Physikalisches Praktikum 3. Semester

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physikalisches Praktikum 3. Semester"

Transkript

1 Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1

2 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen dem Beugungsbild der Lichtquelle (primäres Bild) und dem reellen Abbild des beugenden Objekts (sekundäres Bild). Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergößerung auf! 2. Untersuchen Sie bei verschiedenen Objekten den Einfluss von Veränderungen des primären Bildes auf das sekundäre Bild. 3. Demonstrieren Sie das Phasenkontrastverfahren nach Zernicke! 4. Untersuchen Sie den Einfluss der Schrägbeleuchtung. 1 Modellmikroskop und Bildentstehung: 1.1 allgemeine Theorie über das Mikroskop und Bildentstehung: Beim Mikroskop wird das Licht an der Struktur eines Präparates gegeugt. Demzufolge erzeugt das Präparat eine Beugungsfigur durch Interferenz in der Brennebene des Objektivs. Die Entstehung von Maxima und Minima sind dabei für das betreffende Präparat absolut charakteristisch. Abbe bezeichnete diese Beugungsfigur als primäres Zwischenbild. Abbildung 1: Beugungsfigur in der Objektivbrennebene 2

3 Unterschied Auflösungsvermögen - Vergrößerung: Das Auflösungsvermögen eines Objektivs ist im Wesentlichen davon abhängig, wie viel Licht von einer Struktur des Präparates in das Objektiv gelangt. Die Lichtmenge, die ankommt, ist durch die numerische Apertur bestimmt, die sich wiederum aus dem Öffnungswinkel des Objektivs und der Brechzahl des Mediums berechnet. Je größer der Öffnungswinkel, desto höhere Ordnungen der Maxima können erfasst werden und desto mehr Licht gelangt in das Obektiv. Je größer die numerische Apertur ist, desto mehr gebeugtes Licht gelangt durch das Objektiv zur Interferenz in die Objektivbrennebene und desto größer ist auch das Auflösungsvermögen eines Objektivs. Die Vergrößerung hängt dabei im Wesentlich nur von der verwendeten Linse ab. Ohne die dazu passende numerische Apertur kommt es zur sogenannten leeren Vergrößerung (siehe Billigmikroskope), wodurch das Präparat zwar stark vergrößert aber keineswegs detailliert erscheint! Auflösungsvermögen des Mikroskops: definiert durch Mindestabstand x min zweier Objektpunkte Punkte müssen mindestens diesen Abstand haben, um als 2 getrennte Punkte wahrgenommen zu werden numerische Apertur: die numerische Apertur A beschreibt das Auflösungsvermögen eines Objektivs d.h. sie ist ein Maß dafür, wie detailiert das Objekt abgebildet wird je größer die Apertur, desto besser die Auflösung A = n sinα Der Zusammenhang zwischen dem Auflösungsvermögen und der numerischen Apertur lautet: x min = A λ Um ein Objektdetail aufzulösen, müssen in dessen Beugungsbild neben dem Maximum 0. Ordnung mindestens noch die Maxima der 1. Ordnung erscheinen. Ob diese Bedingung erfüllt werden kann, hängt nicht zuletzt mit der numerischen Apertur des verwendeten Objektivs ab. (mehr dazu bei 2.) ) 1.2 Aufbau des Modellmikroskops Abbildung 2: schematischer Aufbau unseres Modellmikroskops Es wird ein Modell eines Mikroskops auf einer optischen Schiene aufgebaut. Alle Elemente sind mit Hilfe eines Justierkreuzes auf die optische Achse ausgerichtet. Nun wird das Licht über eine Blende durch ein 3

4 Gitter auf eine Sammellinse geleitet. Hierbei sollte man darauf achten, dass das Gitter einen Abstand von der Linse hat, der größer ist als die Brennweite der Linse, da ansonsten kein reelles Bild entsteht. Dabei sollte darauf geachtet werden, dass man durch das am Ende der opt. Bank montierte Okular das Sekundärbild sehen kann. Abbildung 3: das Beugungsbild (Primärbild) Das Sekundärbild, ist die Abbildung des Objektes (Gitter). Nun wird das Primärbild gesucht. Dieses ist ein Interferenzmuster, dass durch die Beugung des Lichtes am Gitter entsteht. Bei der Beugung entstehen phasenverschoben Wellen, die durch die Linse übereinander gebracht werden. Somit löschen sie sich gegenseitig aus, bzw. verstärken einander. Auf diese Weise entsteht das Primärbild. Für die weiteren Versuche, wird an dieser Stelle ein mit Alufolie bespannter Diarahmen montiert. Ausserdem bleibt zu erwähnen, dass hier monochromatisches grünes Licht verwendet wurde. Zu diesem Zweck wurde das Licht der Lampe durch einen entsprechenden Filter geleitet. Abbildung 4: das reelle vergrößerte Sekundärbild 2 Zusammenhang zwischen primärem und sekundärem Bild Experimentell wurden nun Zusammenhänge zwischen den primären Zwischenbild und dem sekundären Bild untersucht. Wir haben in Aufgabenstellung bereits gesehen, dass das sekundäre Bild eine Vergrößerung des Gitters darstellt, während das primäre Zwischenbild die Beugungsfigur, entstehend durch Interferenz ist. 2.1 Versuchsdurchführung: Das sekundäre Bild wurde in einer Streulinse mit Lupe abgebildet und beobachtet. Im Folgenden wird immer davon ausgegangen, dass das sekundäre Bild in dieser Steulinse (im Nachfolgenden wird es auch nur mit Schirm bezeichnet) beobachtet wird. 4

5 1. Maßnahme: In den Strahlengang wurde nun lichtundurchlässige Alufolie gebracht und so platziert, dass sie als Schirm für das primäre Zwischenbild dient. Durch die Lichtundurchlässigkeit der Alufolie ist ein Entstehen des sekundären Bildes natürlich nicht möglich, so dass kein Licht die Streulinse mit Lupe erreicht. 2. Maßnahme: Nun wurde die Alufolie am nullten Maximum mit einem sehr spitzen Gegenstand durchstochen, so dass nur Licht des nullten Maximums den Schirm erreicht. Das sekundäre Bild war eine gleichmäßig schwach erhellte Fläche, ohne erkennbare Struktur. theoretische Betrachtung: Um die Struktur eines Präparates aufzulösen, müssen in dessen Beugungsbild mindestens zwei Maxima erscheinen. Ohne diese beiden Maxima kann kein Bild des Präparates entstehen! 3. Maßnahme: Die Alufolie wurde so durchstochen, dass die Maxima nullter und erster Ordnung durchgelassen werden. Es erscheint ein nahezu identisches sekundäres Bild wie in Aufgabenstellung 1) gesehen. Es entsteht somit ein vergrößertes Bild des Gitters. theoretische Betrachtung: Da mehr als nur ein Maxima durchgelassen wird, entsteht ein sekundäres Bild. Dieses unterscheidet sich zu dem sekundären Bild in Aufgabenstellung 1) nur dadurch, dass es weniger Intensität besitzt, da insgesamt weniger Licht hindurchgelassen wird. Da die Intensität des nullten und ersten Maximums jedoch deutlich größer ist, als bei allen anderen Maxima konnte keine Hellligkeitsänderung festgestellt werden, wodurch der Schluss gezogen werden kann, dass die Bildentstehung bei Aufgabenstellung 1) im Wesentlichen durch die Maxima erster und nullter Ordnung geschieht. 4. Maßnahme: Nun wurde mit einem dünnen Gegenstand das Loch in der Alufolie des nullten Maximums verdeckt! Die Auflösung des sekundären Bildes verringerte sich um die Hälfte, d.h. der Gitterabstand halbierte sich. 5

6 theoretische Betrachtung: Der Abstand zwischen den Gitterlinien ist im Wesentlichen durch den Abstand der Maxima bestimmt. Eine Näherungsformel für das entstehende sekundäre Bild ist: s = λ l d s = Abstand zwischen zwei Maxima λ = Wellenlänge des Lichtes l = Abstand zwischen primären und sekundärem Bild d = Auflösung des sekundären Bildes (Abstand zwischen den Gitterlinien) Für gleichbleibende l und λ ist somit s d 1 Durch das Verdecken des nullten Maximums, beträgt der Abstand zwischen zwei Maxima nun die Distanz zwischen den beiden Maxima erster Ordung = doppelt so groß wie der Abstand nulltes zum ersten Maximum. Demzufolge halbiert sich der Abstand zwischen den Gitterlinien im sekundären Bild. Aus der obigen Formel wird des Weiteren deutlich, dass es keinen Unterschied macht, welche Maxima ich betrachte. Derselbe Effekt der Halbierung des Gitterabstandes würde auch auftreten, wenn nur das nullte und 2. Maximum durchgelassen wird! Entscheidend ist nur der Abstand zwischen zwei Maxima. (es sei angemerkt, dass die Intensität des sekundären Bildes natürlich sehr wohl von der Ordnung der Maxima abhängig ist!!) 3 Phasenkontrastverfahren nach Zernicke Es wird deutlich, dass das beobachtbare mikroskopische Bild letztlich von der Beugungsfigur in der Objektivbrennebene abhängig ist. Für die mikroskopische Praxis bedeutet dies, dass künstlich herbeigeführte Veränderungen dieser Beugungsfigur auch das mikroskopische Endbild beeinflussen. Diese Erkenntnis liegt der Theorie und der praktischen Realisierung des Phasenkontrast-Verfahrens zugrunde. Mit Hilfe dieses Kontrastverfahrens, ist es möglich Objekte, die unter normalen Mikroskopen kaum sichtbar sind sichtbar zu machen. Hierzu werden die Änderungen der Phase, die durch das zu beobeachtende Objekt verursacht werden sichtbar gemacht. Dies kann dadurch realisiert werden, dass man das Licht, welches vom 0. Maximum ausgeht, in der Phase verschiebt. Dies führt dazu, dass es mit dem Licht welches von den anderen Maximas kommt interferiert. Auf diese Weise werden die vom Objekt verursachten Phasenänderungen sichtbar gemacht. Somit ist es möglich, die Struktur des beobachten Objekts sichtbar zu machen. Anwendung findet dieses Verfahren um Objekte, die kaum Licht absorbieren, aber dessen Phase ändern, sogenannte Phasenobjekte, sichtbar zu machen. Eine anschauliche Anwendung findet dieses Verfahren in der Biologie. Will man lebende Zellen mikroskopieren, steht man vor dem Problem, dass sie kaum Licht absorbieren, und somit schlecht sichtbar sind. Einfärben kann man sie auch nicht da sie dies nicht überleben würden. Also bedient man sich des Phasenkontrastverfahrens von Zernicke. Mit dessen Hilfe können die Zellen sichtbar gemacht werden. Mit Hilfe dieses Verfahrens, war es möglich den Verlauf einer Zellteilung aufzunehmen. Leider konnten wir diesen Versuch aufgrund fehlender technischer Vorraussetzungen nicht durchführen. 4 Einfluss der Schrägbeleuchtung Die Schrägbeleuchtung dient dazu, das Auflösungsvermögen des Mikroskops zu erhöhen. Gelangt man an die Grenzen des Auflösungsvermögens des Aufbaus, gelangt nur noch das Maximum 0. Ordnung ins Okular. Dies ist allerdings für die Bildentstehung unzureichend. Dreht man nun das Objekt aus der optischen Achse hinaus, kann man erreichen das zumindest noch ein Maximum erster Ordnung zum Objektiv gelangt. Somit ist es wieder möglich, ein Bild des Objektes zu erhalten, da zur Bildentstehung das Maximum 0. Ordnung und mindestens ein Maximum 1. Ordnung benötigt werden. 6

7 5 Laser Prinzipiell lassen sich alle breits durchgeführten Experimente auch mit Hilfe eines Lasers durchführen. Wir haben uns allerdings darauf beschränkt, uns das sekundäre und das primäre Bild anzusehen. Um dies zu ermöglichen, wurde der Laserstrahl mit Hilfe eines Strahlteilerwürfels und eines Spiegels, auf zwei parallel liegende opt. Schienen aufgespalten. Abbildung 5: schematischer Aufbau des Modellmikroskops mit Hilfe eines Lasers Wie bereits beim Modellmikroskop, war auch hier das primäre Bild ein Beugungsmuster, welches durch die Beugung des Lasers am Gitter verursacht wurde. Des weiteren war das sekundäre Bild eine vergrößerte Darstellung des Gitters. Der Vorteil der Arbeit mit dem Laser ist, dass das sekundäre Bild bereits auf einem normalen Schirm zu sehen ist, während man bei Verwendung einfachen Lichts, aufgrund der geringen Intensität, ein spezielles Okular benötigte. 7

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Experimentatoren: Thomas Kunze und Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 19.10.04 Inhaltsverzeichnis 1 Ziel des Versuches

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis

Man definiert üblicherweise als Vergrößerung (Angular- oder Winkelvergrößerung) eines optischen Instruments das Verhältnis Versuch O1 MIKROSKOP Seite 1 von 6 Versuch: Mikroskop Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik Raum: Physik.204

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 22. Das Mikroskop. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 22 Das Mikroskop Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent: André

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop FB Physik Laborversuche zur Physik 2 II - 6 Auflösung beim Mikroskop Reyher, 23.07.12 Ziele Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop Experimentelle Überprüfung einiger Aussagen

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik

Mikroskop. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: MI. Fachrichtung Physik Technische Universität Dresden Fachrichtung Phsik M. Lehmann (08/2000, bearbeitet 04/2005) Phsikalisches Praktikum Versuch: MI Mikroskop Inhaltsverzeichnis 1 Ziel des Versuchs... 2 2 Grundlagen... 2 2.1

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Versuchsvorbereitung: Auflösungsvermögen

Versuchsvorbereitung: Auflösungsvermögen Praktikum Klassische Physik II Versuchsvorbereitung: Auflösungsvermögen (P2-10) Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 28. Juni 2010 Inhaltsverzeichnis 1 Auflösungsvermögen des Auges 2 1.1

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

7.7 Auflösungsvermögen optischer Geräte und des Auges

7.7 Auflösungsvermögen optischer Geräte und des Auges 7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen

Mehr

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit

Mikroskopie. durchgeführt am 03.05.2010. von Matthias Dräger und Alexander Narweleit Mikroskopie durchgeführt am 03.05.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Einleitung Ein klassisches optisches ild ist eine Projektion eines Gegenstandes

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert

Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind in dem begleitenden Text erläutert Mikrobiologisches Grundpraktikum (modul B.Bio 118 Einführung in die Benutzung des Lichtmikroskops Die kurzen Filme erläutern die Verwendung eines einfachen Lichtmikroskops. Einige wichtige Grundlagen sind

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 18.Mai 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - Michelson Inteferometer - 1 1 Vorbetrachtung: zwei wellen heißen kohärent wenn sie bis auf eine Phase

Mehr

O8 Fraunhofersche Beugung

O8 Fraunhofersche Beugung Physikalische Grundlagen Grundbegriffe Huygens-Fresnelsches Prinzip Interferenz Beugungsordnungen Auflösungsvermögen Laser Zum Verständnis des Entstehens optischer Abbildungen ist die geometrische Optik

Mehr

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015 Version vom 26. April 2015 Thema 6: Mikroskop Abbildung 6.1: Das im Versuch zu benutzende binokulare Mikroskop Abbildung 6.2: Die Messlupen-Vorrichtung zur Bestimmung der Spaltbreite: Im Vordergrund die

Mehr

Abbildung durch eine Lochblende

Abbildung durch eine Lochblende Abbildung durch eine Lochblende Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Benötigtes Material Natur und Technik/ Schwerpunkt Physik Projektor mit F, für jeden Schüler eine Lochblende und einen Transparentschirm

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Grundlagen der Lichtmikroskopie

Grundlagen der Lichtmikroskopie Lehrerfortbildung Nanobiotechnologie Grundlagen der Lichtmikroskopie Juliane Ißle 03.04.03 Universität des Saarlandes Fachrichtung Experimentalphysik Inhalt Prinzipieller Mikroskopaufbau Köhler sche Beleuchtung

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Vorbereitung zur geometrischen Optik

Vorbereitung zur geometrischen Optik Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Mikroskopie: Theoretische Grundlagen

Mikroskopie: Theoretische Grundlagen Mikroskopie: Theoretische Grundlagen Ein Mikroskop ist ein Präzisionsinstrument, der richtige Umgang damit erfordert zuerst theoretisches Grundwissen, damit es richtig bedient werden kann. Für jeden Einstellknopf

Mehr

3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences)

3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences) 3.14 Mikroskop (Durchführung für den Studiengang Biological Sciences) 401 3.14. Mikroskop (Durchführung für den Studiengang Biological Sciences) Ziel Das Experiment soll Verständnis vermitteln für den

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Versuch VM 6 (Veterinärmedizin) Mikroskop

Versuch VM 6 (Veterinärmedizin) Mikroskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 6 (Veterinärmedizin) Mikroskop Aufgaben 1. Es sind mit einem der beiden Objektive bei jeweils fünf verschiedenen Bildweiten

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik

Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik MECHANIK I SCHWERPUNKT & GLEICHGEWICHT, IMPULS- & ENERGIEERHALTUNG MITTWOCH 25.10.17 UND 01.11.17 GRUPPE A (DEMO) Schwerpunkt (stabiles, labiles und indifferentes Gleichgewicht), Hebelgesetze, Drehmoment,

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Optische Instrumente

Optische Instrumente Klassische Physik-Versuch 21 KLP-21-1 Optische Instrumente 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche 20 23 1.2 Auflösungsvermögen eines Mikroskops Lit.: Anhang 3.1 und 3.2 1.3 Entstehung

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion Optisches Institut der TU Berlin Technische Optik Optisches Praktikum, Aufgabe 15: Mikroprojektion 1. Ziel der Aufgabe Kennenlernen der Grundlagen von Abbildungs- und Beleuchtungsstrahlengängen und deren

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

Fortgeschrittenen - Praktikum. Laser-Scanning-Mikroskop

Fortgeschrittenen - Praktikum. Laser-Scanning-Mikroskop Fortgeschrittenen - Praktikum Laser-Scanning-Mikroskop Versuchsleiter: Herr Dr. Reyher Autor: Simon Berning Gruppe: 10, Dienstag Daniel Bruns, Simon Berning Versuchsdatum: 27.02.2007 Laser-Scanning-Mikroskop;

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Physiklabor 4 Michel Kaltenrieder 10. Februar

Mehr

Beugung und Laserspeckles

Beugung und Laserspeckles Fakultät für Maschinenbau Institut für Lichttechnik und Technische Optik Fachgebiet Technische Optik Praktikum Wahlfach Technische Optik Beugung und Laserspeckles Gliederung Seite 1. Versuchsziel... 1

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr