Komplexe Widerstände

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Komplexe Widerstände"

Transkript

1 Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich. Von den Teilnehmen wid dahe eine intensive Beschäftigung mit de efodelichen Theoie sowie mit de Aufgabenstellung bzw. ihem Zweck voausgesetzt. Es gelten die allgemeinen Vehaltensvoschiften de Hochschule, insbesondee die aboodnung des Fachbeeiches Elektotechnik und die Abeitsodnung fü das Paktikum Gundlagen de Elektotechnik. 05/

2 . Vesuchsziel Kennen lenen des Fequenzvehaltens de lineaen Gundschaltelemente ohmsche Widestand, Induktivität und Kapazität als Einzelelemente sowie bei deen Zusammenschaltung. Expeimentelle ntesuchung de Escheinung de esonanz und ihe Kenngößen beim eihen- und Paallelschwingkeis. 2. Gundlagen 2.. Allgemeines Das Vehalten de (idealen) lineaen Gundschaltelemente ohmsche Widestand, Induktivität und Kapazität C wid duch die folgenden Zusammenhänge zwischen den als zeitlich veändelich betachteten Stömen i(t) und Spannungen u(t) an den Anschlussklemmen chaakteisiet: ohmsche Widestand: u (t)= i (t) bzw. i (t)= u (t) = G u (t) () Induktivität: di (t) u (t)= bzw. i (t) = u (t)dt dt (2) Kapazität: du C(t) u C(t)= i C(t)dt bzw. i C(t)=C (3) C dt Betachtet man ausschließlich Schaltungen, die aus Quellen mit ein sinusfömigem Spannungs- und Stomvelauf gespeist weden, so weisen nach hineichend goße Zeit alle Stöme und Spannungen de Schaltung einen sinusfömigen Velauf auf. In diesem Fall kann die Beechnung de inteessieenden Gößen mit Hilfe de symbolischen Methode efolgen. Den Zeitfunktionen u(t) und i(t) weden die komplexen Zeitfunktionen u(t)und i(t) sowie letztlich die zeitunabhängigen komplexen Gößen und I zugeodnet, die als komplexe Effektivwete de Spannung und des Stomes bezeichnet weden und als Zeige in de komplexen Zahlenebene dagestellt weden können. Fü paktische echnungen kann de Zwischenschitt übe die komplexen Zeitfunktionen meist entfallen, d. h. es efolgt sofot die Zuodnung u(t) und i(t) I

3 u(t)=u cos( ω+ϕ t ) = 2 cos( ω+ϕ t ) (4) u u jϕu jωt u(t)= 2 e e j u = e ϕ i(t)=i cos( ω+ϕ t ) = 2 I cos( ω t +ϕ ) (5) i i jϕi jωt i(t)= 2 I e e j i I= I e ϕ Setzt man die komplexen Zeitfunktionen u(t) und i(t) nach (4) und (5) in die Stom-Spannungsbeziehungen (l)... (3) ein, so findet man jϕu jωt jϕi 2 e e = 2 I e e und damit = I (6) fü ohmsche Widestände. Fü Induktivitäten gilt: jϕu jωt jϕi 2 e e = jω 2 I e e bzw. = jω I (7) und fü Kapazitäten: jϕu jωt jϕi jωt 2 C e e = 2 IC e e bzw. C = IC (8) jωc jωc Man ekennt, dass und I an allen dei Gundschaltelementen duch die gleiche Stom-Spannungs-Beziehung jωt jωt jϕz =Z I=Z e I mit Z= Z =, I und ϕ =ϕ ϕ =ϕ ϕ=phasenveschiebungswinkel z u i (9) veknüpft sind, wobei gilt: Z = + j0 = e Z = 0 + jω = ω e Z = 0 - j = e ωc ωc j0 π j 2 π -j 2 ohmsche Widestand Induktivität (0) Kapazität

