Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung:"

Transkript

1 Genauigkeiten, Fehler, Ausgleichung Aussage: GPS liefert eine Lagegenauigkeit von etwa 10 Metern. Was heißt das eigentlich? Naheliegende Vermutung: Die x- und y-werte weichen um maximal +/- 10 Meter von den wirklichen Werten ab. Interessant zu wissen wäre, wie groß der mittlere Fehler ist, wie stark die einzelnen Werte gegenüber den tatsächlichen streuen, oder auch, wie viele der gemessenen Werte dabei um nur +/- 1 Meter vom Soll abweichen. Ebenfalls interessant ist natürlich auch, woher die Fehler stammen und ob und wie man sie erkennen kann.

2 Die Begriffe Fehler, (Un-)Genauigkeit und Toleranz werden oft synonym verwandt und sind nicht scharf voneinander getrennt. Die Koordinaten sind auf 1 Meter genau meint i.d.r. die Fehler liegen bei maximal 1 Meter oder die Abweichungen von den exakten Werten betragen maximal 1 Meter. Fehler = Differenz zwischen Soll- und Istwert, auch bezeichnet als Messunsicherheit oder Messabweichung (DIN 1319). Grundsatz: Keine Messung ist fehlerfrei! Es gibt nur sehr wenige Ausnahmen, z.b. das Abzählen einer ganzzahligen Menge ( hier im Raum befinden sich gerade 15 Personen ). Beispiel: Ein Tisch ist m breit, wir messen m, der Fehler (die Messabweichung) beträgt m. Frage: Ist der Tisch tatsächlich genau m breit?

3 Man unterscheidet üblicherweise: Grobe Fehler sind z.b. die Folge einer falschen Bedienung der Messeinrichtung. Beispiel Zollstock: Nicht vollständig abgewickelt. Abhilfe: Sorgfältiges Arbeiten. Systematische Fehler stammen meist von der Messeinrichtung. Beispiel Zollstock: Gesamtlänge statt m als Folge von temperatur- oder altersbedingter Schrumpfung. Abhilfe: Wegwerfen oder kalibrieren. Zufällige (nicht-systematische) Fehler entstehen dagegen meist bei der Messung selbst, trotz sorgfältigen Arbeitens. Hierzu gehört auch die Streuung aufgrund der begrenzten Auflösung der Messeinrichtung. Beispiel Zollstock: Auch bei korrektem Einsatz liegt die Ablesegenauigkeit bei maximal ¼ Millimeter. Regel: Grobe Fehler vermeiden, systematische Fehler ermitteln und für die Korrektur der Messwerte berücksichtigen.

4 Eichen, Kalibrieren Beim Eichen wird in das Messinstrument eingegriffen. Beispiel Waage: Diese wird so reguliert (justiert), dass eine Anzeige von 500 Gramm innerhalb einer vorgegebenen Toleranz stimmt : Das tatsächliche Gewicht liegt dann z.b. zwischen 499 und 501 g. Bei einer Kalibrierung wird dagegen nicht in das Messinstrument eingegriffen, sondern es wird eine Fehlerkurve bestimmt und diese für eine spätere rechnerische (externe) Korrektur verwendet. Beispiel Waage: Diese habe einen Messbereich von 0 bis 1000 g. Man ermittelt die Abweichungen bei 0, 100, 200, 300,..., 1000 g, bestimmt daraus ein Ausgleichspolynom und korrigiert damit die gemessenen / angezeigten Werte. Beispiel Zollstock, vorige Folie (tatsächliche Länge m): Der Korrekturfaktor bewirkt, das die volle Länge wieder stimmt und damit jede gemessene und korrigierte Strecke genauer ist.

5 Frage zum Zollstock (*): Ist das wirklich so? Als erstes haben wir kontrolliert, ob die zu geringe Länge Folge eines fehlenden Stückes ist (abgebrochen, abgesägt; dies wäre ein grober Fehler). Da aber die aufgedruckte Skala den vollen Bereich cm zeigt, konnte dies ausgeschlossen werden. Dann haben wir überlegt, was die Ursache sein könnte. Dabei kam für uns nur eine Schrumpfung in Frage. Sodann haben wir implizit vorausgesetzt (!), dass sich die Schrumpfung gleichmäßig (also linear) ausgewirkt hat. Mit anderen Worten: Auf 2 Meter fehlen 5 mm, auf 1 Meter dann also 2.5 mm usw. Diese Voraussetzung haben wir genutzt, um dann die Korrektur mit einem einzigen Streckfaktor zu berechnen! Mathematisch gesprochen haben wir das Ausgleichspolynom auf die lineare Gleichung f(x) = *x reduziert. (*) nach DIN/ISO übrigens Gliedermaßstab!

6 Ausgehend von vorigem Beispiel wollen wir uns einige Grundlagen der Ausgleichsrechnung ansehen. f(x) Messwerte m m Annahme (!): Der Schrumpf f(x) ist linear daher benötigen wir zur Bestimmung der Geradengleichung nur 2 Messwerte. x

7 Zur Sicherheit lesen wir nun zusätzlich den Zollstock bei 1 Meter Soll- Länge ab f(x) Ausgleichsgerade Polynom 2. Grades m m? m und haben ein Problem. x

8 Falls der Schrumpf tatsächlich linear ist, stecken in unseren Messungen ein oder mehrere Fehler. Diese Tatsache können wir erkennen, können aber den oder die Fehler nicht lokalisieren (welche Messung/en ist/sind zu ungenau?) Möglicherweise ist der Schrumpf aber gar nicht linear! Dann wäre die Frage, wie wir ihn mathematisch am besten beschreiben können z.b. exponentiell? Besser: Erst einmal Informationen darüber beschaffen, welches Schrumpfverhalten das Material (Holz, Kunststoff) aufweist. Denn: Wenn wir jetzt einfach von einer Ausgleichsgeraden abgehen und statt dessen ein Polynom n-ten Grades zulassen, wird es noch komplizierter Um dies zu verdeutlichen, beschaffen wir uns zusätzlich weitere Messwerte.

9 Merke: Mit einem Polynom genügend hohen Grades biegen wir uns alles passend zurecht! f(x) Abweichungen Soll-Ist Ausgleichspolynom Aber: Ist es von den physikalischen Eigenschaften des Materials her zulässig, den Schrumpf über das dargestellte Polynom zu modellieren? x

10 Gehen wir nun als Beispiel davon aus, dass der Schrumpf tatsächlich linearen Charakter hat, und betrachten wir drei Messungen: f(x) Ausgleichsgerade Restfehler (Residuen) Die Differenzen zwischen den gemessenen Werten und den Funktionswerten der Ausgleichsgeraden deuten auf einen oder mehrere Messfehler hin. Aber: Welcher Punkt ist falsch? x

11 Wiederum beschaffen wir uns weitere Messwerte... f(x) Ausgleichsgerade Restfehler (Residuen)... und können jetzt aufgrund der guten Überbestimmung einen Messfehler (Ausreißer) lokalisieren und entfernen. x

12 Fassen wir zusammen: Bevor ein Ausgleichspolynom gerechnet wird, ist unbedingt zu klären, welchen Grad dieses Polynom aus sachlichen Gründen haben darf. Zur Bestimmung eines Polynoms vom Grad n sind n+1 Messwerte nötig: f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x Hat man genau n+1 Punkte, ist die Lösung eindeutig und daher ungeeignet zum Auffinden von Fehlern. Bei geringer Überbestimmung findet man zwar heraus, dass u.u. fehlerhafte Messwerte vorliegen, kann diese aber nicht lokalisieren. Erst bei guter Überbestimmung ist das Auffinden einzelner Messfehler (Ausreißer, Peaks) mit Hilfe der Residuen möglich!

13 Wichtig: Wir haben gesehen, dass es gefährlich ist, den Grad des Polynoms zu hoch anzusetzen! Damit kann man zwar die verbleibenden Fehler (Residuen) beliebig klein rechnen und so eine hohe Scheingenauigkeit erreichen, lügt sich dann aber selbst etwas vor. Übrigens: Eine wichtige mathematische Grundlage der Ausgleichsrechnung ist die Methode der kleinsten Quadrate, bei der die Summe der Fehlerquadrate minimiert wird. Auch sie stammt von C.F. Gauß (der Mann vom 10-Mark-Schein). Mit Hilfe dieser Methoden werden die Ausgleichspolynome bestimmt.

14 Streuung (Verteilung) von Fehlern Eine Angabe über den maximalen Fehler von Messwerten (z.b. +/- 10 m) sagt noch nicht alles aus über die Qualität der Werte. Lage von GPS-Punkten Sollposition Verteilung der Lagefehler ( Gaußsche Glockenkurve bei Normalverteilung)

15 Die Streuung der Fehler kann man veranschaulichen über die empirische Standardabweichung: Hierbei sind n die Anzahl der Punkte, x i die Abweichungen und x deren arithmetisches Mittel. In der Geoinformatik ist hierfür auch der Begriff root mean square deviation oder kurz RMS verbreitet. Je kleiner dieser Wert, desto geringer ist die Streuung (Breite der Normalverteilung).

16 Die Diskussion um die Streuung von Fehlern führt zu zwei weiteren Aspekten: Die nicht-systematischen (zufälligen) Fehler sind umso geringer, je höher die Präzision der Messeinrichtung ist. Der Begriff Präzision bezieht sich dabei immer auf das Messgerät und bedeutet soviel wie Wiederholgenauigkeit. Und: Mehrfachmessungen in Verbindung mit der Bildung des arithmetischen Mittels erhöhen die Genauigkeit! Allerdings steigt der Aufwand, denn n unabhängige Messungen bewirken eine Verringerung des mittleren Fehlers um den Faktor n.

17 Sofern die (nicht-systematischen) Fehler einigermaßen normalverteilt sind, kann man als Maß für die Übereinstimmung von Soll- und Istwerten den Korrelationskoeffizienten berechnen: oder n = Anzahl der zu vergleichenden Werte, x z.b. die Sollwerte, y dann die Messwerte. Rechte Formel ohne Mittelwerte. r liegt im Intervall [-1, 1], wobei der Wert 1 für vollständige Identität steht. Beispiele: r = 0.9 bedeutet hohe Übereinstimmung, r = 0.1 geringe. [Quelle:

18 Zwei Regeln zur Notation von Messwerten: Die Anzahl der signifikanten Stellen (Dezimalstellen) sollte der Genauigkeit entsprechen. Beispiel: GPS-Koordinaten auf 10 Meter genau, dann bitte nicht x = m schreiben! Bei Messwerten ist die Genauigkeit immer anzugeben, ebenso natürlich die Einheit. Beispiel: x = /- 10 m. Negativbeispiele (so bitte nicht): x = x = /- 10 m x = / m

19 Zum Abschluss ein Beispiel: Eine historische topografische Karte, Maßstab 1:25000, soll in digitale Form gebracht werden, um dann in der digitalen Karte Koordinaten zu messen. Welche Genauigkeiten können wir in Bezug auf diese Koordinaten erwarten? Vorüberlegung: Welche Art von Fehlereinflüssen gibt es? Genauigkeit der Papierkarte (Wie genau waren die per Vermessung ermittelten Koordinaten der einzelnen Objekte? Mit welcher Genauigkeit wurden diese in die Karte übertragen? Papierverzug?) Qualität des Scanners (Auflösung, optische und geometrische Qualität) Genauigkeit, Anzahl und Verteilung der Referenzpunkte Messgenauigkeit dieser Punkte am Bildschirm Gewähltes mathematisches Verfahren zur Transformation Fehlerarten (systematisch / zufällig)?

20 Nehmen wir nun an, dass die Einpassung der digitalisierten Karte auf die Referenzpunkte mit einer Standardabweichung von 0.1 mm in x und y möglich war. Wie sieht es jetzt aus mit der Genauigkeit von Koordinaten, die wir in der Karte messen? Maßstab 1: mm entspricht 2.5 Meter im Gelände ( Weltkoordinaten ). Ein Pixel in der digitalen Karte entspricht einem Quadrat im Gelände. Die Kantenlänge hängt offensichtlich von der Auflösung des Scanners sowie dem Kartenmaßstab ab. Scanauflösung 1000 dpi Pixel-Kantenlänge mm in der Karte bzw Meter im Gelände, dies ist deutlich weniger als die o.g. Standardabweichung. Fazit: In der digitalisierten Karte gemessene Koordinaten werden eine Genauigkeit von ca. 2.5 Meter haben.

21 Zur Vertiefung und zum Feierabend: Daniel Kehlmann: Die Vermessung der Welt. Rowohlt-Verlag, ISBN

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

EINLEITUNG. 1 Pixel Bild ist 8 Pixel hoch. Bild ist 8 Pixel breit

EINLEITUNG. 1 Pixel Bild ist 8 Pixel hoch. Bild ist 8 Pixel breit DIGITALE BILDER DIGITALE BILDER Unsere Fotos sind schön, künstlerisch, emotional. und zugleich nur nullen und einsen. Eben digital. Was das bedeutet und wie sie damit umgehen können, wollen wir ihnen in

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Wie stark ist die Nuss?

Wie stark ist die Nuss? Wie stark ist die Nuss? Bild einer Klett-Werbung Untersuchungen von Eric Hornung, Sebastian Lehmann und Raheel Shahid Geschwister-Scholl-Schule Bensheim Wettbewerb: Schüler experimentieren Fachrichtung

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 BRP Mathematik VHS Floridsdorf 5.10.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 Notenschlüssel:

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...!

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! . Mechanik. Grundgrößen und Einheiten Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! Beispiel Navigation: historisch:

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung Einführung Fehlerrechnung Bei jeder Messung, ob Einzelmessung oder Messreihe, muss eine Aussage über die Güte ( Wie groß ist der Fehler? ) des Messergebnisses gemacht werden. Mögliche Fehlerarten 1. Systematische

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung

Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Versuch P1-42 Lichtgeschwindigkeit Auswertung mit Fehlerrechnung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: 31. Oktober 2011 1 Inhaltsverzeichnis 1 Drehspiegelmethode 3 1.1 Messung.....................................

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Winkelmessen und Gehrungen schneiden in der Praxis

Winkelmessen und Gehrungen schneiden in der Praxis Winkelmessen und Gehrungen schneiden in der Praxis Wir zeigen hier ein praxisgerechtes Verfahren wie Sie sogar ohne Winkelmesser und ohne komplexe Berechnungen Winkel messen und Umrahmungen entsprechend

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

1. Lineare Regression (Ausgleichsgerade)

1. Lineare Regression (Ausgleichsgerade) Carl-Engler-Schule Karlsruhe Lineare Regression 1 (6) 1. Lineare Regression (Ausgleichsgerade) 1.1 Was ist eine Ausgleichsgerade? Die Ausgleichsgerade ist ein Ausgleichs-Verfahren zur Kurvenanpassung (Approximation).

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Lernen an Stationen Thema: Flächenberechnung

Lernen an Stationen Thema: Flächenberechnung Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung

Mehr

Schlussrechnung, Modellbildung und Interpolation

Schlussrechnung, Modellbildung und Interpolation Schlussrechnung, Modellbildung und Interpolation Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz, 7. Februar 2013 Beispiele für Schlussrechnungen

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler 3. P-Regler 3.1. Einleitung 3.1.1. Allgemeines Der Regler muss im Regelkreis dafür sorgen, dass der Istwert der Regelgröße X möglichst wenig vom Sollwert W abweicht. Das Verhalten der Regelstrecke ist

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHISCHE UIVERSITÄT MÜCHE Zentrum Mathematik PRF. R.R. JÜRGE RICHTER-GEBERT, VAESSA KRUMMECK, MICHAEL PRÄHFER Höhere Mathematik für Informatiker I (Wintersemester 003/004) Aufgabenblatt 1 (4. ktober 003)

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha)

Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) Anmerkungen zum Chinesischen Kalender Andreas Walter Schöning (Dasha) - dies ist i.w. die Übersetzung eines Artikels, der im November 2010 im Newsletter der Chue Foundation erschienen ist - Korrektheit

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Bildaufbau. ciceri. veni vidi civi. Fotografie Bildaufbau

Bildaufbau. ciceri. veni vidi civi. Fotografie Bildaufbau Bildaufbau Mit dem Bildaufbau in der Fotografie sind vor allem die Proportionen und Verhältnisse der im Foto abgebildeten Objekte gemeint: die Grösse und der Stand von Motivteilen im Foto, die Aufteilung

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Fehlerrechnung in der Optik

Fehlerrechnung in der Optik HTL Saalfelden Fehlerrechnun in der Optik Seite von 6 Heinrich Schmidhuber heinrich_schmidh@hotmail.com Fehlerrechnun in der Optik Mathematische / Fachliche Inhalte in Stichworten: Fehlerarten, Fehlerfortplanzun,

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Zuschauer beim Berlin-Marathon

Zuschauer beim Berlin-Marathon Zuschauer beim Berlin-Marathon Stefan Hougardy, Stefan Kirchner und Mariano Zelke Jedes Computerprogramm, sei es ein Betriebssystem, eine Textverarbeitung oder ein Computerspiel, ist aus einer Vielzahl

Mehr

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test? Auch wenn die Messungsmethoden ähnlich sind, ist das Ziel beider Systeme jedoch ein anderes. Gwenolé NEXER g.nexer@hearin gp

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten

Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten Hinweise zur Anwendung der Bewertungsmatrix für Ausschreibungen von LED-Straßenleuchtpunkten Die LED-Technologie stellt eine vergleichsweise junge Technologie dar und verfügt aktuell über ein sehr dynamisches

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Programm 4: Arbeiten mit thematischen Karten

Programm 4: Arbeiten mit thematischen Karten : Arbeiten mit thematischen Karten A) Anteil der ausländischen Wohnbevölkerung an der Wohnbevölkerung insgesamt 2001 in Prozent 1. Inhaltliche und kartographische Beschreibung - Originalkarte Bei dieser

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

5. Bildauflösung ICT-Komp 10

5. Bildauflösung ICT-Komp 10 5. Bildauflösung ICT-Komp 10 Was sind dpi? Das Maß für die Bildauflösung eines Bildes sind dpi. Jeder spricht davon, aber oft weiß man gar nicht genau was das ist. Die Bezeichnung "dpi" ist ein Maß, mit

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Protokoll zum Versuch: Zugversuch

Protokoll zum Versuch: Zugversuch Protokoll zum Versuch: Zugversuch Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 18.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3 Versuch 2 3.1

Mehr

1.4 Installation eines Qualitätsmanagementsystems

1.4 Installation eines Qualitätsmanagementsystems Ko n t r o l l f r a g e n : 1 Geben Sie vier Argumente an, die für die Installation eines Qualitätsmanagementsystems sprechen. 2 Erläutern Sie den Zusammenhang zwischen einem funktionierenden Qualitätsmanagementsystem

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr