Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung:

Größe: px
Ab Seite anzeigen:

Download "Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung:"

Transkript

1 Genauigkeiten, Fehler, Ausgleichung Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung: Die x- und y-werte weichen um maximal +/- 10 Meter von den wirklichen Werten ab. Interessant zu wissen wäre, wie groß der mittlere Fehler ist, wie stark die einzelnen Werte gegenüber den tatsächlichen streuen, oder auch, wie viele der gemessenen Werte dabei um nur +/- 1 Meter vom Soll abweichen. Ebenfalls interessant ist natürlich auch, woher die Fehler stammen und ob und wie man sie erkennen kann.

2 Die Begriffe Fehler, (Un-)Genauigkeit und Toleranz werden oft synonym verwandt und sind nicht scharf voneinander getrennt. Die Koordinaten sind auf 1 Meter genau meint i.d.r. die Fehler liegen bei maximal 1 Meter oder die Abweichungen von den exakten Werten betragen maximal 1 Meter. Fehler = Differenz zwischen Soll- und Istwert, auch bezeichnet als Messunsicherheit oder Messabweichung (DIN 1319). Grundsatz: Keine Messung ist fehlerfrei! Es gibt nur sehr wenige Ausnahmen, z.b. das Abzählen einer ganzzahligen Menge ( hier im Raum befinden sich gerade 15 Personen ). Beispiel: Ein Tisch ist m breit, wir messen m, der Fehler (die Messabweichung) beträgt m. Frage: Ist der Tisch tatsächlich genau m breit?

3 Man unterscheidet üblicherweise: Grobe Fehler sind z.b. die Folge einer falschen Bedienung der Messeinrichtung. Beispiel Zollstock: Nicht vollständig abgewickelt. Abhilfe: Sorgfältiges Arbeiten. Systematische Fehler stammen meist von der Messeinrichtung. Beispiel Zollstock: Gesamtlänge statt m als Folge von temperatur- oder altersbedingter Schrumpfung. Abhilfe: Wegwerfen oder kalibrieren. Zufällige (nicht-systematische) Fehler entstehen dagegen meist bei der Messung selbst, trotz sorgfältigen Arbeitens. Hierzu gehört auch die Streuung aufgrund der begrenzten Auflösung der Messeinrichtung. Beispiel Zollstock: Auch bei korrektem Einsatz liegt die Ablesegenauigkeit bei maximal ¼ Millimeter. Regel: Grobe Fehler vermeiden, systematische Fehler ermitteln und für die Korrektur der Messwerte berücksichtigen.

4 Eichen, Kalibrieren Beim Eichen wird in das Messinstrument eingegriffen. Beispiel Waage: Diese wird so reguliert (justiert), dass eine Anzeige von 500 Gramm innerhalb einer vorgegebenen Toleranz stimmt : Das tatsächliche Gewicht liegt dann z.b. zwischen 499 und 501 g. Bei einer Kalibrierung wird dagegen nicht in das Messinstrument eingegriffen, sondern es wird eine Fehlerkurve bestimmt und diese für eine spätere rechnerische (externe) Korrektur verwendet. Beispiel Waage: Diese habe einen Messbereich von 0 bis 1000 g. Man ermittelt die Abweichungen bei 0, 100, 200, 300,..., 1000 g, bestimmt daraus ein Ausgleichspolynom und korrigiert damit die gemessenen / angezeigten Werte. Beispiel Zollstock, vorige Folie (tatsächliche Länge m): Der Korrekturfaktor bewirkt, das die volle Länge wieder stimmt und damit jede gemessene und korrigierte Strecke genauer ist.

5 Frage zum Zollstock (*): Ist das wirklich so? Als erstes haben wir kontrolliert, ob die zu geringe Länge Folge eines fehlenden Stückes ist (abgebrochen, abgesägt; dies wäre ein grober Fehler). Da aber die aufgedruckte Skala den vollen Bereich cm zeigt, konnte dies ausgeschlossen werden. Dann haben wir überlegt, was die Ursache sein könnte. Dabei kam für uns nur eine Schrumpfung in Frage. Sodann haben wir implizit vorausgesetzt (!), dass sich die Schrumpfung gleichmäßig (also linear) ausgewirkt hat. Mit anderen Worten: Auf 2 Meter fehlen 5 mm, auf 1 Meter dann also 2.5 mm usw. Diese Voraussetzung haben wir genutzt, um dann die Korrektur mit einem einzigen Streckfaktor zu berechnen! Mathematisch gesprochen haben wir das Ausgleichspolynom auf die lineare Gleichung f(x) = *x reduziert. (*) nach DIN/ISO übrigens Gliedermaßstab!

6 Ausgehend von vorigem Beispiel wollen wir uns einige Grundlagen der Ausgleichsrechnung ansehen. f(x) Messwerte m m Annahme (!): Der Schrumpf f(x) ist linear daher benötigen wir zur Bestimmung der Geradengleichung nur 2 Messwerte. x

7 Zur Sicherheit lesen wir nun zusätzlich den Zollstock bei 1 Meter Soll- Länge ab f(x) Ausgleichsgerade Polynom 2. Grades m m? m und haben ein Problem. x

8 Falls der Schrumpf tatsächlich linear ist, stecken in unseren Messungen ein oder mehrere Fehler. Diese Tatsache können wir erkennen, können aber den oder die Fehler nicht lokalisieren (welche Messung/en ist/sind zu ungenau?) Möglicherweise ist der Schrumpf aber gar nicht linear! Dann wäre die Frage, wie wir ihn mathematisch am besten beschreiben können z.b. exponentiell? Besser: Erst einmal Informationen darüber beschaffen, welches Schrumpfverhalten das Material (Holz, Kunststoff) aufweist. Denn: Wenn wir jetzt einfach von einer Ausgleichsgeraden abgehen und statt dessen ein Polynom n-ten Grades zulassen, wird es noch komplizierter Um dies zu verdeutlichen, beschaffen wir uns zusätzlich weitere Messwerte.

9 Merke: Mit einem Polynom genügend hohen Grades biegen wir uns alles passend zurecht! f(x) Abweichungen Soll-Ist Ausgleichspolynom Aber: Ist es von den physikalischen Eigenschaften des Materials her zulässig, den Schrumpf über das dargestellte Polynom zu modellieren? x

10 Gehen wir nun als Beispiel davon aus, dass der Schrumpf tatsächlich linearen Charakter hat, und betrachten wir drei Messungen: f(x) Ausgleichsgerade Restfehler (Residuen) Die Differenzen zwischen den gemessenen Werten und den Funktionswerten der Ausgleichsgeraden deuten auf einen oder mehrere Messfehler hin. Aber: Welcher Punkt ist falsch? x

11 Wiederum beschaffen wir uns weitere Messwerte... f(x) Ausgleichsgerade Restfehler (Residuen)... und können jetzt aufgrund der guten Überbestimmung einen Messfehler (Ausreißer) lokalisieren und entfernen. x

12 Fassen wir zusammen: Bevor ein Ausgleichspolynom gerechnet wird, ist unbedingt zu klären, welchen Grad dieses Polynom aus sachlichen Gründen haben darf. Zur Bestimmung eines Polynoms vom Grad n sind n+1 Messwerte nötig: f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x Hat man genau n+1 Punkte, ist die Lösung eindeutig und daher ungeeignet zum Auffinden von Fehlern. Bei geringer Überbestimmung findet man zwar heraus, dass u.u. fehlerhafte Messwerte vorliegen, kann diese aber nicht lokalisieren. Erst bei guter Überbestimmung ist das Auffinden einzelner Messfehler (Ausreißer, Peaks) mit Hilfe der Residuen möglich!

13 Wichtig: Wir haben gesehen, dass es gefährlich ist, den Grad des Polynoms zu hoch anzusetzen! Damit kann man zwar die verbleibenden Fehler (Residuen) beliebig klein rechnen und so eine hohe Scheingenauigkeit erreichen, lügt sich dann aber selbst etwas vor. Übrigens: Eine wichtige mathematische Grundlage der Ausgleichsrechnung ist die Methode der kleinsten Quadrate, bei der die Summe der Fehlerquadrate minimiert wird. Auch sie stammt von C.F. Gauß (der Mann vom 10-Mark-Schein). Mit Hilfe dieser Methoden werden die Ausgleichspolynome bestimmt.

14 Streuung (Verteilung) von Fehlern Eine Angabe über den maximalen Fehler von Messwerten (z.b. +/- 10 m) sagt noch nicht alles aus über die Qualität der Werte. Lage von GPS-Punkten Sollposition Verteilung der Lagefehler ( Gaußsche Glockenkurve bei Normalverteilung)

15 Die Streuung der Fehler kann man veranschaulichen über die empirische Standardabweichung: Hierbei sind n die Anzahl der Punkte, x i die Abweichungen und x deren arithmetisches Mittel. In der Geoinformatik ist hierfür auch der Begriff root mean square deviation oder kurz RMS verbreitet. Je kleiner dieser Wert, desto geringer ist die Streuung (Breite der Normalverteilung).

16 Die Diskussion um die Streuung von Fehlern führt zu zwei weiteren Aspekten: Die nicht-systematischen (zufälligen) Fehler sind umso geringer, je höher die Präzision der Messeinrichtung ist. Der Begriff Präzision bezieht sich dabei immer auf das Messgerät und bedeutet soviel wie Wiederholgenauigkeit. Und: Mehrfachmessungen in Verbindung mit der Bildung des arithmetischen Mittels erhöhen die Genauigkeit! Allerdings steigt der Aufwand, denn n unabhängige Messungen bewirken eine Verringerung des mittleren Fehlers um den Faktor n.

17 Sofern die (nicht-systematischen) Fehler einigermaßen normalverteilt sind, kann man als Maß für die Übereinstimmung von Soll- und Istwerten den Korrelationskoeffizienten berechnen: oder n = Anzahl der zu vergleichenden Werte, x z.b. die Sollwerte, y dann die Messwerte. Rechte Formel ohne Mittelwerte. r liegt im Intervall [-1, 1], wobei der Wert 1 für vollständige Identität steht. Beispiele: r = 0.9 bedeutet hohe Übereinstimmung, r = 0.1 geringe. [Quelle:

18 Zwei Regeln zur Notation von Messwerten: Die Anzahl der signifikanten Stellen (Dezimalstellen) sollte der Genauigkeit entsprechen. Beispiel: GPS-Koordinaten auf 10 Meter genau, dann bitte nicht x = m schreiben! Bei Messwerten ist die Genauigkeit immer anzugeben, ebenso natürlich die Einheit. Beispiel: x = /- 10 m. Negativbeispiele (so bitte nicht): x = x = /- 10 m x = / m

19 Zum Abschluss ein Beispiel: Eine historische topografische Karte, Maßstab 1:25000, soll in digitale Form gebracht werden, um dann in der digitalen Karte Koordinaten zu messen. Welche Genauigkeiten können wir in Bezug auf diese Koordinaten erwarten? Vorüberlegung: Welche Art von Fehlereinflüssen gibt es? Genauigkeit der Papierkarte (Wie genau waren die per Vermessung ermittelten Koordinaten der einzelnen Objekte? Mit welcher Genauigkeit wurden diese in die Karte übertragen? Papierverzug?) Qualität des Scanners (Auflösung, optische und geometrische Qualität) Genauigkeit, Anzahl und Verteilung der Referenzpunkte Messgenauigkeit dieser Punkte am Bildschirm Gewähltes mathematisches Verfahren zur Transformation Fehlerarten (systematisch / zufällig)?

20 Nehmen wir nun an, dass die Einpassung der digitalisierten Karte auf die Referenzpunkte mit einer Standardabweichung von 0.1 mm in x und y möglich war. Wie sieht es jetzt aus mit der Genauigkeit von Koordinaten, die wir in der Karte messen? Maßstab 1: mm entspricht 2.5 Meter im Gelände ( Weltkoordinaten ). Ein Pixel in der digitalen Karte entspricht einem Quadrat im Gelände. Die Kantenlänge hängt offensichtlich von der Auflösung des Scanners sowie dem Kartenmaßstab ab. Scanauflösung 1000 dpi Pixel-Kantenlänge mm in der Karte bzw Meter im Gelände, dies ist deutlich weniger als die o.g. Standardabweichung. Fazit: In der digitalisierten Karte gemessene Koordinaten werden eine Genauigkeit von ca. 2.5 Meter haben.

21 Zur Vertiefung und zum Feierabend: Daniel Kehlmann: Die Vermessung der Welt. Rowohlt-Verlag, ISBN

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...!

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! . Mechanik. Grundgrößen und Einheiten Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! Beispiel Navigation: historisch:

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente

Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente Kurzanleitung zur Auswertung, Fehlerrechnung und Ergebnisdarstellung im Praktikum Physikalisch-Chemische Experimente Dr. Markus Braun Institut für Physikalische und Theoretische Chemie Goethe-Universität

Mehr

Natürliche Gravitationsanomalien

Natürliche Gravitationsanomalien Autoren: Thomas Senkel Timo Junker Inhaltsverzeichnis 1 AUFGABENSTELLUNG... 1 2 MESSAUSRÜSTUNG... 1 3 KARPACZ GORNY (POLEN)... 2 4 BUTZBACH (HESSEN)... 4 5 QUELLENNACHWEIS... 6 5.1 VERÖFFENTLICHUNGEN IM

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: 31. Oktober 2011 1 Inhaltsverzeichnis 1 Drehspiegelmethode 3 1.1 Messung.....................................

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

Messinstrumente für Strom und Spannung

Messinstrumente für Strom und Spannung HOCHSCHULE FÜ ECHNK UND WSCHAF DESDEN (FH) University of Applied Sciences Fachbereich Elektrotechnik Praktikum Grundlagen der Elektrotechnik Versuch: Messinstrumente für Strom und Spannung Versuchsanleitung

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

Genauigkeit moderner Kraftmessdosen- Stand der Technik und Anwendungen

Genauigkeit moderner Kraftmessdosen- Stand der Technik und Anwendungen Genauigkeit moderner Kraftmessdosen- Stand der Technik und Anwendungen Thomas Kleckers Hottinger Baldwin Messtechnik GmbH Product Marketing Im Tiefen See 45 64293 Darmstadt Thomas.kleckers@hbm.com 0. Einführung

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 12 Fehlerrechnung und Statistik

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006 Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Eignungsnachweis von Messsystemen

Eignungsnachweis von Messsystemen Eignungsnachweis von Messsystemen von Edgar Dietrich, Alfred Schulze, Stephan Conrad 2., aktualisierte Auflage Hanser München 2005 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 40169 3 Zu Inhaltsverzeichnis

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

EINLEITUNG. 1 Pixel Bild ist 8 Pixel hoch. Bild ist 8 Pixel breit

EINLEITUNG. 1 Pixel Bild ist 8 Pixel hoch. Bild ist 8 Pixel breit DIGITALE BILDER DIGITALE BILDER Unsere Fotos sind schön, künstlerisch, emotional. und zugleich nur nullen und einsen. Eben digital. Was das bedeutet und wie sie damit umgehen können, wollen wir ihnen in

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung Physik-Praktikum

Einführung Physik-Praktikum Seite1 von 18 Messunsicherheit und Fehlerfortpflanzung Messunsicherheit Die Messung einer physikalischen Größe (Masse, Spannung, Strom, Zeit,...) ist in der Regel mit einer gewissen Unsicherheit behaftet.

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Wie stark ist die Nuss?

Wie stark ist die Nuss? Wie stark ist die Nuss? Bild einer Klett-Werbung Untersuchungen von Eric Hornung, Sebastian Lehmann und Raheel Shahid Geschwister-Scholl-Schule Bensheim Wettbewerb: Schüler experimentieren Fachrichtung

Mehr

Bestimmung der Messunsicherheit

Bestimmung der Messunsicherheit Betimmung der Meunicherheit 1 Arten der Meabweichungen 1.1 Grobe Abweichungen Urachen Verehen de Beobachter bei Bedienung/Ableung der Meintrumente Irrtum de Beobachter bei Protokollierung/Auwertung der

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 BRP Mathematik VHS Floridsdorf 5.10.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 Notenschlüssel:

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Trendlinien in Diagrammen (Excel 2010)

Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010)... 1 Allgemeines... 2 Informationen über Prognosen und das Anzeigen von Trends in Diagrammen... 3 AUSWÄHLEN DES PASSENDEN TRENDLINIETYPS

Mehr

Anleitung zur Fehlerrechnung

Anleitung zur Fehlerrechnung Anleitung zur Fehlerrechnung Grundsätzlich ist jedes Messergebnis mit einem Fehler behaftet. Ein wie auch immer ermittelter Messwert einer physikalischen Größe weicht immer vom idealen, wahren Wert der

Mehr

Unsicherheitsbetrachtungen bei Kreismessungen in der Fertigungsmesstechnik

Unsicherheitsbetrachtungen bei Kreismessungen in der Fertigungsmesstechnik Unsicherheitsbetrachtungen bei Kreismessungen in der Fertigungsmesstechnik 1 Bedeutung der Messunsicherheit für das Prüfergebnis Neben den klassischen Geräten der Fertigungsmesstechnik wie Koordinatenmessgeräten

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Messmittelfähigkeit. Andreas Masmünster, Quality Control Event, 30. Juni 2011

Messmittelfähigkeit. Andreas Masmünster, Quality Control Event, 30. Juni 2011 Messmittelfähigkeit Andreas Masmünster, Quality Control Event, 30. Juni 2011 Agenda Messmittel Allgemeines Methode 1 Methode 2 Ziel der Methoden Praktischer Teil nach Methode 2 Formblatt Schlussfolgerung

Mehr

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Hintergrund Bei komplexen Baugruppen ergeben sich sehr hohe Anforderungen an die Tolerierung der einzelnen

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern

Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern Autor: Pascal Hahulla 11. November 2008 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0

Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0 Auswertung von kritischen Daten Vorgehensweise anhand eines Beispiels Visual-XSel 10.0??? Curt Ronniger 2007 Bei Neueinstieg in das Programm, sollte zunächst die Dokumentation XSelDoE10.pdf gelesen werden.

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Glanzmessgeräte. micro-gloss Effiziente Glanzmessung erleichtert Ihre Qualitätsprüfung. Geräte für optische Prüfungen. Merkmale: Software:

Glanzmessgeräte. micro-gloss Effiziente Glanzmessung erleichtert Ihre Qualitätsprüfung. Geräte für optische Prüfungen. Merkmale: Software: micro-gloss Effiziente Glanzmessung erleichtert Ihre Qualitätsprüfung Der Vorgänger wurde zum Maßstab in der Glanzmessung. Das neue micro-gloss verbindet die vielfach bewährte Handlichkeit und Köcherkalibrierung

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software

Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software Analyse der Risiken fehlerhafter Entscheidungen bei Konformitätsbewertungen mittels Software QMSys GUM Enterprise, Professional Software zur Analyse der Messunsicherheit Einführung Normen und Richtlinien

Mehr

Fehlerrechnung in der Optik

Fehlerrechnung in der Optik HTL Saalfelden Fehlerrechnun in der Optik Seite von 6 Heinrich Schmidhuber heinrich_schmidh@hotmail.com Fehlerrechnun in der Optik Mathematische / Fachliche Inhalte in Stichworten: Fehlerarten, Fehlerfortplanzun,

Mehr

A.2 Ermittlung von Messabweichung und Messergebnis

A.2 Ermittlung von Messabweichung und Messergebnis A. Ermittlung von Messabweichung und Messergebnis 515 A ANHANG: Fehlerrechnung (Messabweichungen) A.1 Arten und Ursachen von Messabweichungen Jeder Messwert ist mit einer mehr oder weniger großen Messabweichung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen

Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Ausarbeitung zum Versuch Mathematisches und physisches Pendel Harmonische und anharmonische Schwingungen Versuch 24 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

DRESDEN. Ermitteln von Sprunghöhen mit einem Windows Phone. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht.

DRESDEN. Ermitteln von Sprunghöhen mit einem Windows Phone. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht DRESDEN Ermitteln von Sprunghöhen mit einem Windows Phone Felix Guttbier Schule: Gymnasium Brandis Jugend forscht 2014 ERMITTELN VON SPRUNGHÖHEN

Mehr

Messunsicherheitsberechnungen für Koordinatenmessungen in der industriellen Praxis

Messunsicherheitsberechnungen für Koordinatenmessungen in der industriellen Praxis Fachtagung Messunsicherheit praxisgerecht bestimmen, 12.-13.11.2008 in Erfurt VDI Wissensforum GmbH, Düsseldorf 2008, ISBN 978-3-98-12624-1-4 Messunsicherheitsberechnungen für Koordinatenmessungen in der

Mehr

Messung und Bestimmung der Holzfeuchte von Scheitholz

Messung und Bestimmung der Holzfeuchte von Scheitholz 1. Feuchtegehalt nach 1. BImSchV Brennholz sollte zum Verbrennen lufttrocken sein. Brennholz kann bei richtiger Lager- oder Stapeltrocknung an der Luft innerhalb von 4 bis 9 Monaten auf eine Holzfeuchte

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Angewandte Mathematik

Angewandte Mathematik Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil A Korrekturheft Handreichung zur Korrektur der standardisierten schriftlichen Reife-

Mehr

KÜNDIG CONTROL SYSTEMS The Gauge Manufacturer for Film Extrusion SWISS MADE. Offline Dicken- Messung. Filmtest

KÜNDIG CONTROL SYSTEMS The Gauge Manufacturer for Film Extrusion SWISS MADE. Offline Dicken- Messung. Filmtest KÜNDIG CONTROL SYSTEMS Filmtest Offline Dicken- Messung Qualitätskontrolle mit dem Filmtest Der Filmtest ist ein offline Dickenmessgerät für Kunststoff-Folien und wird zur Qualitätskontrolle und Prozessoptimierungen

Mehr

Die Maschinenfähigkeit. higkeit von Reflowanlagen. Dr.-Ing. Heinz Wohlrabe Technische Universität Dresden Institut für Elektronik-Technologie

Die Maschinenfähigkeit. higkeit von Reflowanlagen. Dr.-Ing. Heinz Wohlrabe Technische Universität Dresden Institut für Elektronik-Technologie Die Maschinenfähigkeit higkeit von Reflowanlagen Dr.-Ing. Heinz Wohlrabe Technische Universität Dresden Institut für Elektronik-Technologie Was sind Fähigkeitskoeffizienten für die SMT?? Allgemeine Definition:

Mehr

Sebastian Rattey 104030 MSR1 Mess-, Steuerungs- und Regelungstechnik

Sebastian Rattey 104030 MSR1 Mess-, Steuerungs- und Regelungstechnik 1. Aufgaben und Zweck des Versuches: Im Versuch MSR 1 Temperaturmessung werden Temperaturmessfühler(mechanische oder elektrische Temperatursensoren) auf ihr statisches Verhalten untersucht, welches durch

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Stand der IMRT-QA an der Uni Heidelberg

Stand der IMRT-QA an der Uni Heidelberg Stand der IMRT-QA an der Uni Heidelberg Karl-Heinz Grosser, Oliver Schramm, Gerald Major Abteilung für Radioonkologie und Strahlentherapie Im Neuenheimer Feld 400 69120 Heidelberg karlheinz_grosser@med.uni-heidelberg.de

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Winkelmessen und Gehrungen schneiden in der Praxis

Winkelmessen und Gehrungen schneiden in der Praxis Winkelmessen und Gehrungen schneiden in der Praxis Wir zeigen hier ein praxisgerechtes Verfahren wie Sie sogar ohne Winkelmesser und ohne komplexe Berechnungen Winkel messen und Umrahmungen entsprechend

Mehr

Die Oberflächenspannung

Die Oberflächenspannung Die Oberflächenspannung Theoretische Grundlagen Kohäsionskraft Die Kohäsionskraft, ist diejenige Kraft, die zwischen den Molekülen der Flüssigkeit auftritt. Jedes Molekül übt auf die Umliegenden ein Kraft

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Lehrplan. Messtechnik. Fachschule für Technik. Fachrichtung Elektrotechnik. Fachrichtungsbezogener Lernbereich

Lehrplan. Messtechnik. Fachschule für Technik. Fachrichtung Elektrotechnik. Fachrichtungsbezogener Lernbereich Lehrplan Messtechnik Fachschule für Technik Fachrichtung Elektrotechnik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach

Mehr

Versuch E2 Kennlinien von Widerständen

Versuch E2 Kennlinien von Widerständen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E2 Kennlinien von Widerständen Aufgaben 1. -s-kennlinien a. Messen Sie die -s-kennlinien eines metallischen Widerstands (Glühlampe),

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

Software Form Control

Software Form Control Messen per Mausklick. So einfach ist die Werkstückkontrolle im Bearbeitungszentrum mit der Messsoftware FormControl. Es spielt dabei keine Rolle, ob es sich um Freiformflächen oder Werkstücke mit Standardgeometrien

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

TRUMMETER Präzisionsinstrument zum Messen der Riemenspannung

TRUMMETER Präzisionsinstrument zum Messen der Riemenspannung Industrieelektronik TRUMMETER Präzisionsinstrument zum Messen der Riemenspannung Hilger u. Kern Industrietechnik TRUMMETER Präzisionsinstrument zum Messen der Riemenspannung Die maximale Lebensdauer erreicht

Mehr