4 Analog zum ohmschen Gesetz bei Gleichstom ist de komplexe Effektivwet de Spannung dem des Stomes I popotional. De Popotionalitätsfakto wid als Widestandsopeato, komplexe Widestand ode Impedanz bezeichnet, sein Betag Z=Z als Scheinwidestand. De ealteil von Z e { Z } = () heißt ohmsche Widestand, Wikwidestand ode esistanz, de Imaginäteil Im { Z } = X (2) dagegen Blindwidestand ode eaktanz. Analog zum eitwet G bei Gleichstom definiet man den eitwetopeato I Y= = = Y e Z I mit Y= Y = = und ϕ Z jϕy = ϕ ϕ = ϕ Y i u z (3) de auch als komplexe eitwet ode Admittanz bezeichnet wid. De Betag des komplexen eitwetes Y = Y heißt Scheinleitwet. Fü den ealteil von Y e { Y } = G (4) sind die begiffe Wikleitwet ode Konduktanz gebäuchlich, fü den Imaginäteil Im { Y } = B (5) dagegen Blindleitwet ode Suszeptanz. Betachtet man die idealen Gundschaltelemente. und C, so lässt sich bezüglich des komplexen Widestandes Z feststellen: Bei ohmschen Wideständen ist Z ein eell und fequenzunabhängig; zwischen Spannung und Stom titt keine Phasenveschiebung auf. Bei Induktivitäten ist Z ein imaginä; die Phasenveschiebung zwischen Spannung und Stom betägt ϕ u - ϕ i = 90. Sowohl Z als auch Z sind fequenzabhängig (diekte Popotionalität zwischen Z und ω). Bei Kapazitäten ist ebenfalls Z ein imaginä; die Phasenveschiebung zwischen Spannung und Stom betägt hie jedoch ϕ u - ϕ i = -90. Sowohl Z als auch Z sind fequenzabhängig (indiekte Popotionalität zwischen Z und ω)

5 2.2. eale Schaltelemente Jede Spule hat Veluste (Ewämung infolge des Widestandes de Wicklung, Wibelstom und Hysteeseveluste bei Vohandensein eines Eisenkens). Dies bedeutet, dass de Scheinwidestand eine Spule kein eine Blindwidestand ist. Denkt man sich die Spulenveluste veusacht duch einen in eihe zu Induktivität liegenden Widestand (Abb. a), so egibt sich de Scheinwidestand Z= +jω (6) Definiet und zu Chaakteisieung de Veluste benutzt wid die so genannte Spulengüte: ω g = (7a) ode de Velustfakto δ = g = ω (7b) Abe auch eine andee Esatzschaltung, veköpet duch einen zu Induktivität paallel geschalteten Widestand, ist denkba (Abb. b). Dabei liefet die echnung fü geinge Veluste 2 (ω ) = p= und p= (8) bzw. (unte Vewendung de Definition de Spulengüte) p 2 =g. (9) a) b) p p j jω p, p gω ω g = Abb.: Esatzschaltbilde de velustbehafteten Induktivität - 5 -

6 Auch technische Kondensatoen sind nicht vollkommen velustfei, selbst wenn sie sich dem Idealfall meh nähen, als das bei Spulen de Fall ist. Die Veluste des Kondensatos haben ihe sache in eine gewissen, wenn auch minimalen eitfähigkeit des Dielektikums sowie in mpolaisieungs- und michtungsvelusten de Moleküldipole. Das elektische Esatzschaltbild eines velustbehafteten Kondensatos in Fom eine Paallelschaltung zeigt Abb. 2a. Die Veluste weden üblicheweise duch einen Velustwinkel chaakteisiet, de wie folgt definiet wid: tan δc =. (20) ωc p Selbstveständlich lässt sich auch beim Kondensato eine eihenesatzschaltung angeben (Abb. 2b), wobei folgende mechnung gilt: 2 ( ) ωcp 2 Cp C =C und =tan δc p (2) C p a) b) p p j p jωc p δ C C C C p, tan δ C /ωc p / p Abb.2: Esatzschaltbilde de velustbehafteten Kapazität 2.3. Zusammenschaltung von Gundschaltelementen Weden die Gundschaltelemente, und C sowie Spannungs- und Stomquellen zu elektischen Netzweken zusammengeschaltet, so kann die Beechnung diese Schaltungen mit Hilfe de symbolischen Methode vollkommen analog zu Beechnung von Gleichstom-Netzweken efolgen, d.h., alle dot üblichen Beechnungsmethoden sind weite anwendba. Besondeheiten egeben sich zum einen aus de Fequenzabhängigkeit de komplexen Widestände und zum andeen daaus, dass Blindwidestände sowohl positive als auch negative Wete haben können. Dies hat zu Folge, dass sich die Blindwidestände von aus, und C aufgebauten Zweipol-Schaltungen unte gewissen Voaussetzungen fü bestimmte Fequenzen gegenseitig aufheben. Anhand de beiden elementaen Schaltungen eihen- und Paallelschwingkeis soll diese als esonanz bezeichnete Effekt nähe untesucht weden. Ein schwingungsfähiges System enthält stets zwei veschiedene Enegiespeiche

7 2.4. eihenschwingkeis Widestandsvelauf Abb. 3 zeigt die Schaltung des eihenschwingkeises. Fü dessen Scheinwidestand egibt sich in Abhängigkeit von de Keisfequenz Z=+jω+ =+j(ω- ) jωc ωc bzw. Z=Z(ω) e j ϕ(ω) (22) mit ω- 2 2 Z= +(ω- ) und ϕ=actan ωc ωc C I C Abb.3: Elektische eihenschwingkeis De Velauf des Scheinwidestandes und des Phasenwinkels sowie die Otskuve sind in Abb. 4 gafisch dagestellt. Dabei zeigt sich, dass de Widestand seinen Minimalwet bei de esonanzfequenz eeicht. Fü diese Fequenz heben sich induktive und kapazitive Blindwidestand gegenseitig auf. Fü die esonanzfequenz folgt daaus ω - =0 bzw. ω = ode f =. ω C C 2π C (23) - 7 -

8 Z(ω) Z ω a) j Z(ω ) ω Z(ω) b) ω ϕ ω ϕ ω -45 ω 0 ω +45 /ωc ω ω -45 ϕ(ω) c) ω ω 0 ω -90 Abb. 4: Otskuve (a), Betag des Scheinwidestandes (b) und Phasenveschiebung zwischen Stom und Spannung (c) des eihenschwingkeises Stomaufnahme nte de Voaussetzung eines niedigen Innenwidestandes des Geneatos ist die Spannung am Schwingkeis konstant und fü den Stom folgt I= bzw. I= (24) +j(ω- ) 2 2 +(ω- ) ωc ωc Bei de esonanzfequenz (ω = ω 0 ) eeicht diese Stom sein Maximum: I=

9 Spannungsvelauf an C,, Die Teilspannungen an den Schaltelementen sind duch die Beziehungen = I(ω), =ω I(ω) und C= I(ω) (25) ωc festgelegt. Im esonanzfall wid = 0 C =ρ mit ρ= 0 C ρ- Güte (auch Q) (26) d.h., bei esonanz sind die Teilspannungen an und C gegenübe de konstanten Klemmenspannung ρ-mal übehöht, deshalb wid ρ auch als esonanzübehöhung bezeichnet. Als Folge des ohmschen Widestandes sind diese esonanzspannungen an den Blindschaltelementen nicht die gößten an und C auftetenden Spannungen. Das absolute Maximum fü bzw. C liegt bei 2 2 ω =ω max 0[+( ) ] bzw. ω C =ω max 0[-( ) ]. (27) 2ρ 2ρ Diese Abweichungen von ω o sind gewöhnlich seh klein und betagen selbst bei eine niedigen esonanzübehöhung von ρ=5 nu % (Abb. 5).,I C Abb. 5: Spannungen und Stom beim eihenschwingkeis I ω 0 ω - 9 -

10 Bandbeite Bildet man das Vehältnis des Stomes des Schwingkeises zu seinem jeweiligen Maximalwet (bei esonanz), egibt sich (siehe Pkt ): I = I ω ω +ρ ( - ) ω ω (28) Abb. 6 zeigt diese Abhängigkeit fü unteschiedliche esonanzübehöhungen. I/I 0 0,8 ρ=2 / 2 0,6 ρ=5 0,4 0,2 ρ=25 B ω /ω 0 = /ρ=0,04 0 0,9,0,,2 ω/ω 0 Abb. 6: esonanzkuven I/I 0 fü eihenschwingkeise unteschiedliche esonanzübehöhung Es ist deutlich zu ekennen, dass die esonanzeigenschaften eines Keises mit wachsendem ρ ausgepägte in Escheinung teten. Ähnlich wie zu Kennzeichnung de Übetagungseigenschaften von Vestäken, Übetagen usw. weden die Fequenzen, bei denen die esonanzkuve auf den l/ 2-ten Teil ihes Maximalwetes absinkt, als obee bzw. untee Genzfequenz (f +45 ; f -45 ) definiet. De dazwischen liegende Fequenzbeeich wid als Bandbeite B (auch Δf) des Schwingkeises bezeichnet: ω0 f0 ω ρ f ρ B =ω -ω =, B =f -f = (29) - 0 -

11 Die Bandbeite ist also de esonanzübehöhung (Güte) umgekeht popotional. Das Fequenzband liegt nahezu symmetisch zu esonanzfequenz. De Index ±45 esultiet daaus, dass bei diesen Fequenzen de Phasenwinke zwischen Schwingkeisspannung und -stom +45 bzw. -45 betägt, wobei Wik- und Blindkomponente des Schwingkeiswidestandes betagsmäßig gleich goß sind (siehe auch Abb. 4): ω - =± bzw. Z = 2 Z = 2. (30) 2.5. Paallelschwingkeis ±45 ±45 0 ω±45c De velustbehaftete, hochohmig gespeiste Paallelschwingkeis ist in Abb. 7a dagestellt. m übesichtliche Vehältnisse hinsichtlich solche Gößen wie Spannungs- und eitwetvelauf sowie esonanzeigenschaften zu schaffen, wid die Schaltung so veeinfacht, wie es in Abb. 7b dagestellt ist. Die mechnung efolgt in de unte Pkt beschiebenen At und Weise. a) b) I i p C I=konst. C Abb. 7 : Velustbehaftete Paallelschwingkeis Diese Schaltung liefet zum eihenschwingkeis duale Egebnisse. Es vetauschen sich lediglich Widestand gegen eitwet und Stom- gegen Spannungsvehältnisse. (Auf einzelne Ableitungen wid hie vezichtet. Diese sollen im ahmen de Vobeeitungsaufgabe selbst eabeitet weden). - -

12 3. Vobeeitungsaufgaben 3.. eiten Sie fü den Paallelschwingkeis eitwet, Schwingkeisspannung und -stöme als Funktion von ω sowie die Kenngößen ρ und B ab! 3.2. Beechnen Sie fü den gegebenen Schwingkeis die folgenden Gößen: esonanzfequenz f 0 esonanzübehöhung ρ Genzfequenzen f ±45 Bandbeite B f =30Ω tan δ c =0-3 (bei khz) C =μf = 20mH p Cp - 2 -

13 4. Messaufgaben 4.. Messen Sie die Stomveläufe de voliegenden ohmschen Widestände, Spulen und Kondensatoen in Abhängigkeit von de Fequenz bei konstante Spannung des Geneatos! Beechnen Sie daaus die Widestandsveläufe und stellen Sie diese gafisch da! 4.2. Bestimmen Sie nach dem Messvefahen von 4.. die Widestandsveläufe a) de eihenschaltung und b) de Paallelschaltung von =40 mh und =00Ω in Abhängigkeit von de Fequenz und stellen Sie diese gafisch da! 4.3. Schalten Sie =20 mh und C=μF zu einem eihenschwingkeis und messen Sie bei konstante Spannung des Geneatos I I C =f(f), =f(f) und =f(f). max max Cmax 4.4. Schalten Sie einen zusätzlichen Dämpfungswidestand D =8Ω mit dem I Schwingkeis in eihe und messen Sie eneut =f(f). I Entnehmen Sie den aufgenommenen Kuvenveläufen aus 4.3. ( D =0Ω) und 4.4. die Bandbeiten und bestimmen Sie daaus ρ! 4.5. Messen Sie fü den o.g. eihenschwingkeis mit und ohne Dämpfungswidestand ( D =8Ω, D =0) das Vehältnis max C =f(f)! Bestimmen Sie aus den aufgenommenen Kuvenveläufen die esonanzübehöhungen ρ. Vegleichen Sie die Egebnisse mit denen aus Aufgabe 4.4.! Emitteln Sie mit Hilfe von ρ den Velustwidestand de Spule fü f 0 (Veluste des Kondensatos venachlässigen)! - 3 -

14 4.6. Schalten Sie =20 mh und C=μF paallel und messen Sie bei konstantem Gesamtstom: I IC =f(f), =f(f), =f(f) I I max max Cmax Bestimmen Sie fü den Paallelschwingkeis die Güte ρ aus de Bandbeite und beechnen Sie daaus den wiksamen esonanzwidestand! 4.7. Messen Sie am Paallelschwingkeis bei esonanz (f=f 0 ) den Gesamtstom und den Stom duch den Kondensato und bestimmen Sie daaus die Güte ρ! Vegleichen Sie das Egebnis mit dem von 4.6.! 4.8. Bestimmen Sie den wiksamen esonanzwidestand des Paallelkeises aus Aufgabe 4.6. mit Hilfe eines Zusatzwidestandes! Vegleichen Sie den Messwet mit dem aus 4.6. gewonnenen Wet fü den esonanzwidestand! Messmethode: Ein geeichte ohmsche Widestand wid den Schwingkeiselementen paallel geschaltet und so veändet, dass die esonanzspannung auf die Hälfte des uspünglichen Wetes absinkt. Dann ist de wiksame Dämpfungswidestand des Paallelkeises gleich dem eingestellten Zusatzwidestand

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHLE FÜ TECHNK ND WTSCHFT DESDEN (FH) nivesity of pplied Sciences Fachbeeich Elektotechnik Paktikum Gundlagen de Elektotechnik Vesuch: Stellwidestände Vesuchsanleitung 0. llgemeines Eine sinnvolle

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Fragenausarbeitung TPHY TKSB, WS 2001/2002

Fragenausarbeitung TPHY TKSB, WS 2001/2002 Fagenausabeitung TPHY TKSB, WS 2/22. Blatt, Kapitel Kapazität! siehe auch Fagen 4-43 bzw. 45 Matthias Tischlinge Einzelausabeitungen: 4) Geben Sie die Definition und Einheit de Kapazität an. Wid die an

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG Spule mit Eisenken Abgabedatum: 4.6.7 Teilnehme: Ludwik Anton 676 - - Aufgabe ist es, eine velustbehaftete Spule mit Eisenken (Skizze) zu untesuchen. Dies

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

C Aufgabenlösungen zu Kapitel 3

C Aufgabenlösungen zu Kapitel 3 C Aufgabenlösungen zu Kapitel 3 C.1 ösung de Übungsaufgabe 3.1 In Beispiel 3.5 (Buch S.92) wude eine komplexe Abschlussimpedanz Z A = (37,5+j150) übe eine eitung mit de änge l e / = 0,194 und dem eitungswellenwidestand

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

1 Filter mit NIC. a12. abgeschlossen gilt für die Eingangsimpedanz Z 1. Werden diese Zweitore nach Bild 0-1 mit der Impedanz Z 2

1 Filter mit NIC. a12. abgeschlossen gilt für die Eingangsimpedanz Z 1. Werden diese Zweitore nach Bild 0-1 mit der Impedanz Z 2 Aktive Filte basieend auf LCStuktuen Mit Hilfe von Impedanzkonveten können passive LCFilte als Aktivfilte aufgebaut weden. Hiebei weden die Induktivitäten mit geeigneten Schaltungen aktiv ealisiet. Diese

Mehr

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil Musteaufgaben fü den GET + Multiple-Choice Teil Hinweis: Diese Musteaufgaben dienen dazu, sich mit den Multiple-Choice-Fagen de GET+ Klausu vetaut zu machen. Es soll damit die At und Weise de Fagestellung

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei:

Induktivität einer Ringspule Berechnen Sie die Induktivität einer Ringspule von 320 Windungen, 2. Der Spulenkern sei: TECHNOOGISCHE GRUNDAGEN ÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSESTROM REPETITIONEN SEBSTINDUKTION, INDUKTIVITÄT UND ENERGIE IN DER SPUE RE.58 4 Induktivität eine Ringspule Beechnen Sie die Induktivität eine

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011

Einige Grundlagen der magnetischen Nahfeld-Kopplung. Vorlesung RFID Systems Michael Gebhart TU Graz, Sommersemester 2011 Einige Gundlagen de magnetischen Nahfeld-Kopplung Volesung Michael Gebhat TU Gaz, Sommesemeste Inhalt Übeblick Methode des Magnetischen Moments Biot-Savat Gesetz zu Bestimmung de H-Feldstäke Koppelsystem:

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

WCOM2-Praktikum 4 Antenna Matching mit NWA

WCOM2-Praktikum 4 Antenna Matching mit NWA ZHAW WCOM2, FS2017, Rumc, 1 1. Einleitung WCOM2-Paktikum 4 Antenna Matching mit NWA In diesem Paktikum wid eine Monopol-Antenne auf die gewünschte Fequenz abgestimmt und an die 50Ω Zuleitung angepasst.

Mehr

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung Design und optimale Betiebsfühung doppelt gespeiste Asynchongeneatoen fü die egeneative Enegieezeugung von de Fakultät fü Elektotechnik und Infomationstechnik de Technischen Univesität Chemnitz genehmigte

Mehr

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter

Fourieranalyse Digitalisierung von Signalen lineare zeitinvariante Systeme (LTI-Systeme) digitale Filter adaptive Filter Bioignalveabeitung Studiengang Medizin-Infomatik Inhalt Gundlagen de Elektizitätlehe Signale Fouieanalye Digitaliieung von Signalen lineae zeitinvaiante Syteme (LTI-Syteme) digitale Filte adaptive Filte

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

Messung von Kapazitäten Auf- und Entladungen von Kondensatoren

Messung von Kapazitäten Auf- und Entladungen von Kondensatoren 8.. Guppe Maximilian Kauet Hendik Heißelmann Messung von Kapazitäten Auf- und Entladungen von Kondensatoen Inhalt: Einleitung Vesuchduchfühung. Bestimmung des Eingangswidestandes eines Oszillogaphen. Bestimmung

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Energietechnisches Praktikum II Versuch 11

Energietechnisches Praktikum II Versuch 11 INSTITUT FÜR HOCHSPANNUNGSTECHNIK Rheinisch-Westfälische Technische Hochschule Aachen Univ.-Pof. D.-Ing. Amin Schnettle INSTITUT FÜR HOCHSPANNUNGS TECHNIK RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie Abitu Physik (Bayen) 2016 Themenbeeich I: Elektomagnetische Felde, Relativitätstheoie Aufgabenvoschlag 1 1. Modell de Zündanlage eines Autos Bei einem Ottomoto wid die Vebennung des Benzin-Luft-Gemisches

Mehr

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG Abeitsbeeich Theoetische Elektotechnik Pof. D. sc. techn. C. Schuste Paktikumsvesuch: Schimdämpfung PRAKTIKUMSVERSUCH: SCHIRMDÄMPFUNG Ot de Duchfühung: TUHH Habuge

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz

Versuche: Transformator, Schmelzen von Draht und Metall, Hörnetblitz 4.4 Gegeninduktion Pimä- Sekundä-keis Up U S Vesuche: Tansfomato, Schmelzen von Daht und Metall, Hönetblitz 1 4.5 Zusammenfassung: Elekto-/Magnetodynamik langsam veändeliche Felde a. Elektostatik: (Vakuum)

Mehr

2.6. Wirbelströme und Hysterese

2.6. Wirbelströme und Hysterese 64 Wibelstöme und Hysteese.6. Wibelstöme und Hysteese Fü die bisheigen Betachtungen blieben zwei wesentliche Aspekte unbeachtet. Zum einen wuden bei den Feldbeechnungen stationäe Vehältnisse angenommen

Mehr

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen Analytische Beechnung magnetische Felde in Pemanentmagnet eegten Maschinen Vom Fachbeeich Elektotechnik de Helmut-Schmidt-Univesität Univesität de Bundesweh Hambug zu Elangung des akademischen Gades eines

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Versuch 3: Erfassung zeitveränderlicher Größen mit digitalen Systemen

Versuch 3: Erfassung zeitveränderlicher Größen mit digitalen Systemen Labo Messtechnik II Vesuch 3 Enegietechnike 0.08.20-3. - Vesuch 3: Efassung zeitveändeliche Gößen mit digitalen Systemen Zu Vobeeitung des Vesuches abeiten Sie bitte Kapitel 4.3 des Messtechnik Skiptes

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Dynamisches Verhalten einer Asynchronmaschine

Dynamisches Verhalten einer Asynchronmaschine ehtuhl fü Elektiche Antiebe und Mechatonik Pof. D.-ng. D.-ng. S. Kulig Paktikumveuch BENT 6 Dynamiche Vehalten eine Aynchonmachine c S-EAM (9) Veuchthematik Die Aynchonmachine, die übe eine Welle mit eine

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

Skala. Lichtstrahl. Wasserbad

Skala. Lichtstrahl. Wasserbad . Coulomb sches Gesetz Wi haben gelent, dass sich zwei gleichatige Ladungen abstoßen und zwei ungleichatige Ladungen einande anziehen. Von welchen Gößen diese abstoßende bzw. anziehende Kaft jedoch abhängt

Mehr

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp... N Abeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bodnetze WS03/04 Nae: Mustelösung... Vonae:... St. Gp.... etifikat Fahzeugechatonik beabsichtigt: Aufgabenstelle: Pof. D. Weuth, Abeitszeit: 60 in,

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

Messungen am Kondensator Q C = (1) U

Messungen am Kondensator Q C = (1) U E3 Physikalisches Paktiku Messungen a Kondensato Die Abhängigkeit de Kapazität eines Plattenkondensatos von de Göße bzw. de Abstand de Platten ist nachzuweisen. De Einfluss von Dielektika ist zu untesuchen..

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr