4. Standardübertragungsglieder

Größe: px
Ab Seite anzeigen:

Download "4. Standardübertragungsglieder"

Transkript

1 4. PT-Glied : Verzögerungsglied. Ordnung 4. P-Glied : Proportionalglied 4.3 I-Glied: Integrator 4.4 D-Glied: Differenzierer (ideal/real) 4.5 PT-Glied: Verzögerungsglied. Ordnung 4.6 Totzeitglied Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

2 4. Verzögerungsglied. Ordnung (PT-Glied) Differentialgleichung: Übertragungsfunktion: Pol der Übertragungsfunktion: T y(t) & + y(t) = K u(t) ; K,T > G(s) = Y(s) U(s) K = + s T + st = : s = T Sprungantwort: h(t) = K( e t/ T ) ; für t > Impulsantwort: g(t) = K T e t / T ; für t > Blocksymbol Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

3 4. Verzögerungsglied. Ordnung (PT-Glied) Sprungantwort: h(t) = K( e t / T ) ; für t >.8 h(t) K t / T Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 3

4 4. Verzögerungsglied. Ordnung (PT-Glied) Sprungantwort: Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 4

5 4. Verzögerungsglied. Ordnung (PT-Glied) Impulsantwort: g(t) = K T e t /T ; für t >.8 g(t) K /T t /T Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 5

6 4. Verzögerungsglied. Ordnung (PT-Glied) Bode-Diagramm: - G(jω) K db arg { G(jω) } ω ωe = ωt Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 6

7 4. Verzögerungsglied. Ordnung (PT-Glied) Ortskurve:,5 G(jω) Im{ } K -,5 - -,5,5,5 G(jω) Re{ } K Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 7

8 4. Proportionalglied (P-Glied) Differentialgleichung: Übertragungsfunktion: y (t) = K u(t) Y(s) G (s) = = K U(s) Ein Hebel ist ein P-System Pol der Übertragungsfunktion: keine Sprungantwort: h (t) = K; für t > Impulsantwort: g (t) = Kδ(t) ; für t > Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Blocksymbol Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 8

9 4.3 Integrator (I-Glied) Differentialgleichung: Übertragungsfunktion: Pol der Übertragungsfunktion: y&(t) = u(t) bzw. Y(s) G (s) = = U(s) s = y(t) = s t u( τ)dτ u (t) y(t)...dt Eine sich füllende Tasse Kaffee ist ein I-System Sprungantwort: h (t) = t σ(t); für t > Impulsantwort: g (t) = σ(t) ; für t > Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Blocksymbol oder /s Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 9

10 4.3 Integrator (I-Glied) Sprungantwort: Impulsantwort: h(t) g(t), ,75,5, t Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

11 4.3 Integrator (I-Glied) Bode-Diagramm: 4 G(jω) db arg { G(jω) } ω Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

12 4.3 Integrator (I-Glied) Ortskurve:,5 Im{ G(jω)} -,5 - -,5,5,5 ReG(jω)} Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

13 4.4 Idealer Differenzierer (ideales D-Glied) Differentialgleichung: Übertragungsfunktion: kein Pol, aber eine Nullstelle : y (t) = u(t) & Y(s) G (s) = = s U(s) s = u (t) y(t) d dt( L) Sprungantwort: h (t) = δ(t); für t > Blocksymbol: oder s Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 3

14 4.4 Realer Differenzierer (reales D-Glied) Differentialgleichung: T y(t) & + y(t) = u(t); & T klein Übertragungsfunktion: G(s) = Y(s) U(s) = s + T s Pol : s = T Nullstelle: Sprungantwort: h(t) = s = T e t /T Reihenschaltung aus schnellem PT- und idealem D-Glied + Ts s Blocksymbol: Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 4

15 4.4 Ideales und reales D-Glied Bode-Diagramm: G(jω) db ideal real arg { G(jω) } /T ω Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 5 dt

16 4.4 Ideales und reales D-Glied Ortskurve: Im{ G(jω)},5 ideal real /T -,5 - -,5,5,5 Re{ G(jω)} Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 6

17 4.5 Verzögerungsglied. Ordnung (PT-Glied) Differentialgleichung: ω D && y(t) + ω y(t) & + y(t) = K u(t) ; K,D, ω > Übertragungsfunktion: G(s) = Y(s) U(s) = K + D(s/ ω ) + (s/ ω ) Pole der Übertragungsfunktion: s s + Dω s + ω = / = Dω ± D ω Fall : D > : aperiodischer Fall reelle Pole Fall : D = : aperiodischer Grenzfall doppelter reeller Pol Fall 3: < D < : oszillatorischer Fall konjugiert komplexe Pole Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 7

18 4.5 Verzögerungsglied. Ordnung (PT-Glied) Sprungantwort: Fall : D > : h(t) = reelle Pole K α α + α s, = α, = ω ( D ± D ) α α e α t α α t e für t > α α Fall : D = : reeller Doppelpol s, = ω h(t) = K ω t ωt [ e ω t e ] für t > Fall 3: < D < : konj. komplexe Pole s, = ω( D ± j D ) Dω t h(t) = K e sin( ωet + ϕ ) für t > D ω ϕ e = ω D = arccosd Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 8

19 4.5 Verzögerungsglied. Ordnung (PT-Glied) Sprungantwort (normiert): h(t) K D =,,35,5,7,,5, ω t Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 9

20 4.5 Verzögerungsglied. Ordnung (PT-Glied) Impulsantwort (normiert): g(t) Kω D =,,35,5,7,,5, Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer ω t

21 4.5 Verzögerungsglied. Ordnung (PT-Glied) Bode-Diagramme (normiert) arg G(jω) K db { G(jω) } D =,5,,35,5,7,,5, D =,5,,35,5,7,,5, -8 - ω/ω Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

22 4.5 Verzögerungsglied. Ordnung (PT-Glied) Ortskurve (normiert) G(jω) Im{ } K Re{ G(jω)/K} Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer

23 4.5 Verzögerungsglied. Ordnung (PT-Glied) G(s) = Y(s) U(s) = K + D (s / ω ) + (s / ω) K Übertragungs- / Verstärkungsfaktor (Messtechnik: stat. Empfindlichkeit) D Dämpfung, (Lehrsches) Dämpfungsmaß ω Eckfrequenz (Schnittpunkt der Asymptoten) ω e = ω D Eigen(kreis)frequenz des (gedämpften) Systems ω R = ω D Resonanzfrequenz, d.h. { G(jω R } = max D = D = / aperiodischer Grenzfall: Sprungantwort weist gerade keine Überhöhung (Überschwingung) mehr auf Oszillographendämpfung: Amplitudengang weist gerade keine Resonanzüberhöhung mehr auf Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 3

24 4.5 Verzögerungsglied. Ordnung (PT-Glied) Das Berechnen der Näherungswerte für die maximale Überschwingweite, die Zeit, bei der die maximale Überschwingweite auftritt, die relative Dämpfung, die Einschwingzeit erfolgt (für das dominante Polpaar) im Zeitbereich mit den Beziehungen: Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 4 x m T m T an D = e = πd D π ωd π ϕ ω D ϕ = arccos( ζ) ω T T = aus% aus5% = ω 4 = Dω = % D 3 Dω

25 4.5 Verzögerungsglied. Ordnung (PT-Glied) Einfaches Feder-Masse-System x m && x + k x& + c x = F Zahlenbeispiel mit m = kg k = Ns /m c = N/m F(t) = N σ(t s) Übertragungsfunktion? Sprungantwort? Bode-Diagramm, Ortskurve? Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 5 pt

26 4.6 Totzeitglied Beispiele: Förderband x(t) = K y(t T ) T t = l v t Mischungsregelung (z.b. Dusche): Temperaturänderung erst nach Totzeit T t = l v bemerkbar allgemein: Transportvorgänge, Diffusion, Wellenausbreitung (räumliche Entfernung zwischen Ort der Ein- u. Ausgangsgröße) Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 6

27 4.6 Totzeitglied Differentialgleichung: y(t) = u(t T t ); Tt > ; T t : "Totzeit" Übertragungsfunktion: G(s) = Y(s) U(s) Pol der Übertragungsfunktion: transzendente Übertragungsfunktion = e s T t Sprungantwort: Impulsantwort: h(t) g(t) = σ(t = δ(t T ) t T ) t Blocksymbol: oder s e T t Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 7

28 4.6 Totzeitglied Sprungantwort: Impulsantwort: h(t) g(t),5,75,5, ,5,75,5,5 Totzeit T t Totzeit T t t /T t 6 6 Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 8

29 4.6 Totzeitglied Bode-Diagramm: 4 G(jω) db arg { G(jω) } ω T t Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 9

30 4.6 Totzeitglied Ortskurve:,5 Im{ G(jω)} ω = -, ,5,5 Re{ G(jω)} Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 3

31 4.6 Totzeitglied Totzeitverhalten stellt ein spezielles Verzögerungsverhalten dar. Die Verzögerung eines Signals um eine konstante Zeit T t ohne Änderung der Signalform. Für Sprung- und Impulsantworten findet man die entsprechenden Ausdrücke im Zeitbereich in der Korrespondenztabelle. Da ein Totzeitglied nur eine konstante Zeitverschiebung des Eingangssignals bewirkt, ist im Bode-Diagramm nur im Phasenverlauf eine Auswirkung festzustellen. Die Ortskurve ergibt einen Kreis, der wiederholt durchlaufen wird. Es besteht kein Zusammenhang zwischen Amplituden- und Phasenverlauf. Ein Totzeitglied ist bei der Frequenzgangberechnung (speziell bei einem rückgekoppelten System) mathematisch schwierig handhabbar. Es ist deshalb sinnvoll, das Totzeitverhalten näherungsweise mit einem Verzögerungsglied. Ordnung zu beschreiben. Der Phasengang eines Verzögerungsgliedes.Ordung mit T = T t, entspricht bis ca., dem eines Totzeitgliedes (Fehler <5%). Bessere Näherungen erreicht man durch Reihenschaltung mehrerer Verzögerungsglieder.Ordnung. Campus Friedrichshafen --- Regelungstechnik --- Dr.-Ing. Erika Schäfer 3

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Schriftliche Prüfung aus Regelungstechnik 1 am

Schriftliche Prüfung aus Regelungstechnik 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik 1 am 24.01.2017 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 10

Regelungs- und Systemtechnik 1 - Übungsklausur 10 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 2 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

1 Gegenkopplung und Stabilität S107

1 Gegenkopplung und Stabilität S107 Regelungstechnik - Formelsammlung (Revision : 044 - powered by LATEX) Seite von 6 Gegenkopplung und Stabilität S07. LTI-Grundglieder Typ Symbol Gleichung, Dgl Sprungantwort Frequenzgang, Betrag und Argument

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung Dynamische Systeme 2-ter Ordnung (PT 2 -System) Schwingungsfähige Systeme 2-ter Ordnung. - Systeme mit Speicher für potentielle und kinetische Energie - Beispiel: Feder-Masse-Dämpfer

Mehr

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2)

Die Sprungantwort ist die Reaktion auf den Einheitssprung: G 2 (s) = 2 (s +1)(s +6) 3 (s +7)(s +2) Aufgabe 1: Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 1 s + (s +3) 3 (s +4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) =σ(t) W (s) = 1 s Die Übertragungsfunktion des

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 16

Regelungs- und Systemtechnik 1 - Übungsklausur 16 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße. q r u y. R(s) 2. Teilklausur WS 17/18 Gruppe A Name: Matr.-Nr.: Aufgabe 1 (6 Punkte) Gegeben sei folgender Regelkreis mit der Führungsgröße r, der Stellgröße u und der Ausgangsgröße y: q r u y V (s) P (s) R(s) Auf den

Mehr

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen.

Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Achtung: Schreiben Sie Ihre Antworten für die Aufgaben 1 bis 2 direkt unter den Fragen in den Fragebogen. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 28.7.26 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 2 3

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz

von der Straßenkoordinate r zur Fahrzeugkoordinate x. Straßenoberfläche Initiale Referenz Regelungstechnik Klausur vom 9.2.23 Zoltán Zomotor Versionsstand: 3. Januar 24, 2:59 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t)

Transformationen Übungen 1. 1 Signale und Systeme. 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) Transformationen Übungen 1 1 Signale und Systeme 1.1 Gegeben ist die Funktion f(t). Skizzieren Sie folgende Funktionen: a) f(t - 3) b) f(2 t) f(t) 1 c) f(-t) d) f(t + 3) 1 t e) f(t / 4) f) f(t) + 2 g)

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

Zusammenfassung der 4. Vorlesung

Zusammenfassung der 4. Vorlesung Zusammenfassung der 4. Vorlesung Lösung von Regelungsaufgaben Modellbildung dynamischer Systeme Experimentell und analytisch Modellierung im Zeit- und Bildbereich Lineare Systeme Lineare Systeme Superpositionsprinzip

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 2

Regelungs- und Systemtechnik 1 - Übungsklausur 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 12 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

Umsetzung des neuen EL-Lehrplans

Umsetzung des neuen EL-Lehrplans Umsetzung des neuen EL-Lehrplans... für Maschinenbauer... Dipl.-Ing. Dr.techn. Michael Schwarzbart scb@htlwrn.ac.at Salzburg 09.Dezember 2015 Der Weg zu dynamischen Systemen Festigkeitslehre Statik Hydromechanik

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) =

mit unbekannter Systemmatrix A. Die Transitionsmatrix zu obigem System lautet e t. 2 e t u(s) = 1. Teilklausur SS 18 Betrachten Sie folgendes mathematische Modell mit der Eingangsgröße u, der Ausgangsgröße und dem Zustandsvektor x [ ] dx 1 = Ax + bu = Ax + u = c T x + du = [ 1 0 ] x dt 0 mit unbekannter

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Zusammenfassung der 2. Vorlesung

Zusammenfassung der 2. Vorlesung Zusammenfassung der 2. Vorlesung Fourier-Transformation versus Laplace-Transformation Spektrum kontinuierlicher Signale Das Spektrum gibt an, welche Frequenzen in einem Signal vorkommen und welches Gewicht

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (25 Punkte) a) Teilaufgabe: 15 Punkte Gegeben sei die folgende Differenzialgleichung dritter Ordnung: mit den Anfangswerten: y (3) (t) + 4 ÿ(t) + ẏ(t) 6 y(t) = 12 u(t)

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl

Name: Vorname(n): Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Punkte aus Übungsmitarbeit Gesamtpunktanzahl Universität des Saarlandes, Lehrstuhl für Systemtheorie und Regelungstechnik SCHRIFTLICHE PRÜFUNG aus SYSTEMTHEORIE UND REGELUNGSTECHNIK I am 3.0.007 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion

b) Ist das System zeitvariant oder zeitinvariant? (Begründung!) c) Bestimmen Sie mit Hilfe der LAPLACE-Transformation die Übertragungsfunktion Aufgabe 1: Systemanalyse Ein dynamisches System mit der Eingangsgröße u(t) und der Ausgangsgröße y(t) werde durch die folgenden gekoppelten Gleichungen beschrieben, wobei y 1 (t) eine Zwischengröße ist:

Mehr

MAS Automation Management

MAS Automation Management MAS Automation Management Modul: A-NLE Winterthur, 27.1./ 3.2.217 Ruprecht Altenburger, altb@zhaw.ch Lineare Regelung an einem einfachen Beispiel erstellt für das Frühlingssemester 215; Version vom 12.

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik *v Vogel Buchverlag Inhaltsverzeichnis 1 Einführung 13 1.1 Steuern - Regeln 13 1.1.1 Steuern 13 1.1.2 Regeln

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Schriftliche Prüfung aus Systemtechnik am

Schriftliche Prüfung aus Systemtechnik am TU Graz, Institut für Regelungs- und Automatisierungstechni Schriftliche Prüfung aus Systemtechni am 29.0.206 Name / Vorname(n): Matriel-Nummer: Aufgabe A A2 A3 A4 A5 A6 A7 A8 Summe erreichbare Punte 2

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

Die nummerierten Felder bitte mithilfe der Videos ausfüllen:

Die nummerierten Felder bitte mithilfe der Videos ausfüllen: 7 Bode-Diagramm Zoltán Zomotor Versionsstand: 22. Oktober 2015, 13:40 Die nummerierten Felder bitte mithilfe der Videos ausfüllen: http://www.z5z6.de This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

5. Frequenzbereichsbetrachtungen

5. Frequenzbereichsbetrachtungen 5. Frequenzbereichsbetrachtungen Im vorigen Abschnitt haben wir gesehen, dass das Eingangs-Ausgangsverhalten eines linearen, zeitinvarianten Systems der Form ẋ = Ax bu, x0 = 0 y = c T x du 5.1 mit dem

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Regelungs- und Systemtechnik 1 - Übungsklausur 1

Regelungs- und Systemtechnik 1 - Übungsklausur 1 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Bearbeitungszeit: 1 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte

Mehr

1 Allgemein. Formelzettel Automatisierungstechnik

1 Allgemein. Formelzettel Automatisierungstechnik Diese Zusammenstellung von wichtigen Formeln und Regeln habe ich im Zuge des Lernens für Automatisierungstechnik geschrieben. Zum Lernen kann ich folgende Literatur empfehlen: Signale-&-Systeme, PROF.

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 25.09.2014 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den Matlab-Übungen: ja nein 1

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Zusammenfassung der 5. Vorlesung

Zusammenfassung der 5. Vorlesung Zusammenfassung der 5. Vorlesung Am Karnevalsdienstag, den 13.2.2018 findet keine Vorlesung statt. Modellierung mit Hilfe von Testsignale Sprungfunktion, Übergangsfunktion Impulsfunktion (Dirac sche Deltafunktion)

Mehr

90 Minuten Seite 1. Einlesezeit

90 Minuten Seite 1. Einlesezeit 90 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Control Systems Toolbox K. Taubert WS 01/02. 1 Einführung. X(s) = H(s)U(s) x = Ax + Bu y = Cx + Du,

Control Systems Toolbox K. Taubert WS 01/02. 1 Einführung. X(s) = H(s)U(s) x = Ax + Bu y = Cx + Du, Control Systems Toolbox K. Taubert WS 1/2 Zusammenfassung: Die Control Systems Toolbox ist ein Hilfsmittel für den Entwurf, die Entwicklung und Analyse in der Regelungstechnik. Unterschiedliche Beschreibungen

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik 2., korrigierte Auflage Vogel Buchverlag Inhaltsverzeichnis 1 Einführung 13 1.1 Steuern - Regeln 13 1.1.1 Steuern

Mehr

Einleitung Einführung in die Aufgabenstellung der Regelungstechnik Beispiel einer Wasserstandsregelung 5

Einleitung Einführung in die Aufgabenstellung der Regelungstechnik Beispiel einer Wasserstandsregelung 5 INHALTSVERZEICHNIS Einleitung 1 1. Einführung in die Aufgabenstellung der Regelungstechnik 5 1.1 Beispiel einer Wasserstandsregelung 5 1.1.1 Verbale Systembeschreibung 5 1.1.2 Anforderungen an die Regelung

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik 1 - Übungsklausur 6 Bearbeitungszeit: 120 Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben

Mehr

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich

Regelsysteme Übung: Reglerentwurf nach Spezifikation im Zeitbereich. Damian Frick. Herbstsemester Institut für Automatik ETH Zürich Regelsysteme 6. Übung: Reglerentwurf nach Spezifikation im Zeitbereich Damian Frick Institut für Automatik ETH Zürich Herbstsemester 205 Damian Frick Regelsysteme Herbstsemester 205 6. Übung: Reglerentwurf

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 18. 10. 01 Name / Vorname(n): Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O ja O nein

Mehr

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2

Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Leibniz Universität Hannover Institut für Kommunikationstechnik Prof. Dr. J. Peissig Zu Beginn der Vorlesung Signale und Systeme ausgegebene Übungsaufgaben V 1.2 Universität Hannover, Institut für Kommunikationstechnik,

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich gewichtet, total 57 Punkte) BSc - Sessionsprüfung 27.01.2016 Regelungstechnik I (151-0591-00) Ochsner Musterlösung Dauer der Prüfung: Anzahl der Fragen: Bewertung: 120 Minuten + 15 Minuten Lesezeit am Anfang! 47 (unterschiedlich

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 29.06.2016 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung

Mehr

Schriftliche Prüfung aus Regelungssysteme am

Schriftliche Prüfung aus Regelungssysteme am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungssysteme am 12.10.2018 Name / Vorname(n): Matrikel-Nummer: Aufgabe A1 A2 A3 A4 A5 A6 A7 A8 Summe erreichbare

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Regelungstechnik am 1.10. 011 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MALAB-Übungen: O

Mehr

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar. 120 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Definieren Sie die Begriffe Stellgröße und Führungsgröße. b) Stellen Sie die Funktion u(t) = 1(t 1) + 2(t 2) 3(t 3) grafisch dar.

Mehr

Regelungstechnik, Band 1 (11. Auflage)

Regelungstechnik, Band 1 (11. Auflage) MATLAB-Abbildungen aus Regelungstechnik (Band 1, 11. Auflage) 5. Juli 20161 Regelungstechnik, Band 1 (11. Auflage) Abbildungen, die mit MATLAB erzeugt wurden Abbildungsnummer Bildunterschrift Dateiname

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Elementare Regelungstechnik

Elementare Regelungstechnik Peter Busch Elementare Regelungstechnik Allgemeingültige Darstellung ohne höhere Mathematik 7., überarbeitete Auflage Vogel Buchverlag Inhaltsverzeichnis Vorwort 5 1 Einführung 13 1.1 Steuern - Regeln

Mehr

Aufgabe 1: Laplace-Transformation

Aufgabe 1: Laplace-Transformation Aufgabe 1: Laplace-Transformation (15 Punkte) Ein technisches System sei gegeben durch folgende Differentialgleichung 3.Ordnung: y (t)+6ÿ(t)+12ẏ(t)+8y(t) =2ü(t)+1 u(t)+8u(t). Dieses System wird eingangsseitig

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.4.23 Arbeitszeit: 2 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Frequenzgang - Darstellungen

Frequenzgang - Darstellungen Frequenzgang - Darstellungen Ein Puzzle von Martin Darms und Roman Lässker Inhalt und Lernziel: Die Übertragungseigenschaften einer Schaltung sind abhängig von der Frequenz. Die Studenten und Studentinnen

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Universität Ulm Institut für Allgemeine Elektrotechnik und Mikroelektronik Prof. Dr.-Ing. Albrecht Rothermel A A2 A3 Note Schriftliche Prüfung in Grundlagen der Elektrotechnik I 27.2.29 9:-: Uhr Name:

Mehr