Literatur. ISM SS 2018 Teil 3/Restklassen

Größe: px
Ab Seite anzeigen:

Download "Literatur. ISM SS 2018 Teil 3/Restklassen"

Transkript

1 Literatur [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [3-3] Hoffmann, Dirk: Einführung in die Informations- und Codierungstheorie. Springer, 2014 [3-4] Reiss, Kristina; Schmieder, Gerald: Basiswissen Zahlentheorie. Springer, 3. Auflage, 2014 [3-5] Buchmann, Johannes: Einführung in die Kryptographie. 5. Auflage, Springer, 2010 [3-6] Freiermuth, Karin; Hromkovic, Juraj; Keller, Lucia; Steffen, Björn: Einführung in die Kryptologie. Vieweg+Teubner,

2 Übersicht Etwas Modulo-Arithmetik Restklassen Der euklidische Algorithmus Der erweiterte euklidische Algorithmus 3 Definitionen und ein Satz I Z Menge der ganzen Zahlen N Menge der ganzen positiven Zahlen mit 0 N\{0 N ohne 0 Satz Für alle Zahlen a Z, b Z\{0 gibt es genau ein q Z und r N mit a = q*b+r, wobei 0 <= r < b ist. r wird Rest genannt und ist immer positiv zwischen 0 und b -1. 4

3 Definitionen und ein Satz II Ganzzahlige Division: DIV q= a DIV m, wobei a, m, q aus Z, mit m<>0 q ist die größte Ganzzahl < a/m Rest modulo: MOD r= a MOD m, wobei a, m, q aus Z, mit m<>0, r aus N, Konvention (wird meist eingehalten): q (wie Quotient) möge der ganzzahlige Quotient sein r (wie Rest) möge der Modulo-Wert sein p (wie Primzahl) möge eine Primzahl sein m (wie Modul) möge die Zahl hinter mod/mod sein n möge eine natürliche Zahl einschließlich 0 sein 5 Definitionen und ein Satz III Aus Satz (verkürzt) a = b*q+r folgt mit der Definition von DIV und MOD damit: Mit a, m aus Z, mit m<>0, r aus N gilt: a = (a DIV m)*m + a MOD m oder a MOD m = a - (a DIV m)*m Das Modul m kann auch negativ sein: In a MOD m = a - (a DIV m)*m ist das Produkt positiv. Daraus folgt a MOD m = a MOD -m In dieser Veranstaltung (und in der Kryptographie) wird fast immer mit positiven Modulen gerechnet. 6

4 Definitionen und ein Satz IV - Beispiele 0 MOD 3 = 0 1 MOD 3 = 1 2 MOD 3 = 2 3 MOD 3 = 0 4 MOD 3 = 1 0 DIV 3 = 0 1 DIV 3 = 0 2 DIV 3 = 0 3 DIV 3 = 1 4 DIV 3 = 1 Es gilt a = (a DIV m)*m + a MOD m a DIV m = (a - a MOD m)/m -1 MOD 3 = 2-2 MOD 3 = 1-3 MOD 3 = 0-4 MOD 3 = 2-5 MOD 3 = 1 22 MOD 7 = 1, denn 3*7=21-22 MOD 7 = 6, denn -4*7= Addition und Subtraktion I Wertebereich: N für das Ergebnis Addition Modulo m: Es wird wie gewöhnlich addiert, wobei anschließend solange m subtrahiert/addiert wird, bis das Ergebnis >= 0 und <m ist. Subtraktion Modulo m: Es wird wie gewöhnlich subtrahiert, wobei anschließend solange m addiert/subtrahiert wird, bis das Ergebnis >= 0 und <m ist. Beispiele: ( 3 + 5) MOD 8 = 0 (-3 + 5) MOD 8 = 2 ( 3 6) MOD 9 = 6 (-3 6) MOD 9 = 0 8

5 Teilbarkeit I Definition a Z\{0 teilt b Z, wenn es ein k Z gibt, so das b = k*a Dies wird geschrieben als a b. Oder anders: a teilt b = a b, wenn b MOD a = 0 oder wenn b = k*a gilt oder wenn b ein Vielfaches von a ist. 9 Teilbarkeit II Sätze [1] a b a c => a (b+c) [2] a b a c => a (b-c) Beweise folgen direkt aus der Definition: [2]: a b a c => a (b-c): Mit b = k 1 *a falls a b und analog c = k 2 *a a (b-c)=> a (k 1 *a-k 2 *a) = a a*(k 1 -k 2 ) analog für die umgekehrte Richtung 10

6 Kongruent modulo I a MOD m = b MOD m, falls m (a b) mit a, b Z, m N\{0, dann heißt a zu b kongruent modulo m d.h. mit m (a b) gibt es ein k mit k*m = a b d.h. die Differenz muss ein Vielfaches von m sein d.h. wenn k*m = a b gilt, dann auch a = b + k*m d.h. k*m ist dann in a = b + k*m die Differenz daraus folgt unmittelbar mit k Z: (a+k*m) MOD m = a MOD m a ist kongruent zu b modulo m wird auch geschrieben: a b (mod m) a b (mod m) bedeutet, dass die Reste bezüglich m gleich sind. "(mod m)" bezieht sich auf die Gleichheit und ist keine modulo-operation wie MOD. 11 Kongruent modulo II Da a MOD m = b MOD m mit a Z, b N und b<m gilt, kann immer im Bereich: {0, 1, 2,, m-1 bei MOD m gerechnet werden. Wenn ein Ergebnis einer Rechnung außerhalb liegt, kann es jederzeit durch Addieren von k*m in diesen Bereich gebracht werden. Das führt zur Ersparnis bei großen Zahlen. 12

7 Ein paar Sätze I Allgemein gilt (a, k aus Z, m N\{0): [S1] (a + k*m) a (mod m) (folgt aus Definition) [S2] k*m 0 (mod m) (folgt aus [S1]) [S3] a MOD m = a, falls 0<= a < m Addition (a, b aus Z, m N\{0): [S4] a + b a MOD m + b MOD m (mod m) Subtraktion (a, b aus Z, m N\{0): [S5] a - b a MOD m - b MOD m (mod m) 13 Multiplikation Multiplizieren wird auf mehrfaches Addieren zurückgeführt. Es wird wie gewöhnlich multipliziert und dann solange m abgezogen bzw. addiert bis das Ergebnis >= 0 und <m ist. Beispiele: 4 * 5 MOD 7 = 6, denn 4*5-> > 6 3 * 4 MOD 5 = 2 4 * 4 MOD 5 = 1 Dazu gibt es noch folgende Sätze: [S6] a*b b*a (mod m) (Kommutativgesetz) [S7] (a*b)*c a*(b*c) (mod m) (Assoziativgesetz) [S8] a*b a MOD m * b MOD m (mod m) 14

8 Bestimmung des inversen Elements (Division) I Bei m= 7 wieviel ist 3-1? Werte {0,1,2,3,4,5,6 Rest muss 1 sein: Bei m= 6 wieviel ist 3-1? Werte {0,1,2,3,4,5 Rest muss 1 sein: 3*0= 0 mod 7 = 0 3*1= 3 mod 7 = 3 3*2= 6 mod 7 = 6 3*3= 9 mod 7 = 2 3*4= 12 mod 7 = 5 3*5= 15 mod 7 = 1 3*6= 18 mod 7 = 4 3*0= 0 mod 6 = 0 3*1= 3 mod 6 = 3 3*2= 6 mod 6 = 0 3*3= 9 mod 6 = 3 3*4= 12 mod 6 = 0 3*5= 15 mod 6 = 3 Es gibt kein inverses Element zu 3. 16

9 Bestimmung des inversen Elements (Division) II Beispiel 1: a=5, m=7 1*5 5 (mod 7) 2*5 3 (mod 7) 3*5 1 (mod 7) 4*5 6 (mod 7) 5*5 4 (mod 7) 6*5 5 (mod 7) Beispiel 2: a=3, m=6, 1*3 3 (mod 6) 2*3 0 (mod 6) 3*3 3 (mod 6) 4*3 0 (mod 6) 5*3 3 (mod 6) Multiplikationstafeln Potenzieren I Potenzieren (Exponentiation) wird auf mehrfaches Multiplizieren zurückgeführt. a b c (mod m) Beispiel: 3 4? (mod 5) 3*3*3*3 1 (mod 5) 18

10 Potenzieren II schneller Algorithmus a q = a n+m = a n *..*a m wobei q=n+..+m, n, m 2er-Potenzen sind Die Potenz a q wird als Produkt von Faktoren a n *a m dargestellt, die wiederum Potenzen sind, wobei diese 2er-Potenzen bilden. Dazu wird die Potenz q als Binärzahl umgerechnet und diese als Polynom zur Basis 2 ausgerechnet. Die einzelnen Faktoren dieses Polynoms sind dann die Werte für n..m. Beispiel: a 23 = a 10111B = a = a * a 2 * a 4 * a 16 Statt 22 Multiplikationen: 7 Multiplikationen 19 Potenzieren III schneller Algorithmus Aufwand n-1 Quadrierungen, wobei n die Anzahl der Ziffern des Exponenten in Binärdarstellung ist Dazu wird addiert: (Für jede 1 im Binärwert eine weitere Multiplikation) - 1 Typische Zahl: = B (2**16+1) 16 Quadrierungen (17. Stelle mit 1 beginnend gezählt) 2 Einsen, d.h. eine weitere Multiplikation, also 17, statt Multiplikationen Siehe dazu: 20

11 Kleiner Satz von Fermat I Der kleine Satz von Fermat: (1)a p a (mod p), mit a>0 und p ist eine Primzahl Wenn a und p teilerfremd sind (oder: wenn a kein Vielfaches von p ist), kann die folgende zweite Form benutzt werden: (2) a p-1 1 (mod p), mit a>0, ggt(a,p)=1 und p ist eine Primzahl Um von (1) nach (2) zu kommen, muss (1) auf beiden Seiten durch a dividiert werden, was aber nur geht, wenn das multiplikative Inverse existiert; das tut es nur dann, wenn ggt(a,p)=1 ist. (2) bedeutet, dass p-1 auf den Exponenten beliebig oft addiert oder subtrahiert werden kann bzw. der Exponent mod p-1 genommen werden darf. 21 Kleiner Satz von Fermat II - Anwendung a p-1 a*a p-2 (mod p) Dann gilt laut Fermat aber auch: a*a p-2 1 (mod p), ggt(a,p)=1 und p ist eine Primzahl Das kann zur Berechnung des multiplikativen inversen Elements benutzt werden. 1 1*1*1*1*1= 1 2 2*2*2*2*2= 32 -> 4 Beispiel mod 7 3 3*3*3*3*3= 243 -> 5 4 4*4*4*4*4= > 2 5 5*5*5*5*5= > 3 6 6*6*6*6*6= > 6 Für a=7, 14 etc. kommt immer 0 heraus. 22

12 Logarithmus, Wurzel Diskreter Logarithmus (Modulo Logarithmus) a x b (mod q) Die Berechnung des diskreten Logarithmus ist sehr aufwändig, weshalb dies in der Kryptographie gerne ausgenutzt wird. Modulo Wurzel x a b (mod q) 23 Größter gemeinsamer Teiler (ggt) I Eine Zahl c heißt größter gemeinsamer Teiler (ggt,gcd) zweier Ganzzahlen a und b, wenn c beide Zahlen teilt und die größte ist, die beide Zahlen teilt. Die Idee besteht nun darin, die beiden Argumente schrittweise unter Beibehaltung des Ergebnisse so zu verkleinern, dass anhand einer der beiden roten Formeln das Ergebnis bestimmt ist. Satz: Für alle Zahlen a, b, k aus N mit a>b gilt: Wenn k beide Zahlen a und b teilt, dann teilt auch k die Differenz a-b. Es lässt sich beweisen: ggt(a,b) = ggt(a-b,b) mit a>=b Oder anders formuliert: Ziehe immer wieder die kleinere von der größeren der beiden Zahlen ab bis sie gleich sind: das ist das Ergebnis. 24

13 Größter gemeinsamer Teiler (ggt) II int Euklid(int a,b) { while a!=b { if a>b { a:= a-b; else { b:= b-a; return a; ggt(a,b) = ggt(a,b-a) bzw. ggt(a,a-b) ggt(a,b) = ggt(b,a) Diese Version entspricht eher dem Original: wechselseitiges "Wegnehmen" 25 Berechnung des Modulo-Wertes Wenn von der Zahl a b solange b abgezogen wird, bis a<b erreicht wird, ist der Wert von a MOD b berechnet worden. int mod(int a 0,b>0) { while a b { a:= a-b; return a; Dies liegt an: a MOD m = a - (a DIV m)*m ggt(a,b) = ggt(a-b,b) mit a>=b.. ggt(a-b,b) = ggt(a-2*b,b) mit a-b>=b ggt(a,b) = ggt(a mod b,b) mit a>=b 26

14 Größter gemeinsamer Teiler (ggt) III int EuklidMod(int a,b) { while a!=0 { if a>b { a:= a MOD b; else { exchange(a,b); return b; ggt(a,b) = ggt(a,b mod a) ggt(a,b) = ggt(b,a) int EuklidMod(int a,b) { while b!=0 { t:= a MOD b; a:= b; b:= t; return a; Da nach einem a:= a MOD b nie a>b wahr ist, kann gleich getauscht werden. 27 Erweiterter Euklidischer Algorithmus I Seien a, b N\{0 so lässt sich der ggt(a,b) als Linearkombination von a und b darstellen: ggt(a,b)= u*a+v*b mit u,v Z. Beispiel mit a=2 und b=7 0 = 7*2 2*7 1 = -3*2 + 1*7 2 = 8*2-2*7 3 = -9*2 + 3*7 4 = -5*2 + 2*7 5 = Dazu gibt es folgenden Satz u*a+v*b=n ist genau dann ganzzahlig lösbar, wenn ggt(a,b) n gilt. Nebenbei: Wenn ggt(a,b)<>1 ist, dann lassen sich nicht alle Zahlen als Linearkombination darstellen. 28

15 Erweiterter Euklidischer Algorithmus II Linearkombination einer Zahl z ist die Summe zweier Produkte, deren Teilfaktoren vorgegeben sind: z = u*a + v*b, wobei a und b vorgeben sind. Es kann mehrere Linearkombinationen derselben Zahl geben (nicht eindeutig), z.b. 0 = 7*2 2*7 = 14*2 4*7 mit a=2 und b=7 Und auch gibt es Paare (a,b), mit denen nicht alle ganzen Zahlen als Linearkombinationen darstellen kann, z.b. lassen sich keine ungeraden Zahlen als Summe zweier gerader Zahlen darstellen. 29 Berechnung des multiplikativen Inversen a*a -1 1 (mod m) mit ggt(a,m)=1 das sind die Voraussetzungen ggt(a,b)= u*a+v*b also ggt(a,m)= u*a+v*m 1 (mod m) 0 a -1 a 30

16 Erweiterter Euklid scher Algorithmus mit Subtraktion func BigInt BigInt BigInt egcd(bigint a>=0,b>=0) { BigInt au,av,bu,bv; BigInt a,b,t; au:= 1; av:= 0; // a = au*a + av*b bu:= 0; bv:= 1; while a!= b { if a>b { a:= a-b; au:= au-bu; av:= av-bv; else { b:= b-a; bu:= bu-au; bv:= bv-av; return a,au,av; // b = bu*a + bv*b // linear // linear Grün sind die Bestandteile des ursprünglichen Algorithmus. Bitte beachten Sie, dass die u- und v-werte negativ sein können, dann muss dies durch Addition des Moduls später korrigiert werden. 31 Erweiterter Euklid scher Algorithmus mit mod func BigInt BigInt BigInt egcdmod(bigint a>=0,b>=0) { BigInt au,av,bu,bv; BigInt a,b,t; au:= 1; av:= 0; // a = au*a + av*b bu:= 0; bv:= 1; // b = bu*a + bv*b while b!= 0 { q:= a div b; t:= a mod b; bu:= au-q*bu; // linear: b:= a mod b bv:= av-q*bv; a:= b; b:= t; Grün sind die Bestandteile des ursprünglichen Algorithmus. return a,au,av; Bitte beachten Sie, dass die u- bzw. v-werte negativ sein können, dann muss dies durch Addition des Moduls korrigiert werden. 32

17 Nach dieser Anstrengung etwas Entspannung... 33

IT-Sicherheitsmanagement. Teil 3: Restklassen

IT-Sicherheitsmanagement. Teil 3: Restklassen IT-Sicherheitsmanagement Teil 3: Restklassen 26.10.18 1 Literatur I [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh,

Mehr

Literatur. ITSec SS 2017 Teil 7/Restklassen

Literatur. ITSec SS 2017 Teil 7/Restklassen Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [7-3] Hoffmann,

Mehr

IT-Security. Teil 7: Restklassen

IT-Security. Teil 7: Restklassen IT-Security Teil 7: Restklassen 20.04.17 1 Literatur [7-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [7-2] Schmeh, Klaus: Kryptografie.

Mehr

IT-Security. Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen

IT-Security. Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen IT-Security Teil 8b: Rechnen mit beliebiger Genauigkeit Algorithmen 06.06.17 1 Überblick Potenzieren Quadrieren Euklid'scher Algorithmus In den meisten Fällen wird nur mit positiven Werten gerechnet. Bei

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

2: Restklassen 2.1: Modulare Arithmetik

2: Restklassen 2.1: Modulare Arithmetik 2: Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32, 64} Prüfziffern mod 10 oder mod 11... 71 S. Lucks Diskr Strukt.

Mehr

Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Literatur. [8-9]   ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier,

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Interim. Kapitel Einige formale Definitionen

Interim. Kapitel Einige formale Definitionen Kapitel 1 Interim Da ich keine Infos über Titel und Nummerierungen anderer Kapitel dieser Vorlesung habe, nenne ich dies einfach mal Kapitel 1. 17.11.04 1.1 Einige formale Definitionen Wir rekapitulieren

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung)

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung) Restklassen (die modulo-rechnung) Inhalt 4.1 4.1 Was Was sind sind Restklassen? [0], [0],[1], [1],...,...,[n 1] 4.2 4.2 Addition von von Restklassen [5] [5] + [7] [7] = [3] [3] 4.3 4.3 Multiplikation von

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Demo-Text für Modulo-Rechnungen. und. Restklassen. Höhere Algebra INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Modulo-Rechnungen. und. Restklassen. Höhere Algebra INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Höhere Algebra Modulo-Rechnungen und Restklassen Ein Stück Zahlentheorie Stand: 9. Februar 2019 Datei Nr. 55010 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de 55010 Modulo Restklassen

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!

Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust! Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)

Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß) 6. Termin, Wien 2014 Mag. a Dagmar Kerschbaumer Letzter Termin g-adische Darstellung

Mehr

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung

Kapitel 2. Elementare Zahlentheorie Primfaktorzerlegung Kapitel 2. Elementare Zahlentheorie 2.1. Primfaktorzerlegung Menge der ganzen Zahlen Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Addition Inverse Multiplikation Z Z Z, Z Z, Z Z Z, (a, b) a + b a a (a, b) a b Ausgezeichnete

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Von den ganzen Zahlen zu GF(p)

Von den ganzen Zahlen zu GF(p) Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

2.4. Kongruenzklassen

2.4. Kongruenzklassen DEFINITION 2.4.1. kongruent modulo 2.4. Kongruenzklassen Wikipedia:1707 wurde Euler als der älteste Sohn des Pfarrers Paul Euler geboren. Er besuchte das Gymnasium in Basel und nahm gleichzeitig Privatunterricht

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente

4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente 4.21 Die zahlentheoretischen Bücher VII, VIII und IX der Elemente Buch VII der Elemente behandelt auch heute noch aktuelle Begriffe wie Teiler, Vielfache, ggt, kgv und Primzahl und ihre Eigenschaften.

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2 Zahlentheorie, Arithmetik und Algebra I Felix Teufel 26.07.2017 Hallo Welt! -Seminar - LS 2 Überblick Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen Eulersche Φ-Funktion RSA Quellen 26.07.2017

Mehr

Das RSA Verfahren. Die Mathematik von RSA. Ganzzahl Arithmetik. Die Mathematik des RSA-Verfahrens

Das RSA Verfahren. Die Mathematik von RSA. Ganzzahl Arithmetik. Die Mathematik des RSA-Verfahrens Das RSA Verfahren Das RSA-Verfahren beruht auf Modulo-Arithmetik mit riesigen ganzen Zahlen und der Berechnung modularer Potenzen bei der Verschlüsselung. Die genaue Mathematik wird in den folgenden Kapiteln

Mehr

Kapitel 2: Zahlentheoretische Algorithmen Gliederung

Kapitel 2: Zahlentheoretische Algorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019

Diskrete Strukturen. Vorlesung 15: Arithmetik. 5. Februar 2019 1 Diskrete Strukturen Vorlesung 15: Arithmetik 5. Februar 2019 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 4.2. Tutorium (Klausurvorbereitung) 11.2. 12.2. 5.2.

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra 1 Florian Habur Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Modulare Arithmetik Rechenregeln Fast Exponentiation

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016

Vorlesung. Inhalt. Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Vorlesung Lineare Algebra und Wahrscheinlichkeitsrechnung für Informatik Gunter Ochs, Nico Rompos Sommersemester 2016 Inhalt Polynome, Algebraische Strukturen Vektorrechnung Lineare Algebra Elementare

Mehr

1 Kryptographie - alt und neu

1 Kryptographie - alt und neu 1 Krytograhie - alt und neu 1.1 Krytograhie - alt [H] S. 9-14 und S. 18:.3.1. (Idee) - olyalhabetische Verschlüsselung, Vigenère (1550) 1. Primzahlen [RS] S. 89-93, wohl im wesenlichen ohne Beweise. Ausnahme

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen

Mehr

3. Der größte gemeinsame Teiler

3. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2016) 18 3. Der größte gemeinsame Teiler (3.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. /

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. / Zahlentheorie, Arithmetik und Algebra I Tobias Polzer Tobias Polzer Zahlentheorie, Arithmetik und Algebra I / Modulare Arithmetik Motivation Rechenregeln schnelle Potenzierung Gemeinsame Teiler euklidischer

Mehr

5. Der größte gemeinsame Teiler

5. Der größte gemeinsame Teiler Chr.Nelius: Zahlentheorie (SoSe 2017) 22 5. Der größte gemeinsame Teiler (5.1) DEF: a und b seien beliebige ganze Zahlen. a) Eine ganze Zahl t heißt gemeinsamer Teiler von a und b, wenn gilt t a und t

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Langzahlarithmetik implementieren Ac 1990 bis 2016

Langzahlarithmetik implementieren Ac 1990 bis 2016 Langzahlarithmetik implementieren Ac 1990 bis 2016 Wie konstruiert man einen BigInteger-Typ (Langzahlarithmetik)? Zur Berechnung von sehr großen Ganzzahlen ( Big Integers ) kann man Register verwenden,

Mehr

IT-Security. Teil 9: Asymmetrische Verschlüsselung

IT-Security. Teil 9: Asymmetrische Verschlüsselung IT-Security Teil 9: Asymmetrische Verschlüsselung 20.09.18 1 Literatur [9-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [9-2] Schmeh,

Mehr

Zahlentheorie, Arithmetik und Algebra I. Katharina Falk Medizintechnik Master

Zahlentheorie, Arithmetik und Algebra I. Katharina Falk Medizintechnik Master Zahlentheorie, Arithmetik und Algebra I Katharina Falk Medizintechnik Master 13.06.2016 Gliederung Modulare Arithmetik Rechenregeln Schnelle Potenzierung Gemeinsamer Teiler Erweiterter Euklid Primzahlen

Mehr

IT-Security. Teil 13: Asymmetrische Verschlüsselung

IT-Security. Teil 13: Asymmetrische Verschlüsselung IT-Security Teil 13: Asymmetrische Verschlüsselung 09.05.17 1 Literatur [13-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [13-2]

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt

Mehr

Literatur. [9-3] [9-4]

Literatur. [9-3]   [9-4] Literatur [9-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [9-2] Socher, Rolf: Algebra für Informatiker. Hanser, 2012 [9-3] https://de.wikipedia.org/wiki/fermatscher_primzahltest

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr