pt () = t () It () P = sinωt I sinωt dt I = sin ωt dt = I = eff Ieff Strom und Spannung gleichphasig 53

26 Leistung im Wechselstromkreis () Momentanleistung im Wechselstromkreis: b) Kapazitiver Widerstand: Pt () = t () It () P(t)dt =, d.h.: keine Wirkleistung Strom eilt der Spannung 9 voraus c) Induktiver Widerstand: P(t)dt =, d.h.: keine Wirkleistung Ideale Spule und Kondensator verbrauchen keine Wirkleistung Strom hinkt der Spannung 9 nach 54

27 Leistung im Wechselstromkreis (3) Ideale Spulen und Kondensatoren verbrauchen also keine elektrische Leistung, trotzdem können wir im Wechselstromkreis einen endlichen Strom messen... Definiere daher: Blindleistung eines reinen kapazitiven oder induktiven Widerstands: Q = I Blindleistung tritt nach außen nicht in Erscheinung, Energie pendelt zwischen Kondensator, bzw. Spule und der Spannungsquelle hin und her 55

28 Leistung im Wechselstromkreis (4) Betrachte nun Kombination aus d) Wirk- und Blindwiderstand: I Blind j I I Wirk I Wirk =I cosj I Blind =I sin j Wirk- und Blindstromstärke P () t = () t I () t = t () It () cosϕ Wirk Wirk Integration wie auf S. 5 (Leistung eines Wirkwiderstands) liefert analog: PWirk = eff Ieff cosϕ Wirkleistung für beliebige Wechselstromkreise 56

29 Leistung im Wechselstromkreis (5) P = I cosϕ eff eff λ = cosϕ = eff P I eff heißt Leistungsfaktor = : rein Ohmscher Widerstand = : rein kapazitiver oder induktiver Widerstand Am Haushaltsstromzähler bezahlen wir: W = I cosϕ t elek eff eff d.h. nur die wirklich erbrachte Leistung. Dennoch ist auch die Ermittlung der Blindleistung Q= eff I eff sinj wichtig. Blindleistung sollte möglichst klein sein, um das Stromnetz nicht unnötig zu belasten. 57

30 Leistung im Wechselstromkreis (6) Bsp: Ein Elektromotor mit großen Magnetfeldwicklungen führt leicht zu einem Leistungsfaktor cosj =.6. Die Leistungsaufnahme betrage 8 Watt. I PWirk = eff Ieff cosϕ eff = eff PWirk 8 W = cos ϕ 3 V. 6 = 6 Ein besserer Motor mit gleicher Leistungsaufnahme habe einen Leistungsfaktor cosj =.8. Wie groß ist der Strom jetzt? PWirk 8 W Ieff ' = = = A cos ϕ 3 V. 8 eff Dieser Motor belastet das Netz also um 5% weniger! A 58

31 Leistung im Wechselstromkreis (6) Wie kann man die Beschaltung des Elektromotors modifizieren, um die Blindleistung zu reduzieren, d.h. den Leistungsfaktor zu erhöhen? Bei dem Elektromotor handelt es sich (elektrotechnisch gesehen) im wesentlichen um eine Spule mit einer Induktivität L und einem (seriellen) Ohmschen Widerstand R Ω Motor: L + R Motor: L + R Phasenschiebung zwischen I und um so größer, je größer L Parallelschaltung von Kapazität C reduziert die Phasenschiebung und verbessert den Leistungsfaktor 59

32 ransformator Windungszahl der Primärspule: N Windungszahl der Sekundärspule: N ~ V: ransformator ~ + ind Primärspule: I = = R Ω N R ~ Ω φ I R = N φ Ω ~ Sei R Ω : ~ = N φ Der gleiche magnetische Fluss durchsetzt die Sekundärspule: = N φ ( - wenn gleichsinnig gewickelt) ~ ~ ~ = bzw.: N N ~ ~ N = I N I Damit ist die Primärseitig aufgenommene Wirkleistung der sekundärseitig abgegebenen. (P sek /P prim für gute ransf.) 6

33 Dreiphasenwechselstrom Zweckmäßig zur Übertragung großer elektrischer Leistungen und für größere Motoren (P >.5 kw) R Prinzip der Erzeugung: 3 Spulenpaare je um versetzt S max gleich für alle drei Phasen 3 i() t = Wenn Belastung für alle drei Phasen gleich i= 3 Ii() t = i= 4 6

34 Durch geschickte Verkettung müssen für den Stromtransport nicht 3 Leitungspaare mit 6 Drähten verwirklicht werden: Dreieckschaltung Knotenregel an jedem Punkt: I R = I - I ; I S = I - I 3 ; I = I 3 - I Ströme jeweils um phasenverschoben: Leitungsstromstärke: I R = I S = I = 3 I Strang Leiterspannung: RS = S = R = Strang I I 6 I I R = 3 I Also nur drei Leitungen nötig! 6

35 Sternschaltung Leitungsstromstärke: I R = I S = I = I Strang Wie groß ist z.b. die Spannung zwischen & S? S 6 Mittelpunktsleiter MP ( Nullleiter ) führt bei gleicher Belastung der drei Phasen R,S, keinen Strom. S S = 3 S Leiterspannung: RS = S = R = 3 Strang 63

36 Öffentliches Stromnetz Öffentliches Stromnetz = Sternschaltung (4-Leiter System) Anlaufen des Motors: Strangspannungen: = R = S = 3 V (effektiv) Jeweils: ein Strang gegen Nulleiter (Steckdosen-Schaltung) Werden höhere Spannungen benötig, z.b. für einen starken E-Motor verwende Leiterspannungen RS, oder S, oder R, jeweils 3 V 3 4 V Stern-Dreieck-Schaltung für Drehstrommotoren : jeweils MP gegen Strang an die 3 Spulen des Motors; je 3 V Betrieb des Motors: jeweils Leiterspannungen... je 4 V 64

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise 33. Wechselstrom II 33.. Siebkette und Sperrkreis... sind interessante Beispiele für Wechselstromkreise 33... Siebkette... ist eine Reihenschaltung von Widerstand, Spule und Kondensator. Wir gehen wieder

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Grundschaltungen im Wechselstromkreis

Grundschaltungen im Wechselstromkreis 0.03.009 Grundschaltunen im Wechselstromkreis 1. eihenschaltun von Wirkwiderstand und idealer nduktivität. eihenschaltun von Wirkwiderstand und idealer Kapazität 3. Parallelschaltun von Wirkwiderstand

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

E4 Wechselstromwiderstände

E4 Wechselstromwiderstände Physikalische Grundlagen Grundbegriffe (ohmsche, induktive und kapazitive) Leistung im Wechselstromkreis Effektivwerte Zeigerdiagramm Reihen- und Parallelschwingkreis. Die Bestimmung von Widerständen in

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Leseprobe. Grundlagen Wechselstrom. Kuckertz ELEKTROTECHNIK / ELEKTRONIK. Studienbrief 2-050-1002 HDL HOCHSCHULVERBUND DISTANCE LEARNING

Leseprobe. Grundlagen Wechselstrom. Kuckertz ELEKTROTECHNIK / ELEKTRONIK. Studienbrief 2-050-1002 HDL HOCHSCHULVERBUND DISTANCE LEARNING eseprobe Kuckertz Grundlagen Wechselstrom EEKTOTEHNK / EEKTONK Studienbrief -050-100. Auflage 007 HD HOHSHVEBND DSTANE EANNG Verfasser: Prof. Dipl.-ng. Heinz Kuckertz Professor für Elektrotechnik und egelungstechnik

Mehr

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I. Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

Feldlinien charakterisieren das elektrische Feld...

Feldlinien charakterisieren das elektrische Feld... Feldlinien charakterisieren das elektrische Feld... Eisen- Feldlinien-Bilder kann man z.b. durch feilspäne sichtbar machen... Einige wichtige Regeln: Durch jeden Punkt verläuft genau eine Feldlinie, d.h.

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Der direkteste Weg zur richtigen Formel

Der direkteste Weg zur richtigen Formel Der direkteste Weg zur richtigen Formel Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg für alle Elektrofachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik Elektrotechnische/Elektronische Grundlagen Lehrpläne Grundlagen Elektrotechnik 1. Gleichstromtechnik 1.1 Grundgrößen 1.1.1 Ladung 1.1.1.1 Ladungsbeschreibung 1.1.1.2 Ladungstrennung 1.1.2 Elektrische Spannung

Mehr

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom von Sören Senkovic und Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Versuchsdurchführung...........................................

Mehr

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung Lehrplan Elektrotechnik Höhere Berufsfachschule für Automatisierungstechnik Ministerium für Bildung Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2010 Hinweis:

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für Elektro-Fachpersonen

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg zur richtigen Formel Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg für alle Elektrofachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

Kreisfrequenz: Komplexe Strom und Spannungszeiger. Zusammenhang: Wechselstromrechnung

Kreisfrequenz: Komplexe Strom und Spannungszeiger. Zusammenhang: Wechselstromrechnung Imaginäre Einheit j - 1 Formelsammlung elektrische Energietechnik Grundlagen & Wechselstromlehre Kartesische Darstellung komplexer Zahlen: Komplexe Zahlen haben die Form z x + jy, wobei x und y reele Zahlen

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr

U C = U o -U R = U o (1 - e - t

U C = U o -U R = U o (1 - e - t 43 VERSUCH 6: KONDENSATOR UND INDUKTIVITÄT - WECHSELSTROM 6A Ein- und Ausschaltvorgänge Wird ein Kondensator der Kapazität C ü- ber einen Widerstand R mit einer konstanten Spannung U o verbunden, so lädt

Mehr

Protokoll zum Grundversuch Wechselstrom

Protokoll zum Grundversuch Wechselstrom Protokoll zum Grundversuch Wechselstrom Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 15.05.2007 Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen 2 2.1 Wechselstrom................................

Mehr

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Dipl.-Phys. Jochen Bauer 11.8.2013 Zusammenfassung Induktiv gekoppelte Spulen finden in der Elektrotechnik und insbesondere in der Funktechnik vielfältige

Mehr

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Physik-Praktikum für Studierende des Studiengangs Fach-Bachelor Chemie Teil Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Wintersemester 5/6 Carl von Ossietzky niversität Oldenburg Institut für

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Elektrotechnik 2. Klasse

Elektrotechnik 2. Klasse Elektrotechnik. Klasse ng. Volker egenfelder ehrmittel: Fachkundebuch Europaverlag 6 Auflage 009 Fachrechenbuch Europaverlag Diverses Anschauungsmaterial Bilder: Verlag Europa ehrmittel Bilder: ng. Volker

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen Kapitel 4 Elektrizitätslehre 4.1 Grundlagen, Definitionen 4.2 Vorversuche zu Wechselstromwiderständen 4.2.1 Ohmscher Widerstand 4.2.2 Kapazitiver Widerstand 4.2.3 nduktiver Widerstand 4.3 Wechselstromschwingkreise

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit

Mehr

6.5 Transformator (Versuch 54)

6.5 Transformator (Versuch 54) 3 6.5 Transformator (Versuch 54) (Fassung 03/0) Physikalische Grundlagen Der ideale Transformator: Ein Transformator besteht aus zwei (oder mehr) Spulen meist unterschiedlicher Windungszahl und. An der

Mehr

Stromsysteme, Drehstrom. 1. Stromsysteme in der elektrischen Energietechnik

Stromsysteme, Drehstrom. 1. Stromsysteme in der elektrischen Energietechnik Universität Stuttgart ÜBUNGEN ZU ELEKTRISCHE ENERGIETECHNIK II Umdruck I: Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Stromsysteme, Drehstrom. Stromsysteme

Mehr

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12 Drehstromsystem Karlsruhe Seite: / Das Drehstromsystem Inhaltsübersicht:. Versuche und Grundbegriffe.... Versuche zum Drehstromsystem.... Die Spannungen im Drehstromsystem..... Erzeugerschaltungen - Verkettung....

Mehr

DIY. Personal Fabrica1on. Elektronik. Juergen Eckert Informa1k 7

DIY. Personal Fabrica1on. Elektronik. Juergen Eckert Informa1k 7 DIY Personal Fabrica1on Elektronik Juergen Eckert Informa1k 7 Fahrplan Basics Ohm'sches Gesetz Kirchhoffsche Reglen Passive (und ak1ve) Bauteile Wer misst, misst Mist Dehnmessstreifen Später: Schaltungs-

Mehr

Enseignement secondaire technique. ELETE Électrotechnique

Enseignement secondaire technique. ELETE Électrotechnique Enseignement secondaire technique Régime technique Division technique générale Section technique générale Cycle supérieur ELETE Électrotechnique 13GE Nombres de leçons : 3h Langue véhiculaire : Allemand

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

6.8 Transformatoren und Übertrager

6.8 Transformatoren und Übertrager 6.8 Transformatoren und Übertrager Anwendungen: Spannungstransformation Stromtransformation Impedanztransformation galvanische Trennung Energieflussrichtung von Primärseite zur Sekundärseite ist umkehrbar

Mehr

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom 4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Enseignement secondaire technique

Enseignement secondaire technique Enseignement secondaire technique Régime technique Division technique générale Cycle supérieur Section technique générale Électrotechnique Classe de 13GE Nombre de leçons: 3.0 Nombre minimal de devoirs:

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 1 Versuch B1/2. R-L und R-C Kombination

Grundlagen der Elektrotechnik Praktikum Teil 1 Versuch B1/2. R-L und R-C Kombination Grundlagen der Elektrotechnik Praktikum Teil 1 Versuch B1/2 R-L und R-C Kombination Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

Versuch 18 Der Transformator

Versuch 18 Der Transformator Physikalisches Praktikum Versuch 18 Der Transformator Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 09.02.2007 Katharina Rabe Assistent: Tobias Liese kathinka1984@yahoo.de

Mehr

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich.

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich. Theorie Das Oszilloskop: Das Oszilloskop ist ein Messgerät welches Spannungen als Funktion der Zeit erfasst und graphisch darstellen kann. Besonderer Vorteil ist das eine Spannung als Funktion einer zweiten

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

1. Elektrotechnische Grundlagen

1. Elektrotechnische Grundlagen . Elektrotechnische Grundlagen Teil 6 - Transformator Prinzip, Belastung, Wirkungsgrad, Arten, Messwandler Georg Strauss --- 09-009 ET--6 09/009 Idealer Transformator Beim idealen Transformator wird angenommen,

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

9. Messung von elektrischen Impedanzen

9. Messung von elektrischen Impedanzen 9. Messung von elektrischen Impedanzen 9.1 Messung von ohmschen Widerständen Ohmscher Widerstand (9.1) 9.1.1 Strom- und Spannungsmessung (9.2) (9.3) Bestimmung des ohmschen Widerstandes durch separate

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Praktikum: RLC-Schwingkreis

Praktikum: RLC-Schwingkreis 1 Praktikum: RLC-Schwingkreis bstract In diesem Versuch sollen Sie einen Einblick in die Wechselstromlehre am eispiel des RLC-Kreises bekommen. Das aus der Schule bekannte Ohmsche Gesetz gilt nicht nur

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

M316 Spannung und Strom messen und interpretieren

M316 Spannung und Strom messen und interpretieren M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer

Mehr

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 18 Der Transformator Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

2.9 Stromarten. Gleichstrom. Bestimmung der Polarität bei Gleichstromquellen

2.9 Stromarten. Gleichstrom. Bestimmung der Polarität bei Gleichstromquellen 2.9 Stromarten Der elektrische Strom in festen Leitermaterialien ist immer ein Fließen von Elektronen. Die Stromart gibt an, wie sich Stromstärke und Stromrichtung bzw. Spannungsgröße und Spannungsrichtung

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

Physikalisches Grundpraktikum. Wechselstrom

Physikalisches Grundpraktikum. Wechselstrom Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen Simulieren mit TARGET 31! Seite 1 von 24 Zusammenstellung der in TARGET 31! simulierten Grundschaltungen Alle simulierten Schaltungen sind als TARGET 31!Schaltungen vorhanden und beginnen mit SIM LED Kennlinie...2

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

SBP Elektrotechnik. SI-Basiseinheit. Abgeleitete Größen und Einheiten. Ladung, Strom und Stromdichte. # 0 Antwort

SBP Elektrotechnik. SI-Basiseinheit. Abgeleitete Größen und Einheiten. Ladung, Strom und Stromdichte. # 0 Antwort SBP Elektrotechnik # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten funktioniert

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen Transformatoren sind elektromagnetische Energiewandler, die elektrische Energie bei gleicher Frequenz und im allgemeinen unterschiedlichen Spannungen und Ströme wandeln. Je nach

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren.

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren. E 3a Messungen mit dem Oszilloskop Toshiki Ishii (Matrikel 3266690) 29.04.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Bestimmung der Ablenkempfindlichkeiten s des Oszilloskops durch

Mehr

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe:

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe: Abteilung Maschinenbau im WS / SS Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz Gruppe: Name Vorname Matr.-Nr. Semester Verfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r):

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

Elektrotechnik 2. Semester

Elektrotechnik 2. Semester Elektrotechnik 2. Semester Wechselstrom- und Drehstromsysteme Wechselstromtechnik 1) Definition: Wechselstrom ist jene Stromart, bei der die Stromstärke sich periodisch nach Größe und Richtung ändert.

Mehr

Wechselstromlehre Alternating Current

Wechselstromlehre Alternating Current Wechselstromlehre Alternating Current Skript zum Kurs Elektrizätslehre 3 im Herbstsemester 2014 Autor: Martin Schlup Editor: Martin Weisenhorn Winterthur, im September 2014 Zürcher Hochschule für Angewandte

Mehr

Das symmetrische Dreiphasensystem (Drehstromsystem)

Das symmetrische Dreiphasensystem (Drehstromsystem) HT Dresden FB Elektrotechnik Grulagen der Elektrotechnik H. euorf \drephae1.doc //_98_01_0 Das symmetrische Dreiphasensystem (Drehstromsystem) 1. Spannungen Die in den drei räumlich gegenseitig um 120

Mehr