2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

Größe: px
Ab Seite anzeigen:

Download "2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar."

Transkript

1 . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen Glechungen lässt sch analtsch berechnen, gleches glt auch noch ür kubsche Parabeln. Für Polnome höherer Ordnung oder sog. transzendente Glechungen esteren kene geschlossenen Lösungen.

2 . Intervallschachtellung Das enachste Verahren zur Nullstellenbestmmung stellt das Intervallschachtellungsverahren Bsekton dar. Es leert ür en Intervall [a,b] de Lösung von =, wenn de Funkton m Intervall stetg st und de Funktonswerte a und b entgegen gesetzte Vorzechen bestzen. Zu Begnn der Appromaton wrd a = a und b = b gesetzt und der Mttelpunkt des Intervalls [a, b ] berechnet. = a b + a Ist =, st de Nullstelle mt = m Intervall geunden. Wenn ncht, wrd geprüt, ob de Funktonswerte a und ungleche Vorzechen haben. Dann legt de gesucht Nullstelle m Intervall [a, ]. Andernalls legt de Nullstelle m Intervall [, b ]. Das Verahren wrd so lange ortgesetzt, bs de Nullstelle hnrechend genau durch de Näherung n appromert wrd.

3 Intervall- Schachtellungsverahren: a =a = 3 b b =b a En Intervall [a +, b + ], das ene Nullstelle der Funkton enthält, wrd aus enem Intervall [a, b ], konstruert mt + = a b + a Dann glt a + = a und b + =, wenn a < st, andernalls wrd a + = und b + = b gesetzt. 3

4 De Appromaton wrd nach n Schrtten abgebrochen, wenn de Länge des Intervalls [a n, b n ] klener st als en vorgegebener Toleranzwert Tol an bn < Tol Vor Begnn der Bsekton muss en Intervall [a, b] geunden werden, ür das a b < zutrt. Be jedem Iteratonsschrtt n wrd de Intervalllänge halbert. Daraus olgt mt n b a = n n < Tol de Anzahl der benötgten Schrtte n ür ene vorgegebene Toleranz b a n > log Tol b a,443 ln Tol mt dem natürlchen Logarthmus. De Anzahl der Iteratonen st be vorgegebener Genaugket abhängg von der Länge des Startntervalls. 4

5 Vortele des Intervallschachtellungsverahrens: Es ührt theoretsch mmer zu ener Lösung De ür ene vorgegebene Genaugket notwendge Anzahl von Schrtten kann vorab berechnet werden Nachtele: Es konvergert langsam ene Bnärstelle je Iteratonsschrtt Gute Näherungen können m Verlau der Iteraton weder verloren gehen Es wrd daher ot als zuverlässge Startroutne ür ezentere Verahren benutzt. Obwohl das Verahren grundsätzlch konvergert, sollte n ener Anwendung ene ma. zulässge Anzahl von Iteratonsschrtten denert werden, da es be klenen Intervalllängen augrund von Rundungsehlern zu Endlosschleen kommen kann. Weterhn st zu prüen, ob der Mttelpunkt enes Intervalls berets de gesuchte Nullstelle darstellt. 5

6 Bespel: = = Nullstellen: =-3; =; 3 =5; Anzahl der Iteratonen: b a n > log Tol 3,443 ln, 8, Startntervall: Genaugket: 3. Start a b a b Bem., 3,,5 7,875 3, -, a =,5 3,,5-3,69 7,875 -, b 3 = 3,5,5,875,94 7,875-3,69 a 4 = 3 4,875,5,63 -,99,94-3,69 a 4 = 3 = = ,993...,6...,4... -,6...,3... -,39... b 9 = 8 9,993,4,998,5,3 -,6 Nach 9 Iteratonsschrtten wrd mt 8-9 =,4-,998 =,6 < Tol de erorderlche Genaugket errecht. 6

7 Flussdagramm Intervallschachtellung Start Deklaratonen a, b, Tol, ma a*b> nen ja Nullstelle ncht m Intervall Mttelpunkt =a+b-a/ = nen *a< nen a= ja ja b= Nullstelle st Mttelpunkt ja b-a<tol nen <ma nen Kene Konvergenz ja Nullstelle geunden Stop 7

8 Sub Bsekton 'Nullstellensuche nach dem Intervallschachtellungsverahren 'Autor: T. Preussler 'Deklaratonen Dm a, b, Tol,, d Dm, ma 'Genaugket Tol = ValSlde.ttTol.Value ma = 'Startntervall a = ValSlde.tta.Value 'Anangswert b = ValSlde.ttb.Value 'Endwert I a * b > Then MsgBo "Kene oder mehrere Nullstelle m Intervall" Et Sub End I 'Schlee For = To ma = a + b - a / 'Mttelpunkt 'Nullstelle st Mttelpunkt I = Then Tet = "De Nullstelle st Mttelpunkt" + Str MsgBo Tet Et Sub End I 'Auswahl des Suchntervalls I * a < Then b = Else a = End I 'Nullstelle geunden I Absb - a < Tol Then Tet = "De Nullstelle wrd nach " + Str + " Schrtten mt " + Str + " ermttelt" MsgBo Tet Et Sub Else Tet = " =" + Str + " =" + Str MsgBo Tet End I Net MsgBo "Kene Konvergenz" End Sub Functon 'Funktonswert ener kub. Parabel = 3 - * - 4 * ^ + ^ 3 End Functon 8

9 . Sekantenverahren Bem Sekantenverahren geht man ebenalls von enem Startntervall [a, b] aus und setzt = a und = b. Durch de Punkte P, und P, der Funkton wrd ene Gerade konstruert. Der Schnttpunkt deser Sekante mt der -Achse stellt de erste Näherung der gesuchten Nullstelle dar. Im nächsten Schrtt wrd de Sekante durch de Punkte P, und P, gelegt und der Schnttpunkt 3 mt der -Achse als verbesserte Näherung der Nullstelle berechnet. Das Verahren wrd so lange ortgesetzt, bs de Nullstelle hnrechend genau durch de Näherung n appromert wrd. Im allgemenen legt bem Sekantenverahren der Schnttpunkt der Sekante mt der -Achse näher an der gesuchten Nullstelle als bem Intervallschachtellungsverahren und konvergert daher besser. 9

10 Sekantenverahren: =a 3 5 =b = Kennzechen des Verahrens st, dass de Sekanten mmer mt den drekt au enander olgenden Punkten P und P + gebldet werden, wobe en Intervall de Nullstelle notwendgerwese ncht enthalten muss.

11 Umwelt-Campus Brkeneld Ausgehend von enem Startntervall [a, b] wrd = a und = b gesetzt. Mt der Geradenglechung - /- = - / - durch de Punkte P und P olgt de Glechung der Sekante + = ergbt sch de erste Näherung der Nullstelle und damt de allgemene Berechnungsvorschrt ür das Sekantenverahren: Den Schnttpunkt der Sekante mt der -Achse erhält man aus + = und nach augelöst =

12 De Appromaton + ener Nullstelle der Funkton ergbt sch mt den Näherungen und - nach der Glechung + = Das Startntervall muss bem Sekantenverahren ncht de Nullstelle enthalten. =a =b = Allerdngs konvergert das Sekantenverahren ncht mmer. Be Konvergenz st das Verahren jedoch wesentlch schneller als de Intervallschachtellung. =a =b =

13 Auch bem Sekantenverahren wrd de Appromaton abgebrochen, wenn de Länge des Intervalls de vorgegebene Genaugket errecht hat. Bespele: =^3 4^ +3= Startntervall: Genaugket: Start , 3, -,, ,43 - -,99, ,43,96,96, -,99,586,586 -, Gegenüber der Intervallschachtellung kommt man bem Sekantenverahren mt ca. der Hälte der Iteratonsschrtte aus.,, 3

14 .3 Newton sches Verahren Be den bsher behandelten Verahren werden de Nullstelle ener Funkton berechnet durch Geraden, de den Verlau der Kurve appromeren. De beste Näherung ener Funkton durch ene Gerade stellt de Tangente n enem Punkt der Kurve dar. Das Newtonsche Verahren verwendet daher zur Nullstellenbestmmung Tangenten der Funkton. Vorausgesetzt, de Funkton st n der Umgebung ener Startnäherung der Nullstelle derenzerbar, erhält man de Glechung der Tangente durch = + ' mt der Abletung der Funkton. Nullsetzen und aulösen leert ene verbesserte Näherung der gesuchten Nullstelle mt. = ' 4

15 Newtonsche Verahren: 4 = De Appromaton + ener Nullstelle der Funkton errechnet sch aus der Näherung mt + = ' Das Verahren konvergert nur, wenn st. Wenn es konvergert, dann jedoch wesentlch schneller als de anderen Verahren. 5

16 Man kann zegen, das sch m Idealall mt jedem Schrtt de Anzahl der sgnkanten Stellen verdoppelt, d. h. de Genaugket wächst quadratsch! Nachtelg bem Newtonschen Verahren st aber, dass neben der Funkton auch deren erste Abletung bekannt sen muss. Bespel: = = Abletung: = 3 8 Nullstellen: =-3; =; 3 =5; Startnäherung: Genaugket: 7. Start + 3, -,,77,77-9,467 -,54,86 = = 3 4,86,997,665,48-5,65-5,3,997, 6

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

4 Digitale Filter und Bildoperationen

4 Digitale Filter und Bildoperationen Dgtale Flter und Bldoperatonen 51 4 Dgtale Flter und Bldoperatonen Blder welche durch ene Kamera augenommen wurden snd otmals ncht drekt ür ene nacholgende Bldanalyse geegnet. Gründe daür snd bespelswese

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung . Glechstrom und Glechspannung Glechstrom essung elektrscher Größen. Glechstrom und Glechspannung. Wechselstrom und Wechselspannung. essung von mpedanzen. essverstärker.5 Darstellung des etverlaufs elektrscher

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Ergänzende Bedingungen

Ergänzende Bedingungen Ergänzende Bedngungen der zu den Allgemenen Anschlussbedngungen n Nederspannung gemäß Nederspannungsanschlussverordnung (NAV) vom 1. Januar 2012 Inhaltsüberscht I. 1. BAUKOSTENZUSCHÜSSE (BKZ) GEMÄß 11

Mehr

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler

Gesetzlicher Unfallversicherungsschutz für Schülerinnen und Schüler Gesetzlcher Unfallverscherungsschutz für Schülernnen und Schüler Wer st verschert? Lebe Eltern! Ihr Knd st während des Besuches von allgemen bldenden und berufsbldenden Schulen gesetzlch unfallverschert.

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009

Mathematik der Lebensversicherung ( Spezialwissen ) Klausur vom 24.10.2009 DEUTSCHE AKTUARVEREINIGUNG e.v. Mathematk der Lebensverscherung ( Spezalwssen ) Klausur vom 4.0.009 De Klausur besteht aus 3 Aufgaben, de mt nsgesamt 80 Punkten bewertet werden. Um dese maxmale Punktzahl

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft Fakultät für Wrtschaftswssenschaft Lehrstuhl für Volkswrtschaftslehre, nsb. Makroökonomk Unv.-Prof. Dr. Helmut Wagner Klausur: Termn: Prüfer: Makroökonome 2.03.20, 8.00-20.00 Uhr Unv.-Prof. Dr. Helmut

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Statistische Datenanalyse und Optimierung

Statistische Datenanalyse und Optimierung Statstsche Datenanalyse und Optmerung.0.00 Glederung Vertelungsfunktonen Normalvertelung Normalvertelung mehrerer Vayrablen Abgeletete Vertelungen: χ -Vertelung, Student-t-Vertelung Statstsche ests Fehlerfortpflanzung

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Auslegung eines Extrusionswerkzeugs

Auslegung eines Extrusionswerkzeugs Prof. Dr.-Ing Torsten Kes: S Laustz Skrt Auslegung enes Extrusonswerkzeugs Engangsbemerkung: Das Skrt versteht sch als Ergänzung zur Vorlesung und st ncht als Ersatz für de ersönlche Anwesenhet der Studerenden

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen - 99 BetrVG Enstellung Engrupperung Umgrupperung Versetzung 95 Abs. 3 BetrVG G 4 G 4 G 3 G 2 G 1 G 3 G 2 G 1 neue Arbetsverhältnsse Verlängerung befrsteter AV Umwandlung n unbefrstete AV Beschäftgung von

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

XI Kalibrieren von LC-Messbrücken und Messgeräten

XI Kalibrieren von LC-Messbrücken und Messgeräten XI Kalbreren von LC-Messbrücken und Messgeräten XI.1 Kalbreren von Kapaztätsmessgeräten mt Standardkapaztäten X.1.1 Messaubau Für de Kalbrerung stehen z.b. olgende Normale Standard Capactor, Bld XI. von

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamk Thermodynamk Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamk 1 Enletung 2 Grundbegrffe 3 Systembeschrebung 4 Zustandsglechungen 5 Knetsche

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES 1 Enletung Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES Zel der Messung: Das Träghetsmoment des Rotors enes Elektromotors und das daraus resulterende de Motorwelle bremsende drehzahlabhängge

Mehr

Bewertung von Derivaten mit finiten Differenzen

Bewertung von Derivaten mit finiten Differenzen Bewertung von Dervaten mt fnten Dfferenzen Lutz Kruschwtz und Rolf Ketzler 22 Jul 2002 Inhaltsverzechns 1 Enführung 2 2 Rekaptulaton des Black Scholes Modells 2 3 Fnte Dfferenzen 3 31 Gtter und Dfferenzenbldung

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung Grundraktkum Physkalsche Cheme Versuch 22 Bestmmung des Aktvtätskoeffzenten mttels Damfdruckernedrgung Überarbetetes Versuchsskrt, 27..204 Grundraktkum Physkalsche Cheme, Versuch 22: Aktvtätskoeffzent

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

antriebstechnik TU Bergakademie Freiberg Institut für Elektrotechnik

antriebstechnik TU Bergakademie Freiberg Institut für Elektrotechnik TU Bergakademe Freberg Insttut für Elektrotechnk antrebstechnk Beckert, U.: Berechnung der Wrbelstromverluste n den Permanentmagneten von hochtourgen PM-Synchronmaschnen antrebstechnk 45 (6, Heft, S. 4-45

Mehr

Visualisierung der Volatilität bei der Interpolation von Zeitreihen: Excel-Makro Saffint

Visualisierung der Volatilität bei der Interpolation von Zeitreihen: Excel-Makro Saffint Vsualserung der Volatltät be der Interpolaton von Zetrehen: Excel-Makro Saffnt Norman Fckel Fredrch-Alexander-Unverstät Erlangen-Nürnberg Wrtschafts- und Sozalwssenschaftlche Fakultät Lehrstuhl für Statstk

Mehr

Optische Systeme. Inhalte der Vorlesung. Hausaufgabe: Reflexion mit Winkel. Vergleichen Sie Ihre Rechnung mit einem Experiment! n = tan. sin.

Optische Systeme. Inhalte der Vorlesung. Hausaufgabe: Reflexion mit Winkel. Vergleichen Sie Ihre Rechnung mit einem Experiment! n = tan. sin. Inhalte der Vorlesung 3. Optsche Systeme Martna Gerken 05..007. Grundlagen der Wellenoptk. De Helmholtz-Glechung. Lösungen der Helmholtz-Glechung: Ebene Wellen und Kugelwellen.3 Das Huygenssche Prnzp.4

Mehr

EAU SWH l$,0, wohngebäude

EAU SWH l$,0, wohngebäude EAU SWH l$,0, wohngebäude gemäß den $$ 6 ff, Energeensparverordnung (EnEV) :,:: Gültsbs: 09208 Gebäude Gebäudetyp Altbau Mehrfamlenhaus Adresse Hardstraße 3 33, 40629 Düsseldorf Gebäudetel Baujahr Gebäude

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Online-Services Vorteile für Mandanten im Überblick

Online-Services Vorteile für Mandanten im Überblick Onlne-ervces Vortele für en m Überblck teuerberechnung Jahresbschluss E-Mal Dgtales Belegbuchen Fgur-enzeln De Entfernung zu Ihrem Berater spelt mt deser Anwendung kene Rolle mehr. Und so funktonert s:

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

Laufzeitanalyse dreier Versionen eines Mehrparteien-Multiplikationsprotokolls

Laufzeitanalyse dreier Versionen eines Mehrparteien-Multiplikationsprotokolls Regensburger DISKUSSIONSBEITRÄGE zur Wrtschaftswssenschaft Unversty of Regensburg Workng Papers n Busness, Economcs and Management Informaton Systems Laufzetanalyse dreer Versonen enes Mehrparteen-Multplkatonsprotokolls

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Komplex: Bestimmung der elektrischen Leitfähigkeit und des ph-wertes von Elektrolytlösungen und Wässern

Komplex: Bestimmung der elektrischen Leitfähigkeit und des ph-wertes von Elektrolytlösungen und Wässern Hochschule für Technk, Wrtschaft und Kultur Lepzg (FH) Fb Informatk, Mathematk und Naturwssenschaften - Cheme - Chemsches Praktkum: Energetechnk Komplex: Bestmmung der elektrschen Letfähgket und des ph-wertes

Mehr

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800

2 Halbleitersensoren SC-T100 / SC-M1000 / SC-L25 / SC-D300 / SC-D800 Sensoren analog (Komponenten) Features Applcatons enfach und kostengünstg Prozessüberwachung Sensoren für Lcht, Druck, Weg, Temperatur, Beschleungung, Schall, Magnetfeld Entwcklung, Schule, Ausbldung sowe

Mehr

Online-Services Vorteile für Mandanten im Überblick

Online-Services Vorteile für Mandanten im Überblick Onlne-ervces Vortele für en m Überblck Fgur-enzeln E-Mal Dgtales Belegbuchen Fgur-Gruppe teuerberater austausch mt Kassenbuch der Fnanzverwaltung onlne hreschluss Jahresbschluss De Entfernung zu Ihrem

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE

Angeln Sie sich Ihr Extra bei der Riester-Rente. Private Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Prvate Altersvorsorge FONDSGEBUNDENE RIESTER-RENTE Angeln Se sch Ihr Extra be der Rester-Rente. Rendtestark vorsorgen mt ALfonds Rester, der fondsgebundenen Rester-Rente der ALTE LEIPZIGER. Beste Rendtechancen

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Universität Koblenz Landau Fachbereich Informatik

Universität Koblenz Landau Fachbereich Informatik Unverstät Koblenz Landau Fachberech Informatk Computergenererte Federzechnungen (Strchzechnungen, Pen-And-Ink Drawngs) Gudo Stegmann Matrkelnummer 882022 Semnar Computergraphk betreut von Prof. Dr.-Ing.

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr