Physikalisches Praktikum 3. Semester

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Praktikum 3. Semester"

Transkript

1 Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1

2 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen dem Beugungsbild der Lichtquelle (primäres Bild) und dem reellen Abbild des beugenden Objekts (sekundäres Bild). Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergößerung auf! 2. Untersuchen Sie bei verschiedenen Objekten den Einfluss von Veränderungen des primären Bildes auf das sekundäre Bild. 3. Demonstrieren Sie das Phasenkontrastverfahren nach Zernicke! 4. Untersuchen Sie den Einfluss der Schrägbeleuchtung. 1 Modellmikroskop und Bildentstehung: 1.1 allgemeine Theorie über das Mikroskop und Bildentstehung: Beim Mikroskop wird das Licht an der Struktur eines Präparates gegeugt. Demzufolge erzeugt das Präparat eine Beugungsfigur durch Interferenz in der Brennebene des Objektivs. Die Entstehung von Maxima und Minima sind dabei für das betreffende Präparat absolut charakteristisch. Abbe bezeichnete diese Beugungsfigur als primäres Zwischenbild. Abbildung 1: Beugungsfigur in der Objektivbrennebene 2

3 Unterschied Auflösungsvermögen - Vergrößerung: Das Auflösungsvermögen eines Objektivs ist im Wesentlichen davon abhängig, wie viel Licht von einer Struktur des Präparates in das Objektiv gelangt. Die Lichtmenge, die ankommt, ist durch die numerische Apertur bestimmt, die sich wiederum aus dem Öffnungswinkel des Objektivs und der Brechzahl des Mediums berechnet. Je größer der Öffnungswinkel, desto höhere Ordnungen der Maxima können erfasst werden und desto mehr Licht gelangt in das Obektiv. Je größer die numerische Apertur ist, desto mehr gebeugtes Licht gelangt durch das Objektiv zur Interferenz in die Objektivbrennebene und desto größer ist auch das Auflösungsvermögen eines Objektivs. Die Vergrößerung hängt dabei im Wesentlich nur von der verwendeten Linse ab. Ohne die dazu passende numerische Apertur kommt es zur sogenannten leeren Vergrößerung (siehe Billigmikroskope), wodurch das Präparat zwar stark vergrößert aber keineswegs detailliert erscheint! Auflösungsvermögen des Mikroskops: definiert durch Mindestabstand x min zweier Objektpunkte Punkte müssen mindestens diesen Abstand haben, um als 2 getrennte Punkte wahrgenommen zu werden numerische Apertur: die numerische Apertur A beschreibt das Auflösungsvermögen eines Objektivs d.h. sie ist ein Maß dafür, wie detailiert das Objekt abgebildet wird je größer die Apertur, desto besser die Auflösung A = n sinα Der Zusammenhang zwischen dem Auflösungsvermögen und der numerischen Apertur lautet: x min = A λ Um ein Objektdetail aufzulösen, müssen in dessen Beugungsbild neben dem Maximum 0. Ordnung mindestens noch die Maxima der 1. Ordnung erscheinen. Ob diese Bedingung erfüllt werden kann, hängt nicht zuletzt mit der numerischen Apertur des verwendeten Objektivs ab. (mehr dazu bei 2.) ) 1.2 Aufbau des Modellmikroskops Abbildung 2: schematischer Aufbau unseres Modellmikroskops Es wird ein Modell eines Mikroskops auf einer optischen Schiene aufgebaut. Alle Elemente sind mit Hilfe eines Justierkreuzes auf die optische Achse ausgerichtet. Nun wird das Licht über eine Blende durch ein 3

4 Gitter auf eine Sammellinse geleitet. Hierbei sollte man darauf achten, dass das Gitter einen Abstand von der Linse hat, der größer ist als die Brennweite der Linse, da ansonsten kein reelles Bild entsteht. Dabei sollte darauf geachtet werden, dass man durch das am Ende der opt. Bank montierte Okular das Sekundärbild sehen kann. Abbildung 3: das Beugungsbild (Primärbild) Das Sekundärbild, ist die Abbildung des Objektes (Gitter). Nun wird das Primärbild gesucht. Dieses ist ein Interferenzmuster, dass durch die Beugung des Lichtes am Gitter entsteht. Bei der Beugung entstehen phasenverschoben Wellen, die durch die Linse übereinander gebracht werden. Somit löschen sie sich gegenseitig aus, bzw. verstärken einander. Auf diese Weise entsteht das Primärbild. Für die weiteren Versuche, wird an dieser Stelle ein mit Alufolie bespannter Diarahmen montiert. Ausserdem bleibt zu erwähnen, dass hier monochromatisches grünes Licht verwendet wurde. Zu diesem Zweck wurde das Licht der Lampe durch einen entsprechenden Filter geleitet. Abbildung 4: das reelle vergrößerte Sekundärbild 2 Zusammenhang zwischen primärem und sekundärem Bild Experimentell wurden nun Zusammenhänge zwischen den primären Zwischenbild und dem sekundären Bild untersucht. Wir haben in Aufgabenstellung bereits gesehen, dass das sekundäre Bild eine Vergrößerung des Gitters darstellt, während das primäre Zwischenbild die Beugungsfigur, entstehend durch Interferenz ist. 2.1 Versuchsdurchführung: Das sekundäre Bild wurde in einer Streulinse mit Lupe abgebildet und beobachtet. Im Folgenden wird immer davon ausgegangen, dass das sekundäre Bild in dieser Steulinse (im Nachfolgenden wird es auch nur mit Schirm bezeichnet) beobachtet wird. 4

5 1. Maßnahme: In den Strahlengang wurde nun lichtundurchlässige Alufolie gebracht und so platziert, dass sie als Schirm für das primäre Zwischenbild dient. Durch die Lichtundurchlässigkeit der Alufolie ist ein Entstehen des sekundären Bildes natürlich nicht möglich, so dass kein Licht die Streulinse mit Lupe erreicht. 2. Maßnahme: Nun wurde die Alufolie am nullten Maximum mit einem sehr spitzen Gegenstand durchstochen, so dass nur Licht des nullten Maximums den Schirm erreicht. Das sekundäre Bild war eine gleichmäßig schwach erhellte Fläche, ohne erkennbare Struktur. theoretische Betrachtung: Um die Struktur eines Präparates aufzulösen, müssen in dessen Beugungsbild mindestens zwei Maxima erscheinen. Ohne diese beiden Maxima kann kein Bild des Präparates entstehen! 3. Maßnahme: Die Alufolie wurde so durchstochen, dass die Maxima nullter und erster Ordnung durchgelassen werden. Es erscheint ein nahezu identisches sekundäres Bild wie in Aufgabenstellung 1) gesehen. Es entsteht somit ein vergrößertes Bild des Gitters. theoretische Betrachtung: Da mehr als nur ein Maxima durchgelassen wird, entsteht ein sekundäres Bild. Dieses unterscheidet sich zu dem sekundären Bild in Aufgabenstellung 1) nur dadurch, dass es weniger Intensität besitzt, da insgesamt weniger Licht hindurchgelassen wird. Da die Intensität des nullten und ersten Maximums jedoch deutlich größer ist, als bei allen anderen Maxima konnte keine Hellligkeitsänderung festgestellt werden, wodurch der Schluss gezogen werden kann, dass die Bildentstehung bei Aufgabenstellung 1) im Wesentlichen durch die Maxima erster und nullter Ordnung geschieht. 4. Maßnahme: Nun wurde mit einem dünnen Gegenstand das Loch in der Alufolie des nullten Maximums verdeckt! Die Auflösung des sekundären Bildes verringerte sich um die Hälfte, d.h. der Gitterabstand halbierte sich. 5

6 theoretische Betrachtung: Der Abstand zwischen den Gitterlinien ist im Wesentlichen durch den Abstand der Maxima bestimmt. Eine Näherungsformel für das entstehende sekundäre Bild ist: s = λ l d s = Abstand zwischen zwei Maxima λ = Wellenlänge des Lichtes l = Abstand zwischen primären und sekundärem Bild d = Auflösung des sekundären Bildes (Abstand zwischen den Gitterlinien) Für gleichbleibende l und λ ist somit s d 1 Durch das Verdecken des nullten Maximums, beträgt der Abstand zwischen zwei Maxima nun die Distanz zwischen den beiden Maxima erster Ordung = doppelt so groß wie der Abstand nulltes zum ersten Maximum. Demzufolge halbiert sich der Abstand zwischen den Gitterlinien im sekundären Bild. Aus der obigen Formel wird des Weiteren deutlich, dass es keinen Unterschied macht, welche Maxima ich betrachte. Derselbe Effekt der Halbierung des Gitterabstandes würde auch auftreten, wenn nur das nullte und 2. Maximum durchgelassen wird! Entscheidend ist nur der Abstand zwischen zwei Maxima. (es sei angemerkt, dass die Intensität des sekundären Bildes natürlich sehr wohl von der Ordnung der Maxima abhängig ist!!) 3 Phasenkontrastverfahren nach Zernicke Es wird deutlich, dass das beobachtbare mikroskopische Bild letztlich von der Beugungsfigur in der Objektivbrennebene abhängig ist. Für die mikroskopische Praxis bedeutet dies, dass künstlich herbeigeführte Veränderungen dieser Beugungsfigur auch das mikroskopische Endbild beeinflussen. Diese Erkenntnis liegt der Theorie und der praktischen Realisierung des Phasenkontrast-Verfahrens zugrunde. Mit Hilfe dieses Kontrastverfahrens, ist es möglich Objekte, die unter normalen Mikroskopen kaum sichtbar sind sichtbar zu machen. Hierzu werden die Änderungen der Phase, die durch das zu beobeachtende Objekt verursacht werden sichtbar gemacht. Dies kann dadurch realisiert werden, dass man das Licht, welches vom 0. Maximum ausgeht, in der Phase verschiebt. Dies führt dazu, dass es mit dem Licht welches von den anderen Maximas kommt interferiert. Auf diese Weise werden die vom Objekt verursachten Phasenänderungen sichtbar gemacht. Somit ist es möglich, die Struktur des beobachten Objekts sichtbar zu machen. Anwendung findet dieses Verfahren um Objekte, die kaum Licht absorbieren, aber dessen Phase ändern, sogenannte Phasenobjekte, sichtbar zu machen. Eine anschauliche Anwendung findet dieses Verfahren in der Biologie. Will man lebende Zellen mikroskopieren, steht man vor dem Problem, dass sie kaum Licht absorbieren, und somit schlecht sichtbar sind. Einfärben kann man sie auch nicht da sie dies nicht überleben würden. Also bedient man sich des Phasenkontrastverfahrens von Zernicke. Mit dessen Hilfe können die Zellen sichtbar gemacht werden. Mit Hilfe dieses Verfahrens, war es möglich den Verlauf einer Zellteilung aufzunehmen. Leider konnten wir diesen Versuch aufgrund fehlender technischer Vorraussetzungen nicht durchführen. 4 Einfluss der Schrägbeleuchtung Die Schrägbeleuchtung dient dazu, das Auflösungsvermögen des Mikroskops zu erhöhen. Gelangt man an die Grenzen des Auflösungsvermögens des Aufbaus, gelangt nur noch das Maximum 0. Ordnung ins Okular. Dies ist allerdings für die Bildentstehung unzureichend. Dreht man nun das Objekt aus der optischen Achse hinaus, kann man erreichen das zumindest noch ein Maximum erster Ordnung zum Objektiv gelangt. Somit ist es wieder möglich, ein Bild des Objektes zu erhalten, da zur Bildentstehung das Maximum 0. Ordnung und mindestens ein Maximum 1. Ordnung benötigt werden. 6

7 5 Laser Prinzipiell lassen sich alle breits durchgeführten Experimente auch mit Hilfe eines Lasers durchführen. Wir haben uns allerdings darauf beschränkt, uns das sekundäre und das primäre Bild anzusehen. Um dies zu ermöglichen, wurde der Laserstrahl mit Hilfe eines Strahlteilerwürfels und eines Spiegels, auf zwei parallel liegende opt. Schienen aufgespalten. Abbildung 5: schematischer Aufbau des Modellmikroskops mit Hilfe eines Lasers Wie bereits beim Modellmikroskop, war auch hier das primäre Bild ein Beugungsmuster, welches durch die Beugung des Lasers am Gitter verursacht wurde. Des weiteren war das sekundäre Bild eine vergrößerte Darstellung des Gitters. Der Vorteil der Arbeit mit dem Laser ist, dass das sekundäre Bild bereits auf einem normalen Schirm zu sehen ist, während man bei Verwendung einfachen Lichts, aufgrund der geringen Intensität, ein spezielles Okular benötigte. 7

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis Versuch O1 MIKROSKOP Seite 1 von 6 Versuch: Mikroskop Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik Raum: Physik.204

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik Technische Universität Dresden Fachrichtung Phsik M. Lehmann (08/2000, bearbeitet 04/2005) Phsikalisches Praktikum Versuch: MI Mikroskop Inhaltsverzeichnis 1 Ziel des Versuchs... 2 2 Grundlagen... 2 2.1

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 22 Das Mikroskop Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent: André

Mehr

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert Mikrobiologisches Grundpraktikum (modul B.Bio 118 Einführung in die Benutzung des Lichtmikroskops Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences)

3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences) 3.14 Mikroskop (Durchführung für den Studiengang Biological Sciences) 401 3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences) Ziel Das Experiment soll Verständnis vermitteln für den

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015 Version vom 26. April 2015 Thema 6: Mikroskop Abbildung 6.1: Das im Versuch zu benutzende binokulare Mikroskop Abbildung 6.2: Die Messlupen-Vorrichtung zur Bestimmung der Spaltbreite: Im Vordergrund die

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Versuch VM 6 (Veterinärmedizin) Mikroskop

Versuch VM 6 (Veterinärmedizin) Mikroskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 6 (Veterinärmedizin) Mikroskop Aufgaben 1. Es sind mit einem der beiden Objektive bei jeweils fünf verschiedenen Bildweiten

Mehr

405 Bilderfassung am Mikroskop

405 Bilderfassung am Mikroskop 405 Bilderfassung am Mikroskop 1. Aufgaben 1.1 Machen Sie sich mit Aufbau und Funktion des Durchlicht-Mikroskops vertraut! 1.2 Bestimmen Sie den Abbildungsmaßstab für vier e. Vergleichen Sie Ihre Ergebnisse

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Beugung und Laserspeckles

Beugung und Laserspeckles Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Wahlfach Technische Optik Beugung und Laserspeckles Gliederung Seite 1. Versuchsziel... 1

Mehr

Mikroskopie: Theoretische Grundlagen

Mikroskopie: Theoretische Grundlagen Mikroskopie: Theoretische Grundlagen Ein Mikroskop ist ein Präzisionsinstrument, der richtige Umgang damit erfordert zuerst theoretisches Grundwissen, damit es richtig bedient werden kann. Für jeden Einstellknopf

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 18.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Michelson Inteferometer - 1 1 Vorbetrachtung: zwei wellen heißen kohärent wenn sie bis auf eine Phase

Mehr

Abbildung durch eine Lochblende

Abbildung durch eine Lochblende Abbildung durch eine Lochblende Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Benötigtes Material Natur und Technik/ Schwerpunkt Physik Projektor mit F, für jeden Schüler eine Lochblende und einen Transparentschirm

Mehr

V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip

V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip V 23 Lichtmikroskop, Köhlersches Beleuchtungsprinzip A) Stichworte zur Vorbereitung Geometrische Optik, Mikroskop, Fernrohr, Lupe, Vergrößerungsdefinition bei Mikroskop und Fernrohr, Auflösungsgrenze des

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Optik des Mikroskops

Optik des Mikroskops Master MIW University of Lübeck Biomedizinische Optik II Optik des Mikroskops Einfluss der Beleuchtung auf Auflösung, Kontrast und Bildstrukturen Alfred Vogel / April 2012 Strahlengang im modernen Mikroskop

Mehr

Optische Systeme. Einbettung in das Studienmodell 10. Martina Gerken 22.10.2007. Universität Karlsruhe (TH) 1.2

Optische Systeme. Einbettung in das Studienmodell 10. Martina Gerken 22.10.2007. Universität Karlsruhe (TH) 1.2 Optische Systeme Martina Gerken 22.10.2007 Universität Karlsruhe (TH) Einbettung in das Studienmodell 10 1.2 Voraussetzungen und Zielgruppe 1.3 Festes Modellfach im Studienmodell 10: Optische Technologien

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Michelson Interferometer Gruppe 2, Team 5 Sebastian Korff Frerich Max 26.06.06 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 Funktionsweise -4-1.3 Relative

Mehr

Mikroskop. Der Kehrwert des Auflösungsvermögens ist der kleinste Abstand, den zwei Punkte haben dürfen, damit sie noch getrennt wahrgenommen werden.

Mikroskop. Der Kehrwert des Auflösungsvermögens ist der kleinste Abstand, den zwei Punkte haben dürfen, damit sie noch getrennt wahrgenommen werden. Versuch 10 Mikroskop Versuchsziel: Nach dem Modell der geometrischen Optik kann man durch immer stärkeres Heranführen eines Gegenstands an die Brennweite einer Sammellinse beliebig große Bilder auf einem

Mehr

P R A K T I K U M K O M M U N I K A T I O N S T E C H N I K. Versuch 8. Optische Datenträger

P R A K T I K U M K O M M U N I K A T I O N S T E C H N I K. Versuch 8. Optische Datenträger P R A K T I K U M K O M M U N I K A T I O N S T E C H N I K WS 2013/14 Versuch 8 Optische Datenträger Betreuer: Rainer Bornemann Versuchsbeschreibung Versuch 8: Optische Datenträger Version: 0.9 vom 2008-06-18

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Fortgeschrittenen - Praktikum. Laser-Scanning-Mikroskop

Fortgeschrittenen - Praktikum. Laser-Scanning-Mikroskop Fortgeschrittenen - Praktikum Laser-Scanning-Mikroskop Versuchsleiter: Herr Dr. Reyher Autor: Simon Berning Gruppe: 10, Dienstag Daniel Bruns, Simon Berning Versuchsdatum: 27.02.2007 Laser-Scanning-Mikroskop;

Mehr

Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen.

Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen. ZELLBIOLOGIE 1. Bau und Funktion der Zelle 1.1. Das Lichtmikroskop: Bau und Funktion Warum vergrößert ein Mikroskop? Strahlengang durch eine Sammellinse (konvex) (Hilfe unter http://www.scandig.info/linsen.html)

Mehr

Das Mikroskop. Eine Einführung in die Durchlichtmikroskopie. J. V. Herrmann. Bayerische Landesanstalt für Weinbau und Gartenbau.

Das Mikroskop. Eine Einführung in die Durchlichtmikroskopie. J. V. Herrmann. Bayerische Landesanstalt für Weinbau und Gartenbau. Fachzentrum Analytik Das Mikroskop Eine Einführung in die Durchlichtmikroskopie J. V. Herrmann März 2006 Mikroskop - Funktionsschema Dia-Projektor Projektionswand Dia Mikroskop = Zweistufige Abbildung

Mehr

Mikroskopie: Einen Blick ins Mikrokosmos

Mikroskopie: Einen Blick ins Mikrokosmos Mikroskopie Stand: WS09/10 (MIK) Seite 1 Mikroskopie: Einen Blick ins Mikrokosmos Stichworte: Geometrische Optik, Dünne Linse, konvex, konkav, Brechung, Brennebene, Fokus, Brennweite, optische Achse, Zwischenbild,

Mehr

Kleines Linsenfernrohr mit sicherem Sonnenfilter Preisgünstiger Bausatz aus dem Verlag AstroMedia

Kleines Linsenfernrohr mit sicherem Sonnenfilter Preisgünstiger Bausatz aus dem Verlag AstroMedia 1/4 Kleines Linsenfernrohr mit sicherem Sonnenfilter Preisgünstiger Bausatz aus dem Verlag AstroMedia 1 Im Internet: AstroMedia Schweiz / Astronomie zum Anfassen 2 Das Teleskop und das aufsteckbare Sonnenfilter

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild

Verkleinerung bei der Abbildung mit einer Sammelli n- reelles Bild. identische Abbildung mit einer Sammellinse, reelles Bild 1 Messungen am Mikroskop Wie gut sich Einzelheiten an einem Gegenstan erkennen lassen, hängt avon ab, unter welchem Sehwinkel sie em Auge erscheinen. Für ie Angabe er Vergrößerung wure eine eutliche Sehweite

Mehr

Interferometer OPL 29

Interferometer OPL 29 Interferometer OPL 29 Material: 1 Interferometer nach Michelson DL408-2I 1 Rundfuß mit Klemmsäule DS100-1R Theoretische Grundlagen: Beim Interferometer nach Michelson wird das von der Lichtquelle L kommende

Mehr

Universität Regensburg Wintersemester 2003/2004. Seminarvortrag zum Thema. Optische Geometrie. Auflösungsvermögen und Betrachtung im Fourierraum

Universität Regensburg Wintersemester 2003/2004. Seminarvortrag zum Thema. Optische Geometrie. Auflösungsvermögen und Betrachtung im Fourierraum Universität Regensburg Wintersemester 23/24 Seminarvortrag zum Thema Optische Geometrie Auflösungsvermögen und Betrachtung im Fourierraum Von Stefan Seidel 23. Oktober 23 Inhalt Abbe sche Theorie Kreisförmige

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP

Abbildung 1: Abbildung der Aperturblende in den Objektraum liefert die Eintrittspupille EP Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 04.12.2008 Eintrittspupille

Mehr

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Titel 33. I. Klassifizierung der mikroskopischen Methoden. II. Lichtmikroskop. Bildentstehung des Mikroskops. Haupterfordernisse der Bildentstehung. III. Auflösungsvermögen

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 15 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

Brennweite von Linsen und Linsensystemen

Brennweite von Linsen und Linsensystemen - D1.1 - Versuch D1: Literatur: Stichworte: Brennweite von Linsen und Linsensystemen Demtröder, Experimentalphysik Bd. II Halliday, Physik Tipler, Physik Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Optik Versuchsanleitungen von BG/BRG Lerchenfeld Klagenfurt Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen

Mehr

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Versuch GO2 Optische Instrumente

Versuch GO2 Optische Instrumente BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO2 Optische Instrumente I. Vorkenntnisse 2.07/10.06 Versuch GO 1, Funktionsprinzip des menschlichen Auges, Sehwinkel, Vergrößerung des Sehwinkels durch optische

Mehr

Versuch B4: Optische Analysemethoden / Mikroskopie

Versuch B4: Optische Analysemethoden / Mikroskopie Name 1: Matrikelnr.: Datum: ntestat: Name 2: Matrikelnr.: Datum: btestat: Gruppennr.: Punkte: Versuch B4: Optische nalysemethoden / Mikroskopie 1. Kurzbeschreibung In diesem Versuch werden der ufbau, die

Mehr

4.5 Strahlengang im Mikroskop (Versuch 75)

4.5 Strahlengang im Mikroskop (Versuch 75) 4.5 Strahlengang im Mikroskop (Versuch 75) 61 4.5 Strahlengang im Mikroskop (Versuch 75) (Fassung 03/2010) Kurze eschreibung der Komponenten eines Mikroskops Das Lichtmikroskop besteht im wesentlichen

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr