Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik"

Transkript

1 Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: Uhr Berbeitungszeit: 10 Minuten Zugelssene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite) - Wissenschftlicher Stndrd-Tschenrechner (nichtgrfikfähig, nichtprogrmmierbr, nicht symbolisch rechnend) Berbeiten Sie bitte die 5 und 9d uf dem bltt. Alle nderen berbeiten Sie bitte uf gesondertem Ppier. Denken Sie n Begründungen und vergessen Sie bei Textufgben nicht den Antwortstz, denn jede Frge erfordert eine Antwort. Alle Lösungswege müssen nchvollziehbr dokumentiert sein. Flls Sie eine Lösung durch Probieren finden, müssen Sie Ihre Überlegungen unbedingt usreichend kommentieren. Es sind mximl 5 Punkte zu erreichen. Nme, Vornme: Klsse:

2 1. Berechnungen (9 Punkte) ) Geben Sie den größten und den kleinsten Wert n. 4 0, 3, % b) Kürzen Sie den ngegebenen Term und geben Sie nschließend seinen Wert n. 9, 1,8 4,8 1 c) Es seien x = 8 und 4y + 3 = 9. Berechnen Sie die Summe x + y. d) Fssen Sie die Terme so weit wie möglich zusmmen. Term I: 17 5x 3x x 3x Term II: Seilbhn ( Punkte) Seilbhn-Trife Erwchsene Kinder Senioren Einzelfhrt 5,00 4,00 5,00 Berg- und Tlfhrt 8,80,00 7,0 Tlfhrt 4,00 3,00 3,50 Lst Minute Crd b Uhr,00 4,30 5,00 Fmilie Müller (sechs Erwchsene und drei Kinder) möchte mit der Seilbhn fhren. Zwei der Erwchsenen sind Senioren. ) b) c) Berechnen Sie, wie viel die Fmilie für eine Berg- und Tlfhrt bezhlen muss. Notieren Sie Ihren Lösungsweg. Wie viel muss die Fmilie bezhlen, wenn lle berguf fhren, ber nur die beiden Senioren ins Tl fhren und die nderen bergb lufen? In den Monten September und Oktober gibt es für Fmilien b vier zhlenden Personen einen Preisnchlss von 0 %. Op Müller sgt: Dnn können wir j lle eine Berg- und Tlfhrt mchen und müssen trotzdem nicht einml 50 bezhlen. Ht er Recht? Begründen Sie durch Rechnung. Seite von 5

3 3. Lser (8 Punkte) Auf einer Bustelle werden Vermessungsrbeiten mit einem Lser durchgeführt. Dbei steht der Lser in 15 m Entfernung von einem 8 m hohen Schornstein uf einem Gestell in 1,0 m Höhe. In welchem Winkel zur Wgerechten muss der Lserstrhl usgerichtet werden, dmit er genu die Spitze des Schornsteins trifft? Fertigen Sie eine beschriftete Skizze n, konstruieren Sie ds Dreieck in einem geeigneten Mßstb und ermitteln Sie durch Messen die gesuchte Größe. 4. Sprchreise (4 Punkte) René fährt mit einer Jugendgruppe zu einer Sprchreise ins Auslnd. Sein Vter entdeckt kurz nch Abfhrt des Kleinbusses, dss René seinen Ausweis vergessen ht. Der Vter weiß, dss km der Kleinbus mit einer Geschwindigkeit von c. 100 fährt und eine erste Puse von h 30 Minuten n einer Autobhnrststätte nch drei Stunden Fhrzeit mchen wird. Der Vter fährt 0 Minuten später mit seinem PKW los, um die Reisegruppe n der Rststätte noch vor deren Abfhrt zu erreichen. Mit welcher Durchschnittsgeschwindigkeit muss er fhren? Schreiben Sie Ihren Lösungsweg uf. 5. Auto ( Punkte) Der nchfolgende Grph beschreibt ungefähr, wie sich die Geschwindigkeit eines Autos im Lufe einer Stunde ändert. Entscheiden Sie bei den folgenden Aussgen, ob sie richtig oder flsch sind! ) 1. In den ersten 0 Minuten wird ds Auto immer schneller.. Zwischendrin mcht der Fhrer eine Puse Minuten lng fährt ds Auto mit einer konstnten Geschwindigkeit. 4. Nch einer Stunde bleibt ds Auto stehen. richtig flsch Geschwindigkeit in km h Zeit in min b) Schreiben Sie Ihre Einschätzung zu der folgenden Aussge uf: Nch einer Stunde ist ds Auto wieder m Ausgngspunkt ngekommen. Seite 3 von 5

4 . Verkehr ( Punkte) Quelle: MOZ, ) Personenzüge benötigen für die Strecke von Berlin nch Mosku jetzt 130 Minuten. Überprüfen Sie ds durch eine Rechnung. Notieren Sie ihren Lösungsweg! b) Nch Ausbu der Strecke Berlin Mosku bis zum Jhr 010 sollen Personenzüge nur noch 17 Stunden 3 Minuten fhren. Wie viel Zeit wird eingesprt? Geben Sie ds Ergebnis in Prozent n. Dokumentieren Sie ihren Lösungsweg. 7. Zhlenrätsel (4 Punkte) Ds Sechsfche der um verminderten Zhl ist genuso groß wie ds Vierfche der um 3 vermehrten Zhl. ) Welche der Gleichungen gibt den Schverhlt richtig wieder? (I) x = 4x + 3 (II) x + = 4(x + 3) (III) (x ) = 4x + 3 (IV) (x ) = 4(x + 3) b) Lösen Sie die Gleichung, die Sie usgewählt hben. Schreiben Sie den Lösungsweg uf. Seite 4 von 5

5 8. Hubschruber (7 Punkte) Ein Hubschruber fliegt in gleichbleibender Höhe von 00 Metern mit konstnter Geschwindigkeit über ebenes Gelände. Christin sieht den Hubschruber erst unter einem Winkel von 40 zur Wgerechten. 15 Sekunden später befindet sich der Hubschruber direkt über ihm. Christins Körpergröße knn dbei vernchlässigt werden. Fertigen Sie eine Skizze n und berechnen Sie die Geschwindigkeit des Hubschrubers! 9. Grph (7 Punkte) Gegeben ist der Grph einer lineren Funktion. ) Geben Sie die Koordinten des Schnittpunktes P des Grphen mit der y-achse n. b) Bestimmen Sie die Funktionsgleichung zu dem Grphen. c) Der Grph bildet mit den beiden Achsen ein Dreieck. Ermitteln Sie seinen Flächeninhlt und geben Sie ihn in Flächeneinheiten FE n. y 3 P 1 O N d) Zeichnen Sie den Grph einer zweiten Funktion ein. Er soll mit den beiden Achsen ein zweites Dreieck mit demselben Flächeninhlt bilden. Bestimmen Sie für diesen Grphen die pssende Funktionsgleichung. x 10. Würfel (8 Punkte) Die Volumin von drei würfelförmigen Krtons verhlten sich wie 1 : : 3. Ds Volumen des kleinsten Krtons beträgt 155 cm³. Schreiben Sie jeweils den Lösungsweg uf. ) Berechnen Sie die Kntenlänge des kleinsten Krtons. b) Berechnen Sie ds Volumen des mittleren Krtons. c) Berechnen Sie die Oberfläche des größten Krtons. Runden Sie uf gnze cm². d) Ist die Zuordnung Kntenlänge eines Würfels Volumen eines Würfels eine Funktion? Begründen Sie. Seite 5 von 5

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Knton St.Gllen Bildungsdeprtement St.Gllische Kntonsschulen Gymnsium Aufnhmeprüfung 2016 Mthemtik 1 (ohne Tschenrechner) Duer: 90 Minuten Kndidtennummer: Geburtsdtum: Korrigiert von: Punktzhl/Note: Aufgbe

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Arbeitsbeginn: Bearbeitungszeit: 11:00 Uhr 120 Minuten

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

Vergleichsarbeit Mathematik

Vergleichsarbeit Mathematik Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Sentsverwltung für Bildung, Wissenschft und Forschung Fch Nme, Vornme Klsse Abschlussprüfung n der Fchoberschule im Schuljhr / Mthemtik (A) Prüfungstg.. Prüfungszeit Zugelssene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBUR Ministerium für Bildung, Jugend und Sport Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 0 im Fch Mthemtik 8. Mi 0 Arbeitsbeginn:

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

9 Üben X Prismen und Zylinder 1401

9 Üben X Prismen und Zylinder 1401 9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten

Mehr

Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 8. Klasse Kntonle Prüfungen 0 für die Zulssung zum gymnsilen Unterricht im 9. Schuljhr Mthemtik I Serie H8 Gymnsien des Kntons Bern Mthemtik I Prüfung für den Übertritt us der 8. Klsse Bitte bechten: - Berbeitungsduer:

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin - Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg

Mehr

R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.

R. Brinkmann  Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1. R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 11.06.2008 Arbeitsbeginn: 10.00 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Mathematik. . Du hast 60 Minuten Zeit.. Löse die Aufgaben direkt auf das Aufgabenblatt. Reicht derplatz bei einer Aufgabe nicht,

Mathematik. . Du hast 60 Minuten Zeit.. Löse die Aufgaben direkt auf das Aufgabenblatt. Reicht derplatz bei einer Aufgabe nicht, Zentrle Aufrrhmeprüfung 20T3 fur die Lnggymnsien des Kntons Zürich Mthemtik Nme Pnifungsnummer Vornme Schule Allgemeine Hinweise. Du hst 60 Minuten Zeit.. Löse die Aufgben direkt uf ds Aufgbenbltt. Reicht

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Abiturprüfung 2006 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2006 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 2006 MATHEMATIK ls Grundkursfch Arbeitszeit: 180 Minuten Der Fchusschuss wählt je eine Aufgbe us den Gebieten GM1, GM2 und GM3 zur Berbeitung us. Die Angbe ist vom Prüfling mit dem Nmen zu

Mehr

Pyramidenvolumen. 6 a2. 9 = a

Pyramidenvolumen. 6 a2. 9 = a Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin: Hessisches Kultusministerium. Name der Schule Abschlussrbeit Mthemtik Hupttermin: 30.05.005 Nme der Schule, Nme der Schülerin / des Schülers Klsse GESAMT NOTE 53 Punkte Ort, Dtum Korrigierende Lehrkrft Berbeitungshinweise Schreibe deinen Nmen uf lle

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Dieser Downlod

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Lösungen Matur

Lösungen Matur Wirtschftliches Mturitätsprofil Seite 1 von 7 Mturitätsprüfung 007 Lösungen Mtur 006-007 1. (5 P.) Lut Wikipedi betrug die Weltbevölkerung m 1.1.1987 fünf Millirden Menschen, m 1.1.000 wren es 6 Millirden.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2

Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2 Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen

Mehr

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008

Abschlussprüfung an Fachoberschulen / Zusatzprüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 2007/2008 Abschlussprüung n Fchoberschulen / Zustzprüung zum Erwerb der Fchhochschulreie in berulichen Bildungsgängen im Schuljhr 007/008 Hupttermin: Nch- bzw Wiederholtermin: 009008 Schulrten: Fch: Prüungsduer:

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Aufgabe Zeichnen Sie die Graphen der folgenden linearen Funktionen: a) f(x) = 2x + 2. b) 1 3. d) f(x) = 3x 6

Aufgabe Zeichnen Sie die Graphen der folgenden linearen Funktionen: a) f(x) = 2x + 2. b) 1 3. d) f(x) = 3x 6 R. Brinkmnn http://brinkmnn-du.de Seite 9.9. Lösungen linere Funktionen Teil VII : A A Zeichnen Sie die Grphen der folgenden lineren Funktionen: ) f() + b) f() c) d) f() 6 f() ) f() + b) f() A c) f() d)

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 2005 Aufgbenstellungen A1 und A2 (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Nun musst du nur noch den richtigen UMRECHNUNGSFAKTOR finden und die Rechnung fehlerfrei ausführen. Wo liegt also das Problem?

Nun musst du nur noch den richtigen UMRECHNUNGSFAKTOR finden und die Rechnung fehlerfrei ausführen. Wo liegt also das Problem? 182/02 35 Zur Vorbereitung der Einheit - Wiederholung: Längen- und Flächenmße umrechnen Merke: Überlege zunächst, ob Du von groß nch klein oder von klein nch groß umrechnen willst. Wir rechnen zum Beispiel

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen Vergleichsrbeiten 2010 8. Jhrgngsstufe (VERA-8) Mthemtik Durchführungserläuterungen Testdurchführung Für den Test werden insgesmt c. 90 Minuten benötigt. Die reine Testzeit beträgt 80 Minuten. Für die

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet

Mehr

Fachbereich Mathematik

Fachbereich Mathematik Oberstufenzentrum Krftfhrzeugtechnik Berufsschule, Berufsfchschule, Fchoberschule und Berufsoberschule Berlin, Bezirk Chrlottenburg-Wilmersdorf Fchbereich Mthemtik Arbeits- und Informtionsblätter zum Fch

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik. Donnerstag, 18. April 2013

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik. Donnerstag, 18. April 2013 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik Donnerstag, 18. April 2013

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik. <Datum>

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik. <Datum> Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik Arbeitszeit: 10:00 12:15 Uhr Bearbeitungszeit: 135 Minuten Zugelassene Hilfsmittel:

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Satz des Pythagoras. c 2. a 2. b 2

Satz des Pythagoras. c 2. a 2. b 2 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs

Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch

Mehr

Prof. Dipl.-Ing. Edgar Neuherz MATHEMATIK. Mathematik und angewandte Mathematik HAK

Prof. Dipl.-Ing. Edgar Neuherz MATHEMATIK. Mathematik und angewandte Mathematik HAK Prof. Dipl.-ng. Edgr Neuherz MATHEMATK 2 und ngewndte HAK lizensiert für: Dipl.-ng. Edgr Neuherz 2. Schulreit (2013-08-01 23:56) Schuljhr 2012/13 Verntwortlich für den nhlt Dipl.-ng. Edgr Neuherz Grz,

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 26 Mthemtik Rechenfertigkeiten Skript Freitg Dr. Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Skript: Dr. Irmgrd Bühler (Überrbeitung: Dr. Dominik Tsndy) 9. August

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

7.3. Prüfungsaufgaben zu Ebenen

7.3. Prüfungsaufgaben zu Ebenen 7.. Prüfungsufgben zu Ebenen Aufgbe : Prmeterform () Gegeben sind die Gerden g und h mit g: x und h: x ) Zeigen Sie, dss g und h prllel, ber nicht identisch sind. b) Geben Sie eine Gleichung der Ebene

Mehr

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8 BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Abschlussprüfung Mthemtik technische BMS Teil Prüfungsduer Minuten Erlubte Hilfsmittel: Formelsmmlung ohne selbst gelöste Beispiele. Grfikfähiger Tschenrechner

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Mittlerer Schulabschluss 2013

Mittlerer Schulabschluss 2013 Arbeitszeit: 10:00 12:15 Uhr Bearbeitungszeit: 135 Minuten Zugelassene Hilfsmittel: beiliegende Formelübersicht (eine Doppelseite) wissenschaftlicher Standard-Taschenrechner (nichtgrafikfähig, nichtprogrammierbar,

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel:

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel: 16 7 8 9 4 5 6 1 2 3 1 2 13 14 15 5 6 1 2 3 4 b c A B 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 C 13 14 15 16 9 10 11 12 7 8 2 2 2 erste binomische Formel: ( + b) + 2b + b 2 2 2 zweite binomische

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik. 26. April 2012

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik. 26. April 2012 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2012 im Fach Mathematik 26. April 2012 Arbeitsbeginn:

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion

KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere

Mehr

Übungsteil: 1. Algebra

Übungsteil: 1. Algebra lgebr Übungsteil: lgebr Gleichungssysteme: estimmen Sie die Lösungsmenge folgender Gleichungssysteme: ) y + 7 = 5x x + y = 7 c) y = x 9 6x 0 = y b) y = 5x y = x d) x + 5y = 05 0,5y = x,5 e) 0(x + y) =

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr