Versuch P2: Optische Abbildungen und Mikroskop

Größe: px
Ab Seite anzeigen:

Download "Versuch P2: Optische Abbildungen und Mikroskop"

Transkript

1 Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden optische Abbildungen mit Linsen, Abbildungsfehler sowie die Funktionsweise und die Grenzen des Auflösungsvermögens einfacher Mikroskope erarbeitet. 1.1 Pharmazeutischer Kontext Die pharmazeutische Biologie ist ein Teilgebiet der Pharmazie, das sich unter anderem mit der lebenden Zelle als kleinste Produktionseinheit von biogenen Arzneistoffen und abgeleiteter chemischer Stoffe sowie ihrer pharmakologischen und toxikologischen Wirkung befasst. Innerhalb dieses Bereiches werden auch Mikroorganismen untersucht. Um Fragestellungen aus dem biologisch-pharmazeutischen Bereich zufriedenstellend und zielführend beantworten zu können, ist es notwendig, die Funktionsweise einer Vielzahl physikalischer ilfsmittel zu kennen und zu verstehen. Insbesondere das Mikroskop ist aus der biologischen Forschung, wie beispielsweise der Zellbiologie nicht wegzudenken. Grundkenntnisse des detaillierten Aufbaus und der Funktionsweise sind nicht zuletzt zur Fehlerminimierung erforderlich. Darüber hinaus liefern sie die Grundlage für das Verständnis der Grenze des Auflösungsvermögens, die die Möglichkeiten und Grenzen moderner Mikroskopie aufzeigt sowie das Verständnis neuerer Techniken wie des Transmissionselektronenmikroskops oder Rasterelektronenmikroskops ermöglicht. 1.2 Physikalischer Kontext Ein Mikroskop ist ein ilfsmittel, das es erlaubt, Objekte, deren Größe unterhalb des Auflösungsvermögens des menschlichen Auges liegt, vergrößert anzusehen oder bildlich darzustellen. Die klassische Mikroskopietechnik ist die Lichtmikroskopie, bei der ein Objekt durch eine oder mehrere Glaslinsen beobachtet wird. Die physikalisch maximal mögliche Auflösung eines klassischen Lichtmikroskops ist von der Wellenlänge des verwendeten Lichts abhängig. Eine höhere Auflösung ermöglichen Elektronenmikroskope, die seit den 1930er Jahren entwickelt wurden, da Elektronenstrahlen eine kleinere Wellenlänge haben als Licht. Nachdem Sie die einzelnen Komponenten eines einfachen Mikroskops wie beispielsweise die Sammellinse sowie mögliche Abbildungsfehler kennengelernt haben, bauen Sie ein handelsübliches Mikroskop auf und lernen die Grundlagen der Bildentstehung kennen. Dabei geht es in erster Linie um die Beschreibung der Abbildung durch Linsen. 1

2 1.3 Grundbegriffe Divergentes und konvergentes Bündel; Reflexionsgesetz, geometrische Zusammenhänge; Brechungsgesetz, Brechzahl; Abbildung am ebenen Spiegel; Sammel- und Zerstreuungslinsen, Abbildung mit (dünnen) Linsen, Bildkonstruktion, Abbildungsformel, Verhältnis Bildgröße zu Gegenstandsgröße; Brennweite; Optische Einrichtungen und Systeme, Lateralvergrößerung, Winkelvergrößerung, Sehwinkel, (konventionelle) deutliche Sehweite; Lupe, Strahlengang, Vergrößerung; Lichtmikroskop, Funktion des Objektivs und des Okulars, Zusammenhang von Vergrößerung und Brennweiten von Objektiv und Okular; Okularmikrometer, Eichung mittels Objektmikrometer; Auflösungsvermögen, qualitative Abhängigkeit von Wellenlänge, Apertur und Immersionsflüssigkeit B. Ausführungsteil (WÄREND der Versuchsdurchführung lesen!) 2. Komponenten für den Versuchsaufbau Optische Bank mit Reitern Lampe mit Netzgerät Kondensor mit Diahalter Bildschirm mit Lineal 3 Sammellinsen Filterhalter Farbfilter (rot, grün, blau) Pfeil-Blende Spalt-Blende Dia mit Millimeterskala 2 Abdeckblenden für achsennahe und -ferne Strahlen 3. Durchführung des Versuches Die nachfolgende Anleitung zur Durchführung des Versuches hat vier wesentliche Komponenten:? Fragen und Aufgabenstellungen sind am Anfang mit einem? gekennzeichnet. F Formeln und Regeln werden vorne mit einem F gekennzeichnet und durchnummeriert. Kursiv geschriebene Zeilen markiert mit einer and dienen als Anleitung zur Versuchsdurchführung. Kursiv geschriebene Zeilen, die mit gekennzeichnet sind, enthalten Tipps und Erklärungen, die in einzelnen Fällen hilfreich sein können. 3.1 Vorbereitung Machen Sie sich mit den einzelnen Komponenten des Versuchsaufbaus (2.) vertraut und kontrollieren Sie, dass alle Teile vorhanden sind. Befestigen Sie die Kondensorlinse an der Lampe. Die Lampe wird am linken Ende der optischen Bank aufgestellt. Der Bildschirm wird in ca. 100 cm Entfernung zur Lampe befestigt. 3.2 Bestimmen Sie die Brennweite einer Sammellinse mit dem Bessel schen Verfahren. Linsen und Spiegel sind optische Geräte, mit deren ilfe optische Abbildungen durchgeführt werden. Dabei wird ein Gegenstand, von dem Lichtstrahlen ausgehen (bzw. an dem Lichtstrahlen reflektiert werden), derart abgebildet, dass an einem anderen Ort ein Bild (unter Umständen auf einem Bildschirm) entsteht, das vergrößert oder verkleinert, aufrecht oder auf dem Kopf stehend sein kann. Eine zentrale Eigenschaft einer Linse ist deren Brennweite, die mit ilfe des sog. Bessel schen Verfahrens sehr einfach bestimmt werden kann. 2

3 Schalten Sie die Lampe ein und stellen Sie die Linse 1 so in den Strahlengang zwischen Lampe und Bildschirm, dass Sie diese noch verschieben können. Stecken Sie vor die Lampe die Blende mit dem Pfeil. Verschieben Sie anschließend die Linse so auf der optischen Bank, dass auf dem Bildschirm ein scharfes Bild von dem Pfeil entsteht. Sie haben nun den leuchtenden Pfeil an der Lampe durch die Linse auf dem Bildschirm abgebildet. Diese (scharfe) Abbildung des Pfeil gelingt jedoch nur bei bestimmten Abständen der Linse zum Gegenstand und zum Bildschirm.? Welche Orientierung hat das Bild im Vergleich zum Gegenstand (Pfeil an der Lampe)?? Lesen Sie die Position e 1 der Linse an der optischen Bank ab: e 1 =... mm Verschieben Sie die Linse noch weiter auf der optischen Bank, bis Sie abermals (bei einer anderen Position) ein scharfes Bild des Pfeils auf dem Bildschirm bekommen.? Lesen Sie auch diese Position e 2 ab: e 2 =... mm? Ermitteln Sie den Abstand dieser beiden Linsenpositionen: e = e 2 - e 1 =... mm? Lesen Sie nun den Abstand a zwischen Pfeilblende ( Gegenstand ) und Bildschirm ( Bild ) ab: a =... mm Bitte beachten Sie, dass die angezeigte Position des Reiters der Lampe nicht mit der Position des Gegenstands (hier: Pfeil) übereinstimmt. Stattdessen befindet sich der Gegenstand 9,8 cm weiter rechts. Sie müssen also zu der am Reiter abgelesenen Position 9,8 cm hinzuaddieren. Der Schirm hingegen steht genau mittig im Reiter.? Berechnen Sie mit ilfe der Formel F (1) aus den Abständen e und a die Brennweite f der Linse. f =... mm F (1) f 2 2 a e = 4 a a : Abstand zwischen Gegenstand und Bildschirm e : Abstand zwischen den Linsenpositionen bei scharfer Abbildung 3

4 3.3 Bestimmen Sie die Brennweite einer Sammellinse graphisch. Platzieren Sie die Linse 1 wieder so im Strahlengang, dass auf dem Bildschirm ein scharfes Bild des Pfeils zu erkennen ist. Den Abstand, den der Gegenstand zur Linse hat, nennt man Gegenstandsweite g. Den Abstand, den das Bild zur Linse hat, nennt man Bildweite b.? Bestimmen Sie die Gegenstandsweite g und die Bildweite b. g =... mm b =... mm? Tragen Sie in das untenstehende Diagramm die Gegenstandsweite g als Punkt direkt auf der Abszisse ( x-achse ) und die Bildweite b als Punkt direkt auf der Ordinate ( y-achse ) ein. Verbinden Sie anschließend diese beiden Punkte mit einer Geraden. Der Schnittpunkt mit der bereits eingezeichneten Winkelhalbierenden (g = b) gibt Ihnen die Brennweite f an. Sie können sie entweder an der Abszisse oder der Ordinate ablesen. 4

5 ? Bestimmen Sie aus der Zeichnung die Brennweite f der Linse: f =... mm 3.4 Bestimmen Sie die Brennweite einer Sammellinse aus der Abbildungsgleichung. Bei einer scharfen Abbildung besteht eine feste Beziehung zwischen der Gegenstandsweite g, der Bildweite b und der Brennweite f der Linse. Diese Beziehung wird durch die Abbildungsgleichung F (2) formuliert: F (2) 1 f = g b? Berechnen Sie die Brennweite der Linse 1 aus der Abbildungsgleichung F (2): f =... mm 3.5 Bestimmen Sie die Brennweite einer weiteren Linse 2.? Bestimmen Sie mit ilfe des Bessel schen Verfahrens die Brennweite der Linse 2. e 1 =... mm e 2 =... mm e = e 2 - e 1 =... mm a =... mm f =... mm? Bestimmen Sie graphisch die Brennweite der Linse 2. Tragen Sie hierzu den entsprechenden Graphen auch in das Diagramm aus 3.3 ein. g =... mm b =... mm f =... mm? Bestimmen Sie aus der Abbildungsgleichung F (2) die Brennweite der Linse 2. f =... mm 3.6 Messen Sie die chromatische Aberration der Linse 2. Setzen Sie die Blende mit dem dünnen Spalt vor die Lampe, so dass der Spalt horizontal liegt. Bilden Sie den Spalt mit ilfe der Linse 2 scharf auf dem Bildschirm ab. Verschieben Sie die Linse etwas nach oben, so dass das Bild zwar etwas unscharf wird, aber auch auf dem Bildschirm nach oben wandert. 5

6 ? Beschreiben Sie, was Sie hinsichtlich der Farbgebung des Bildes beobachten. Den Effekt, den Sie beobachten, nennt man chromatische Aberration und ist einer von vielen möglichen Abbildungsfehlern einer Linse. Es gibt Linsensysteme bzw. Kombinationen aus zwei oder mehreren Linsen (sog. Achromaten ), die diesen Abbildungsfehler kompensieren. Setzen Sie nun statt des dünnen Spaltes wieder die Blende mit dem Pfeil ein. Platzieren Sie direkt hinter den Gegenstand das rote Farbfilter.? Bestimmen Sie mit dem Bessel schen Verfahren die Brennweite der Linse 2 für rotes Licht und tragen Sie die entsprechenden Werte in die Tabelle in die Zeile rot ein. Farbfilter e 1 (mm) e 2 (mm) e (mm) a (mm) f (mm) rot grün blau? Wiederholen Sie die Bestimmung der Brennweite für das grüne und für das blaue Farbfilter.? Beschreiben Sie anhand der Brennweite für die verschiedenen Farben, welche Auswirkung die chromatische Aberration auf die Abbildung hat. 3.7 Messen Sie die sphärische Aberration der Linse 2. Setzen Sie das Dia mit dem Gitter ein. Setzen Sie auf die Linse die Blende, die nur die Strahlen durchlässt, die durch die Mitte der Linse verlaufen ( achsennahe Strahlen). Die Blende sollte dabei auf der Seite an der Linse angebracht werden, die zur Lampe hin zeigt. Drehen Sie die Linse ggf. einmal um.? Bestimmen Sie mit ilfe des Bessel schen Verfahrens die Brennweite für die achsennahen Strahlen der Linse 2. Tragen Sie die Messwerte in die Tabelle ein. 6

7 achsennahe Strahlen achsenferne Strahlen e 1 (mm) e 2 (mm) e (mm) a (mm) f (mm) Setzen Sie auf die Linse die Blende, die die Strahlen in der Mitte der Linse ausblendet und nur die Randstrahlen ( achsenferne Strahlen) durchlässt. Wieder soll die Blende auf der Seite sein, die zur Lampe hinzeigt.? Bestimmen Sie mit ilfe des Bessel schen Verfahrens die Brennweite für die achsenfernen Strahlen der Linse 2. Tragen Sie die Messwerte in die Tabelle ein.? Vergleichen Sie die beiden Brennweiten und erläutern Sie, welche Auswirkung Ihre Beobachtung auf die Abbildung hat. Die Beobachtung, die Sie gemacht haben, nennt man sphärische Aberration und ist ein Abbildungsfehler, der darauf beruht, dass die Linse eine kugelförmige Oberfläche hat. Wäre die Linse parabolisch geformt, gäbe es diesen Abbildungsfehler nicht! 3.8 Bauen Sie ein Mikroskop auf. Ein Mikroskop besteht aus zwei Linsen, die gemeinsam eine vergrößerte Abbildung bewirken sollen. Verkleinern Sie den Abstand zwischen Lampe und Bildschirm auf 50 cm. Setzen Sie als Gegenstand das Dia mit der Millimeterskala ein. Platzieren Sie die Linse mit der Brennweite f = +50 mm so dicht an den Gegenstand, dass sich dieser ein kleines Stück weiter von der Linse als die Brennweite dieser Linse entfernt befindet. Die Linse eines Mikroskops, dass sich vor dem Gegenstand (= Objekt ) befindet, nennt man das Objektiv eines Mikroskops. Dieses Objektiv erzeugt hinter der Linse ein Bild, dass man auf einem Bildschirm sichtbar machen kann. Solche Bilder nennt man reelle Bilder. Verschieben Sie den Bildschirm so auf der optischen Bank, dass ein scharfes Bild der Millimeterskala entsteht. Sie haben nun das reelle Zwischenbild eines Mikroskops auf dem Bildschirm sichtbar gemacht. Ein Mikroskop besteht aber noch aus einer weiteren Linse, die sich nahe am Auge befindet, das sog. Okular. Stellen Sie die Linse 2 hinter den Bildschirm und justieren Sie so, dass das Zwischenbild und die Linse einen Abstand voneinander haben, der genau der Brennweite der Linse entspricht, die Sie in Abschnitt 3.5 bestimmt haben. 7

8 Steht der zu betrachtende Gegenstand (hier: das reelle Zwischenbild) genau an oder innerhalb der Brennweite einer Linse, so fungiert diese Linse als Lupe. Das Bild, das man sieht, steht aufrecht und ist vergrößert. Das Bild einer Lupe ist ein sog. virtuelles Bild, denn man kann dieses Bild nicht auf einem Bildschirm sichtbar machen, wie Sie es mit dem reellen Zwischenbild gemacht haben. Das Okular eines Mikroskops wirkt wie eine Lupe, mit der Sie nun das bereits vergrößerte reelle Zwischenbild betrachten. Ein Kennzeichen für virtuelle Bilder ist, dass sie dieselbe Orientierung haben wie der Gegenstand, wohingegen reelle Bilder im Vergleich zum Gegenstand auf dem Kopf stehen. Schauen Sie durch das Okular und drehen Sie dabei Ihren Kopf um 90, so dass Sie mit dem einen Auge die Millimeterskala des Zwischenbildes anvisieren, mit dem anderen Auge jedoch die Skala des Lineals im Blick haben, so dass beides optisch übereinanderliegt. Nun können Sie beide Skalen miteinander vergleichen.? Ermitteln Sie die Vergrößerung V M Ihres selbstgebauten Mikroskops, indem Sie abschätzen, wie groß der Abstand zwischen zwei benachbarten mm-markierungen des Zwischenbildes auf der Linealskala ist. Die Vergrößerung ist einfach das Verhältnis beider Längen nach Formel F (3). V M =... F (3) l V M = l vergrößert tatsächlich l vergrößert : l tatsächlich : beobachtete Länge, die man durch das Mikroskop sieht tatsächliche Länge des Objekts (hier: 1 mm) 8

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Optik Versuchsanleitungen von BG/BRG Lerchenfeld Klagenfurt Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

Laborversuche zur Physik 2 II - 1. Abbildungsgesetze für Linsen und einfache optische Instrumente

Laborversuche zur Physik 2 II - 1. Abbildungsgesetze für Linsen und einfache optische Instrumente FB Physik Laborversuche zur Physik 2 II - 1 Linsen und optische Systeme Reyher, 20.03.12 Abbildungsgesetze für Linsen und einfache optische Instrumente Ziele Anwendung und Vertiefung elementarer Gesetze

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis Versuch O1 MIKROSKOP Seite 1 von 6 Versuch: Mikroskop Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik Raum: Physik.204

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Brennweite von Linsen und Linsensystemen

Brennweite von Linsen und Linsensystemen - D1.1 - Versuch D1: Literatur: Stichworte: Brennweite von Linsen und Linsensystemen Demtröder, Experimentalphysik Bd. II Halliday, Physik Tipler, Physik Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

Versuch VM 6 (Veterinärmedizin) Mikroskop

Versuch VM 6 (Veterinärmedizin) Mikroskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 6 (Veterinärmedizin) Mikroskop Aufgaben 1. Es sind mit einem der beiden Objektive bei jeweils fünf verschiedenen Bildweiten

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik

Brennweitenmessung. Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Optische Messtechnik Brennweitenmessung Gliederung Seite 1. Versuchsziel.... Versuchsaufbau...

Mehr

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse).

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse). Physikalisches Praktikum II Abbildung mit Linsen (LIN) Stichworte: Geometrische Optik, Snellius'sches Brechungsgesetz, Abbildung eines Punktes durch Lichtstrahlen, Brennpunkte, auptpunkte, auptebene, reelle

Mehr

O14 Optische Abbildungen mit Linsen

O14 Optische Abbildungen mit Linsen Physikalisches Anfängerpraktikum Universität Stuttgart SS 204 Protokoll zum Versuch O4 Optische Abbildungen mit Linsen Johannes Horn, Robin Lang 3. Mai 204 Verfasser: Robin Lang (BSc. Mathematik) Mitarbeiter:

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

Handout zur Veranstaltung Demonstrationsexperimente

Handout zur Veranstaltung Demonstrationsexperimente Handout zur Veranstaltung Demonstrationsexperimente Didaktik der Physik Universität Bayreuth Barbara Niedrig Vortrag vom 17. November 2006 Geometrische Optik: Brennweitenbestimmung von Sammellinsen mit

Mehr

Versuch GO2 Optische Instrumente

Versuch GO2 Optische Instrumente BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO2 Optische Instrumente I. Vorkenntnisse 2.07/10.06 Versuch GO 1, Funktionsprinzip des menschlichen Auges, Sehwinkel, Vergrößerung des Sehwinkels durch optische

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Versuch C3: Refraktometrie

Versuch C3: Refraktometrie Physikalisch-chemisches Praktikum ür Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchührung lesen!) Wichtig: Bitte denken Sie daran, dass

Mehr

Mikroskopie: Theoretische Grundlagen

Mikroskopie: Theoretische Grundlagen Mikroskopie: Theoretische Grundlagen Ein Mikroskop ist ein Präzisionsinstrument, der richtige Umgang damit erfordert zuerst theoretisches Grundwissen, damit es richtig bedient werden kann. Für jeden Einstellknopf

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen Referentin: Carola Thoiss Dozent: Dr. Thomas Wilhelm Datum: 30.11.06 Staatsexamen im Unterrichtsfach Physik / Fachdidaktik Prüfungstermin Herbst 1996, Thema Nr. 3 Linsen Aufgaben: 1. Als Motivation für

Mehr

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz.

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz. O1 Geometrische Optik Stoffgebiet: Abbildung durch Linsen, Abbildungsgleichung, Bildkonstruktion, Linsensysteme, optische Instrumente ( Beleuchtungs- und Abbildungsstrahlengang im Projektionsapparat )

Mehr

P1-31,40,41: Geometrische Optik

P1-31,40,41: Geometrische Optik Physikalisches Anfängerpraktikum (P1) P1-31,40,41: Geometrische Optik Benedikt Zimmermann, Matthias Ernst (Gruppe Mo-4) Karlsruhe, 18.1.010 Praktikumsprotokoll mit Fehlerrechung Ziel des Versuchs ist die

Mehr

Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen.

Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen. ZELLBIOLOGIE 1. Bau und Funktion der Zelle 1.1. Das Lichtmikroskop: Bau und Funktion Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen.html)

Mehr

3.7 Linsengesetze 339

3.7 Linsengesetze 339 3.7 Linsengesetze 339 3.7. Linsengesetze Ziel Ziel des Versuches ist ein besseres Verständnis der optischen Abbildung durch Linsen, insbesondere durch zusammengesetzte Linsensysteme. Wesentlich ist dabei

Mehr

Mikroskopie: Einen Blick ins Mikrokosmos

Mikroskopie: Einen Blick ins Mikrokosmos Mikroskopie Stand: WS09/10 (MIK) Seite 1 Mikroskopie: Einen Blick ins Mikrokosmos Stichworte: Geometrische Optik, Dünne Linse, konvex, konkav, Brechung, Brennebene, Fokus, Brennweite, optische Achse, Zwischenbild,

Mehr

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 22 Das Mikroskop Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent: André

Mehr

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s)

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s) Optik: Allgemeine Eigenschaften des Lichts Licht: elektromagnetische Welle Wellenlänge: λ= 400 nm bis 700 nm Frequenz: f = 4,10 14 Hz bis 8,10 14 Hz c = f λ c: Lichtgeschwindigkeit = 2,99792458, 10 8 m/s

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Staatsinstitut für Schulqualität und ildungsforschung Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Lehrplanbezug Ein Teil der Schüler hat möglicherweise bereits in der 3. Jahrgangsstufe der Grundschule

Mehr

Die Linsengleichung. Die Linsengleichung 1

Die Linsengleichung. Die Linsengleichung 1 Die Linsengleichung 1 Die Linsengleichung In diesem Projektvorschlag wird ein bereits aus der Unterstufenphysik bekannter Versuch mit mathematischen Mitteln beschrieben, nämlich die Abbildung durch eine

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze Probetest 1 1. Wann wird Licht für uns sichtbar? (2 Möglichkeiten) 2. Den Lichtkegel eines Scheinwerfers sieht man besser wenn a) Rauch in der Luft ist b) die Luft völlig klar ist c) Nebeltröpfchen in

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie?

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Wie andere Verfahren (CT, PET, MRT usw.) findet Ultraschall als bildgebendes Verfahren eine breite Anwendung. Diese

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler.

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler. Projektor Aufgabe Ein Diaprojektor, dessen Objektiv eine Brennweite von 90mm hat, soll in unterschiedlichen Räumen eingesetzt werden. Im kleinsten Raum ist die Projektionsfläche nur 1m vom Standort des

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O Lichtbrechung und Linsengesetze Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Aufgabensammlung mit Lösungen zum Applet optische Bank

Aufgabensammlung mit Lösungen zum Applet optische Bank Aufgabensammlung mit Lösungen zum Applet optische Bank (LMZ, Bereich Medienbildung, OStR Gröber) http://webphysics.davidson.edu/applets/optics4/default.html I. Aufgaben für Mittelstufe 1. Abbilden mit

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015 Version vom 26. April 2015 Thema 6: Mikroskop Abbildung 6.1: Das im Versuch zu benutzende binokulare Mikroskop Abbildung 6.2: Die Messlupen-Vorrichtung zur Bestimmung der Spaltbreite: Im Vordergrund die

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert!

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert! DOWNLOAD Nabil Gad Optik:.2011 12:08 Uhr Seite 1 Die Bergedorfer Produktpalette: Kopiervorlagen Unterrichtsideen Klammerkarten COLORCLIPS Lehrer- und Schülerkarteien Fachbücher Lernsoftware Bücherservice

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper 1. Versuchsziele Durch die Verwendung

Mehr

36. Linsen und optische Instrumente

36. Linsen und optische Instrumente 36. Linsen und optische Instrumente 36.. Brechung an Kugellächen Linsen besitzen aus ertigungstechnischen Gründen meist Kugellächen (Ausnahmen sind Spitzenobjektive, z. B. ür Projektionslithographie).

Mehr

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0

5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0 5.8 Optische Geräte Lehrmaterial zur Vorlesung Ingenieurphysik WS 06/07 Version 1.0 Dr. rer. nat. Bettina Pieper Dipl.-Physikerin, Lehrbeauftragte FH München Optische Geräte Das Auge Die Lupe Das Fernrohr

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Brennweite und Hauptebenen eines Linsensystems

Brennweite und Hauptebenen eines Linsensystems 1 Augabenstellung Seite 1 1.1 Die Brennweite und die Lagen der Hauptebenen eines sind nach der Methode von Abbe zu bestimmen, die geundenen Ergebnisse in einer maßstabsgerechten Skizze darzustellen. 1.

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Linsen und Augenmodell (O1)

Linsen und Augenmodell (O1) Linsen und Augenmodell (O) Ziel des Versuches Im ersten Versuchsteil werden Brennweiten von dünnen Sammel- und Zerstreuungslinsen mit zwei Verfahren, dem Besselverfahren und der Autokollimation, bestimmt.

Mehr

Mikroskop. Der Kehrwert des Auflösungsvermögens ist der kleinste Abstand, den zwei Punkte haben dürfen, damit sie noch getrennt wahrgenommen werden.

Mikroskop. Der Kehrwert des Auflösungsvermögens ist der kleinste Abstand, den zwei Punkte haben dürfen, damit sie noch getrennt wahrgenommen werden. Versuch 10 Mikroskop Versuchsziel: Nach dem Modell der geometrischen Optik kann man durch immer stärkeres Heranführen eines Gegenstands an die Brennweite einer Sammellinse beliebig große Bilder auf einem

Mehr

Sammel- und Streulinsen

Sammel- und Streulinsen Sammel- und Streulinsen Linsen können auch durchaus verschiedene Formen haben, je nachdem, was sie für eine Funktion erfüllen. Sammellinsen (a) sind konvex, Streulinsen sind konkav, ferner gibt es auch

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr