13.Selbstinduktion; Induktivität

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "13.Selbstinduktion; Induktivität"

Transkript

1 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd de Stromstärken n den beden Zwegen gech groß un wrd Schater S weder geöffnet Bem Scheßen des Schaters S euchtet das Gühämpchen G 2 später auf as G 1 Erkärung: Bem Enschaten ener Spue ändert sch das durch se erzeugte Magnetfed Dese Änderung bewrkt de Indukton ener Spannung n der Spue sebst, de sogenannte Sebstndukton Be jeder Stromstärkeänderung durch de Spue kann deser Effekt beobachtet werden, dabe st de nduzerte Spannung, de nach der Rege von Lenz sener rsache entgegengerchtet st, soange vorhanden, bs sch sen Magnetfed ncht mehr ändert Versuch 2:

2 In der Schatung von Versuch 1 wrd en Schater S 2 engefügt und de Gühämpchen durch ene Gmmampe ersetzt Der Stromkres kann somt durch bede Schater unterbrochen werden Zunächst senen S 1 und S 2 geschossen, es feßt Dauerstrom Zusätzch kann noch en Stromstärkemessgerät engebaut werden Wr unterscheden zwe Fäe und hre rsachen: Fa 1: S 1 wrd geöffnet, was ene Abnahme der Stromstärke I zur Foge hat De Gmmampe euchtet herbe ncht Der Grund für de amähche Stromstärkeabnahme st der n der Spue nduzerte Spannungsstoß, der so ange vorhanden st, we n der Spue der magnetsche Fuss abnmmt Fa 2: Be geschossenem Schater S 1 wrd S 2 geöffnet, so dass de Stromstärke I unmttebar auf nu zurückgeht und ene Eektrode der Gmmampe kurz aufeuchtet De Induktonsspannung überstegt de ursprüngch angeegte Spannung wesentch rsache st de kurze Abkngdauer, de durch den Schater bestmmt st Trotz gech großer nduzerter Spannungsstöße (Geche Fussänderung!) entsteht nun wegen der kürzeren Abkngzet ene größere Sptzenspannung 132 Induktvtät ener Spue (Buch S18/19) Heretung für ene ang gestreckte Spue De an ener Spue hervorgerufene Sebstnduktonsspannung ässt sch mthfe des Induktonsgesetzes durch de Spuendaten und de zetche Stromänderung darsteen Wr kennen berets das Induktonsgesetz n dfferenzeer Form: = Φ Beachte: Da es sch her um Sebstndukton handet gt: = Mt Φ = B A sowe B = µ ( aus expermenteen ntersuchungen sehe Buch S 57/58) = µ Den Faktor µ A ² A ² bezechnet man as Induktvtät L: L = µ A ² Beachte: Dese Forme gt nur für Luftspuen Ist nämch en weterer Stoff engebracht, so trtt neben µ noch en materaabhängger Faktor µ r hnzu µ r hat z B für Esen de Größe 5 Enhetenüberprüfung: [L] = 1 V sa m m² m = 1 VsA = 1 H = 1 Henry

3 Joseph Henry ( ) amerkanscher Physker Joseph Henry wurde am 17 Dezember 1797 n Abany (ew ork) geboren193 entdeckte er unabhängg von Mchae Faraday de eektromagnetsche Indukton 1832 bekam er enen Ruf an das Coege of ew Jersey, der heutgen Prncton nverstät as Professor für aturphosophe Her erkannte er de Mögchket ener nduktven Transformaton eektrscher Spannungen und erfand de Induktonsspue 1846 wurde Henry vom Kongreß zum Sekretär und Drektor des neugegründeten Smthsonan Insttus berufen In deser Poston war er bs zu senem Tode tätg Ihm zu Ehren wurde de Enhet für de eektromagnetsche Induktvtät Henry benannt 1 H (Henry) st de Induktvtät ener geschossenen Leterschefe n der en eektrscher Strom, der sch mt ener konstanten Rate von 1 A/s ändert, ene Spannung von 1 V erzeugt Somt st de n ener Spue nduzerte Sebstnduktonsspannung: Sebstnduktonsspannung L = Defnton der Induktvtät Des st de agemene Defnton der Induktvtät; dh se gt ncht nur für Spuen, sondern aes, wodurch Strom feßt R- Aufgabe Zegen Se, dass - stets postv st Betrachtet man nur den Quotenten, so weß man, dass deser stets negatv st, da und entgegengesetzt snd Mthfe des Mnuszechens st das Ergebns von - aso stets postv

4 Spue as Schateement Befndet sch ene Spue as Schateement n enem Stromkres we n Darsteung 1, so kann se as Spannungsquee mt auffassen, de der Spannung entgegenwrkt, fas >, jedoch m gechen Snn we, fas > Für de resuterende Spannung am Wderstand R gt dann : R = L Darsteung 1 Spue as Schateement Mt R = R fogt somt für : = RI + L I De am Stromkres angeegt Spannung tet sch somt n de Spannung am Wderstand und de Spannung an der Spue auf In dem her dargesteten Stromkres kann de Spue mt der Induktvtät L auch as Schateement aufgefasst werden, weches mt dem Letungswderstand R n Rehe geschatet st und an dem ene Tespannung L = R anegt De Spue hat stets auch enen Ohm schen Wderstand und jeder Leter ene Induktvtät Betrachtet man aber enen Stromkres, so denkt man sch jedoch de ganze Induktvtät L und den ganzen Ohm schen Wderstand m Lestungswderstand R verengt Aufgaben ; Buch S19 oben 1 a) L st en konstanter Faktor De Abetung von I nach der Zet ergbt sozusagen Stegt, so stegt auch, denn de Abetung an enem Punkt st stets de Stegung Stegt der parabeförmge Graph I(t) bem Enschatvorgang nach t 1 n B3b rapde an, so fät n B4b de Spannung (t) aber wegen dem Mnuszechen n der Forme gemäß rapde ab Legt we vor dem Zetpunkt t 1 de Stromstärke bem Wert, so st somt de Stegung und auch Bem Ausschatvorgang nmmt de Stromstärke amähch den Wert an, was dazu führt, dass auch Rchtung abfät b) Aufgrund der kürzeren Abkngdauer bem Ausschatvorgang ergbt sch ene höhere Sptzenspannung as bem Enschatvorgang

5 2 = 6 cm =,6 m = 24 d = 11 cm =,11 m r =, 55m ² 7 (24)² 3 a) L = µ r ² Π = 4Π 1 VsA m (,55m)² Π = 1,1 1 VsA = 1, 1 mh,6m b) I = 1,5 A 1 t = s 1 I = 1,5 1²A s 3 =,1 1 VsA 1,5 1² As =, 17 V Aufgaben ; Buch S19 unten 1 = 6 cm =,6 m = 12 A = 32 cm² =,32 m² = 24 V R = 9,6 Ω 24V I = = = 2,5A R 9,6Ω t = 2, 1 2 s I = 125As = - L = µ ² A = = 1,2 1 3 V = 12mV 4Π 1 7 VsA m (12)²,32m² 125As,6m 2 Ene Spue we de neben Gezegte bestzt kene Induktvtät, we n bede Rchtungen der bfaren Wckung je ene Induktonsspannung nduzert wrd Dese beden Spannungen heben sch aber auf, so das man ene Spue ohne Induktvtät erhät Spuenkörper mt aufgebrachter bfarer Wckung

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

In einem Umspannwerk der

In einem Umspannwerk der dosser Transformatoren Lestungsschalterglechlauf st regelmäßg zu prüfen Schaden an enem 11--Transformator durch ene Glechlaufstörung des Lestungsschalters In starr geerdeten 11--Netzen wrd der zu erwartende

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Dynamische Simulation der Spannungsstabilität und des thermischen Verhaltens von Fahrzeugbordnetzen

Dynamische Simulation der Spannungsstabilität und des thermischen Verhaltens von Fahrzeugbordnetzen Dynamsche Smuaton der Spannungsstabtät und des thermschen Verhatens von Fahrzeugbordnetzen Maja Debg, TU Dortmund, Arbetsgebet Bordsysteme maja.debg@tu-dortmund.de Stephan Fre, TU Dortmund, Arbetsgebet

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

5. Transmissionsmechanismen der Geldpolitik

5. Transmissionsmechanismen der Geldpolitik Geldtheore und Geldpoltk Grundzüge der Geldtheore und Geldpoltk Sommersemester 2013 5. Transmssonsmechansmen der Geldpoltk Prof. Dr. Jochen Mchaels Geldtheore und Geldpoltk SS 2013 5. Transmssonsmechansmen

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

W i r m a c h e n d a s F e n s t e r

W i r m a c h e n d a s F e n s t e r Komfort W r m a c h e n d a s F e n s t e r vertrauen vertrauen Set der Gründung von ROLF Fensterbau m Jahr 1980 snd de Ansprüche an moderne Kunststofffenster deutlch gestegen. Heute stehen neben Scherhet

Mehr

Technische Mechanik III Teil 1. Formelsammlung

Technische Mechanik III Teil 1. Formelsammlung Unverstät Stuttgart Insttut für Mechank Prof. Dr.-Ing. W. Ehers www.mechbau.un- stuttgart.de Ergänzung zur Voresung Technsche Mechank III Te Formesammung Stand SS 204 etzte Änderung: 30.07.204 Lehrstuh

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodee Te II: Veragemenerte Lneare Modee Werner Stahe Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Te der Unteragen zu enem Kurs über Regressonsmodee, gehaten vom 4.-6.

Mehr

Apparatives Praktikum Leichtbau

Apparatives Praktikum Leichtbau Apparatves Praktkum Lechtbau Dnamsche Strukturerprobung Theoretsche Grundagen Unverstät der Bundeswehr München erner- Hesenberg-eg 39 akutät für Luft- und Raumfahrttechnk D-85577 Neubberg Insttut für Lechtbau

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Keynesianisches Totalmodell

Keynesianisches Totalmodell Keynesansches Totalmodell : S-LM-Modell mt Geldund Kaptalmarkt S LM : Gütermarkt : roduktonsfunkton : rbetsmarkt * : Nomallohnfestsetzung s () W0 * W/ (W/)* * d () d (W/) = (,K) Fskalpoltk m Totalmodell

Mehr

Die Natur im Maintal. erleben. Naturerlebniswege, Aussichtstürme und Radwege. im LIFE-Natur-Projektgebiet Mainaue von Haßfurt bis Eltmann

Die Natur im Maintal. erleben. Naturerlebniswege, Aussichtstürme und Radwege. im LIFE-Natur-Projektgebiet Mainaue von Haßfurt bis Eltmann De m Mantal erleben erlebnswege, Ausschtstürme und Radwege m LIFEgebet von Haßfurt bs Eltmann Lebe Mtbürgernnen und Mtbürger, lebe Besuchernnen und Besucher des Mantals! Im Rahmen des LIFEFörderprogrammes

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Hallo, mein Name ist. Amy. Ich bin die Neue. im Team von. Ihr Erfolg ist unser Ziel... amy@tst-online.de www.tst-die-mit-dem-berner.

Hallo, mein Name ist. Amy. Ich bin die Neue. im Team von. Ihr Erfolg ist unser Ziel... amy@tst-online.de www.tst-die-mit-dem-berner. Hallo, men Name st Amy Ich bn de Neue m Team von Ihr Erfolg st unser Zel... amy@tst-onlne.de www.tst-de-mt-dem-berner.de Resekataloge Kundenzetungen Imagebroschüren Flyer Kalender Plakate Postkarten Cachanrng

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Basel III Kontrahentenrisiken

Basel III Kontrahentenrisiken Basel III Kontrahentenrsken Chrstoph Hofmann De Fnanzkrse hat gezegt, dass das aus ncht börsengehandelten (OTC) Dervaten hervorgehende Kontrahentenrsko von entschedender Bedeutung für de Stabltät des Bankensystems

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

?? RUBRIK?? / 1 / Spezial

?? RUBRIK?? / 1 / Spezial ?? RUBRIK?? / 1 / Spezal carrere & more Semnarprogramm für Dozentnnen und Dozenten / 2 /?? RUBRIK?? Nveau st kene Handcreme! carrere & more Semnarprogramm für Dozentnnen und Dozenten S. 3 Vorwort S. 4

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Sozial gericht,berlin

Sozial gericht,berlin Ausfertgung Sozal gercht Berln nvaldenstraße 52 10557 Berln Az.: S 123.AS 20916n3 ER Beschluss n dem Verfahren des - Antragsteller - Pr~?-essbevollmächt~er: Rechtsanwalt Kay FqBlen Scharnweberstr. 20 10247

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken!

Abenteuer Führung. Der Survival Guide für den ersten Führungsjob. Die erste Führungsaufgabe ist kein Zuckerschlecken! SEMINARPROGRAMME Abenteuer Führung Der Survval Gude für den ersten Führungsjob De erste Führungsaufgabe st ken Zuckerschlecken! Junge Hgh Potentals erkennen das schnell. Her taucht ene unangenehme Überraschung

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft Fakultät für Wrtschaftswssenschaft Lehrstuhl für Volkswrtschaftslehre, nsb. Makroökonomk Unv.-Prof. Dr. Helmut Wagner Klausur: Termn: Prüfer: Makroökonome 2.03.20, 8.00-20.00 Uhr Unv.-Prof. Dr. Helmut

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Kommentierte Linkliste

Kommentierte Linkliste Mobbng Kommenterte Lnklste Mobbng fndet sch n allen sozalen Schchten und Altersgruppen: auch be Kndern und Jugendlchen. Aktuelle Studen kommen zu dem Ergebns, dass jede/r verte österrechsche SchülerIn

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Verkehrstechnik. Straßenbau

Verkehrstechnik. Straßenbau st messbar. smanagement Hlfsmttel Arbetsscherhet Fazt Verkehrstechnk Straßenbau IVU Semnar Mobltät, Verkehrsscherhet, Umwelt (04/06) Dpl. Ing. Sandra Voß st messbar. smanagement Hlfsmttel Arbetsscherhet

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr