Marktforschung I. Marktforschung I 2

Größe: px
Ab Seite anzeigen:

Download "Marktforschung I. Marktforschung I 2"

Transkript

1 Marktforschung I

2 Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt) Clusteranalyse (Hammerschmidt) Marktforschung I 2

3 Organisatorische Hinweise Vorlesung: Zeit: Mi Uhr Raum: ZHG 003 Übung: Daten: , 7.11., , , , , , Zeit: Mo Uhr und Uhr Raum: Blauer Turm, WiSoRZ MZG Marktforschung I 3

4 Grundlegende Literatur Lattin, J. M./Caroll, J. D./Green, P. E.: Analyzing Multivariate Data, Belmont Tabachnick, B. G./ Fidell, L. S.: Using Multivariate Statistics, 5. Aufl., Boston, MA Backhaus, K./Erichson, B./Plinke, W./Weiber, R.: Multivariate Analysemethoden, 13. Aufl., Berlin u.a Backhaus, K./Erichson, B./Weiber, R.: Fortgeschrittene multivariate Analysemethoden. Eine anwendungsorientierte Einführung, Berlin u.a Marktforschung I 4

5 Einführung in die Testtheorie

6 Übersicht: Einführung in die Testtheorie (1) Typische Fragestellungen (2) Einführungsbeispiel Mittelwertvergleich (3) Einstichprobenproblem (4) Zweistichprobenproblem (5) Überprüfung der Normalverteilung (6) Nichtparametrische Tests (7) Kontingenzanalyse Marktforschung I 6

7 Kapitelbezogene Literatur Bleymüller, J./Gehlert, G./Gülicher, H.: Statistik für Wirtschaftswissenschaftler, 14., überarb. Aufl., München 2004, S Marktforschung I 7

8 (1) Typische Fragestellungen Die Leitung eines Versandhauses möchte prüfen, ob zwei Katalogversionen die gleiche Wirkung haben oder ob sie sich unterscheiden, ob neben den zwei Katalogversionen auch zwei unterschiedlich gestaltete Zahlungsbedingungen zu unterschiedlichen Absatzzahlen führen. Der Leiter eines Cash & Carry Marktes möchte wissen, ob sich die Erträge (= Summe der Differenzen zwischen Verkaufs- und Einkaufspreisen aller Artikel) je Kauf während der einzelnen Tage einer Sonderangebotsperiode unterscheiden, ob Sonderangebotskäufer im Durchschnitt einen höheren Ertrag erbringen als Nicht-Sonderangebotskäufer. Ein Handelsunternehmen möchte wissen, ob sich die Zahl der Frontstücke (= nebeneinander platzierte Einheiten eines Artikels, die bei einer frontalen Betrachtung wahrgenommen werden können) auf die Verkaufszahlen auswirkt, ob sich unterschiedliche Platzierungsformen eines Artikels auf die Abverkaufszahlen auswirken. Marktforschung I 8

9 (2) Einführungsbeispiel (I) Ein Supermarktunternehmen denkt über die Neuausrichtung der Platzierungspolitik von Süßwaren im Kassenbereich nach. Es soll geprüft werden, ob von der Zweitplatzierung ein positiver Effekt auf die abgesetzte Menge ausgeht. Zu diesem Zweck wird in einer der Filialen des Unternehmens in einem Zeitraum von fünf Wochen eine Zweitplatzierung des Schokoladenriegels Pluto vorgenommen. Mit Hilfe der Scannerkassen können die Abverkaufszahlen problemlos erfasst werden. Nach einer Reihe von Vorüberlegungen bezüglich der Normierung der Daten hat man die Entscheidung getroffen, die mittlere Abverkaufsmenge pro 1000 Kassenvorgänge heranzuziehen, um den Erfolg der Zweitplatzierung zu messen. Marktforschung I 9

10 (2) Einführungsbeispiel (II) Aus früheren Untersuchungen über den Abverkauf des Schokoladenriegels weiß man, dass bei einer ausschließlichen Platzierung in der Süßwarenabteilung durchschnittlich 27,9 Riegel pro 1000 Kassenvorgänge pro Tag verkauft wurden. Das Ergebnis resultiert aus der Auswertung einer Datenreihe, von der man nicht nur den genannten Mittelwert, sondern auch die Varianz kennt. Sie beträgt 25. Die Nachfragemengen, die bei der Zweitplatzierung in dem ausgewählten Supermarkt beobachtet wurden, sollen so ausgewertet werden, dass man Aussagen über den zu erwartenden Erfolg dieser Maßnahme bei einer unternehmensweiten Umsetzung ableiten kann. Aufgrund der zu tätigenden Investitionen und des organisatorischen Aufwandes möchte die Unternehmensleitung sicherstellen, dass im Falle der Entscheidung für eine unternehmensweite Umsetzung der Zweitplatzierung der Absatz relativ sicher gesteigert wird. Marktforschung I 10

11 Daten Tag Absatz Tag Absatz Tag Absatz 1 39, , ,2 2 18, , ,6 3 27, , ,1 4 23, , ,8 5 28, , ,9 6 23, , ,2 7 31, , ,0 8 36, , ,2 9 38, , , , , ,9 Der Mittelwert beträgt = 30,11 Marktforschung I 11

12 (3) Einstichprobenproblem - Hypothesenbildung Inhaltlich: H 0 : Zweitplatzierung führt zu keiner höheren Nachfrage als Normalplatzierung H 1 : Formal: H 0 : H 1 : Zweitplatzierung führt zu einer höheren Nachfrage als Normalplatzierung 0 0 Für heißt das: H 0 : 27.9 H 1 : 27.9 Marktforschung I 12

13 α-fehler und β-fehler bei statistischen Entscheidungen In der Grundgesamtheit gilt: Entscheidung aufgrund der Stichprobe: H 0 trifft zu H 0 trifft nicht zu H 0 wird nicht abgelehnt Richtige Entscheidung -Fehler H 0 wird abgelehnt -Fehler Richtige Entscheidung Marktforschung I 13

14 Notwendige Annahmen über die Absatzzahlen Um den α-fehler kontrollieren zu können, ist es erforderlich, bestimmte Annahmen über die beobachteten Werte in diesem Fall die Absatzzahlen zu treffen: Die Beobachtungen sind Realisationen einer Zufallsvariablen Die Verteilung der Zufallsvariablen ist bekannt; nicht jedoch ihre konkreten Parameter Marktforschung I 14

15 Verteilung der Abverkaufszahlen Wenn man annehmen würde, dass die Abverkaufszahlen bei einer Zweitplatzierung normalverteilt wären mit einem Mittelwert von 27.9 und einer Standardabweichung von 5 (abgekürzt N(27,9; 5)), so würde man die folgende theoretische Wahrscheinlichkeitsverteilung der Abverkaufszahlen erwarten können. X ~ N( 27, 9; 5) 5% 36,12 Marktforschung I 15

16 Verteilung des Mittelwertes der Abverkaufszahlen X i1 X i ~ N( 27, 9; 5 ) 30 X ~ N( 27, 9; 5) Marktforschung I 16

17 Verteilung des Mittelwertes der Abverkaufszahlen, wenn X~N(27,9;5) X ~ N( 27, 9; 5 ) 30 5% 29,40 Marktforschung I 17

18 Verteilung des Mittelwertes der Abverkaufszahlen, wenn X~N(27,0;5) X ~ N(27,0; 5 ) 30 0,4% 29,40 Marktforschung I 18

19 Verteilung des Mittelwertes der Abverkaufszahlen, wenn X~N(28,5;5) X ~ N( 28, 5; 5 ) 30 16,2% 29,40 Marktforschung I 19

20 Bestimmung einer Testgröße (Teststatistik) n X 0 ~ N( 0, 1), wenn 0 5% 1,645 Marktforschung I 20

21 Entscheidungsregel Lege die maximale Fehlerwahrscheinlichkeit α fest. Bestimme das α-fraktil der N(0,1)-Verteilung u. 1 x 0 (1) Wenn z n u1, mit α-fraktil der N(0,1)-Verteilung, u 1 dann kann H 0 nicht abgelehnt werden. x 0 (2) Wenn z n u1, dann kann H 0 abgelehnt werden. Die Entscheidungsregel garantiert, dass bei einer Ablehnung der Hypothese H 0 die Wahrscheinlichkeit für eine Fehlentscheidung nicht größer als α ist. Marktforschung I 21

22 Äquivalente Entscheidungsregel Lege die maximale Fehlerwahrscheinlichkeit α fest. Bestimme den Wert der Teststatistik z x n 0 Bestimme die Überschreitungswahrscheinlichkeit: X ÜW= P( n 0 z) Wenn ÜW kann H 0 nicht abgelehnt werden. Wenn ÜW < kann H 0 abgelehnt werden. Marktforschung I 22

23 Äquivalenz beider Entscheidungsregeln 5% 0,77% 1,645 2,421 Wert der Testgröße Marktforschung I 23

24 Charakterisierung des Tests Einstichprobenproblem: Mittelwert einer Stichprobe wird mit einem vorgegebenen Wert verglichen. Einseitiger Test: Es werden die Hypothesen H 0 : gegen H 1 : getestet. 0 0 Bekannte Varianz: Es wird unterstellt, dass die Varianz bekannt ist. Einseitiger Gauß-Test 0 ² Marktforschung I 24

25 Zweiseitiger Test bei bekannter Varianz H 0 : 0 H 1 : 0 Testgröße: z n x 0 5 % 5 % -1,645 1,645 Bei der zweiseitigen Hypothese können sowohl besonders große als auch besonders kleine Werte der Testgröße als Widerspruch zu der Hypothese H 0 interpretiert werden. Marktforschung I 25

26 Einseitiger Test bei unbekannter Varianz Ist die Varianz unbekannt, so schätzt man sie mit dem Schätzer ˆ s 1 n -1 n i=1 (x 2 i - x) 0 0 und prüft die Hypothese H 0 : gegen H 1 : mit der Teststatistik: x n s 0 ~ t n1 wenn 0 Die Teststatistik ist t verteilt mit n 1 Freiheitsgraden. Man nennt diesen Test den t-test. Marktforschung I 26

27 Entscheidungsregel Lege die maximale Fehlerwahrscheinlichkeit fest. Bestimme den Wert der Teststatistik: t n x 0 s X Bestimme die Überschreitungswahrscheinlichkeit: ÜW P( n 0 t) s Wenn ÜW kann H 0 nicht abgelehnt werden. Wenn ÜW < kann H 0 abgelehnt werden Marktforschung I 27

28 Ergebnisse des t-tests im SPSS-Programm Statistik bei einer Stichprobe ABSATZ N Standardfe Standardab hler des Mittelwert weichung Mittelwertes 30 30,110 6,783 1,238 Test bei einer Sichprobe ABSATZ Testwert = % Konfidenzintervall Mittlere der Differenz T df Sig. (2-seitig) Differenz Untere Obere 1,785 29,085 2,210 -,323 4,743 SPSS testet stets die zweiseitige Hypothese. Die Ergebnisse können aber auf das einseitige Problem übertragen werden. Marktforschung I 28

29 Interpretation der Ergebnisse für das einseitige Problem bei Durchführung des zweiseitigen Tests Bevor der Test durchgeführt wird, ist festzulegen. Ist der Wert des berechneten Mittelwertes größer als? 0 Nein H 0 kann nicht abgelehnt werden Ja ÜW Ist? 2 Nein Ja H 0 kann nicht abgelehnt werden H 0 kann abgelehnt werden Marktforschung I 29

30 Entscheidungsregel des zweiseitigen Tests x x Wenn z n oder 0 z n u, 1 0 u dann kann die Hypothese H 0 abgelehnt werden. Die Wahrscheinlichkeit, dabei eine Fehlentscheidung zu treffen, beträgt maximal %. Marktforschung I 30

31 Äquivalente Entscheidungsregel Bestimme: z X 0 X 0 ÜW P( n z ) P( n z ) Wenn ÜW kann H 0 nicht abgelehnt werden. 0 n x Bestimme die zweiseitige Überschreitungswahrscheinlichkeit: Wenn ÜW < kann H 0 abgelehnt werden. Marktforschung I 31

32 (4) Zweistichprobenproblem Nach der Auswertung der Ergebnisse der Zweitplatzierung kommen Zweifel darüber auf, ob die Normalplatzierung tatsächlich zu einem mittleren Absatz von 27,9 Riegeln pro 1000 Kassenvorgänge führt. Die Bedingungen, unter denen das Ergebnis ermittelt wurde, sind möglicherweise nicht ganz vergleichbar mit der Situation heute. Man entschließt sich deshalb, aktuelle Abverkaufszahlen aus einem Supermarkt, der vergleichbar mit jenem Supermarkt ist, in dem die Zweitplatzierung getestet wurde, auszuwerten. Für diesen liegen Zahlen der letzten 4 Wochen (24 Tage) vor. Marktforschung I 32

33 Absatzzahlen Tag Absatz 1 Absatz 2 Tag Absatz 1 Absatz 2 Tag Absatz 1 Absatz ,5 35, ,7 22, ,2 34,2 2 18,9 26, ,9 18, ,6 35,1 3 27,4 12, ,8 30, ,1 16,1 4 23,9 30, ,1 22, ,8 16,1 5 28,0 19, ,8 16, ,9 6 23,2 30, ,5 24, ,2 7 31,4 33, ,8 27, ,0 8 36,5 28, ,2 26, ,2 9 38,5 28, ,7 35, , ,4 24, ,6 26, ,9 Der Mittelwert bei Zweitplatzierung beträgt = 30,11 Der Mittelwert bei Normalplatzierung beträgt = 25,91 Marktforschung I 33

34 Hypothesen Annahmen: Absatzzahlen im Supermarkt 1 sind normalverteilt, d.h. : Absatzzahlen im Supermarkt 2 sind normalverteilt, d.h. : X1 X ~ 1 2 ~ 2 2 ( 1, ) (, ) H 0 : H 1 : Bevor der Mittelwertvergleich durchgeführt werden kann, muss ein zusätzliches Problem gelöst werden. Es muss die Frage beantwortet werden, 1 2 ob die unbekannten Varianzen und gleich oder ungleich sind. Hierzu wird ein F-Test durchgeführt, der die folgenden Hypothesen überprüft. H 0 : H 1 : Marktforschung I 34

35 Ergebnisse des t-tests im SPSS-Programm Gruppenstatistiken ABSATZ Platzierung 1 2 N Standardfe Standardab hler des Mittelwert weichung Mittelwertes 30 30,110 6,783 1, ,908 6,828 1,394 ABSATZ Varianzen sind gleich Varianzen sind nicht gleich Levene-Test der Varianzgleichheit F Signifika nz Test bei unabhängigen Stichproben T df Sig. (2-seitig) T-Test für die Mittelwertgleichheit Mittlere Differenz 95% Konfidenzintervall Standardfehler der Differenz der Differenz Untere Obere,008,929 2,255 52,028 4,202 1,863,463 7,940 2,254 49,288,029 4,202 1,864,456 7,948 Marktforschung I 35

36 Vorgehensweise beim Formulieren und Testen einer Hypothese (1) Aufstellung von Nullhypothese und Alternativhypothese sowie Festlegung des Signifikanzniveaus; (2) Festlegung einer geeigneten Prüfgröße und Bestimmung der Testverteilung bei Gültigkeit der Nullhypothese; (3) Bestimmung des kritischen Bereichs (Fraktil der Verteilung); (4) Berechnung des Wertes der Prüfgröße und (5) Entscheidung (Vergleich Prüfgröße und Fraktil) und Interpretation. Äquivalent: (1) wie oben; (2) wie oben; (3) Berechnung des Wertes der Prüfgröße; (4) Bestimmung der Überschreitungswahrscheinlichkeit und (5) Entscheidung (Vergleich Überschreitungswahrscheinlichkeit und alfa) und Interpretation. Marktforschung I 36

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette Ruhr-Universität Bochum 7. Mai 2010 1 / 95 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30-10.00

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

27. Statistische Tests für Parameter. Was ist ein statistischer Test?

27. Statistische Tests für Parameter. Was ist ein statistischer Test? 27. Statistische Tests für Parameter Wenn du eine weise Antwort verlangst, musst du vernünftig fragen Was ist ein statistischer Test? Ein statistischen Test ist ein Verfahren, welches ausgehend von Stichproben

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln

Beurteilung der biometrischen Verhältnisse in einem Bestand. Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand Dr. Richard Herrmann, Köln Beurteilung der biometrischen Verhältnisse in einem Bestand 1 Fragestellung Methoden.1 Vergleich der Anzahlen. Vergleich

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:

2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese: 2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik Hans-Friedrich Eckey SS 2004 Skript zur Lehrveranstaltung Multivariate Statistik Vormerkungen I Vorbemerkungen Das Manuskript beinhaltet den gesamten Stoff, der Bestandteil der Lehrveranstaltung "Multivariate

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

T-TEST BEI EINER STICHPROBE:

T-TEST BEI EINER STICHPROBE: Kapitel 19 T-Test Mit Hilfe der T-TEST-Prozeduren werden Aussagen über Mittelwerte getroffen. Dabei wird versucht, aus den Beobachtungen einer Stichprobe Rückschlüsse auf die Grundgesamtheit zu ziehen.

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Übersicht: Modul 2. Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse. Dr. H.-G. Sonnenberg

Übersicht: Modul 2. Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse. Dr. H.-G. Sonnenberg Übersicht: Modul 2 Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse Dr. H.-G. Sonnenberg Modul 2 4 Kurse : Modul 2 im Bc. Psychologie: - Empirische Sozialforschung

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

J. Bortz/N. Döring: Forschungsmethoden und Evaluation (jeweils neueste Auflage) Springer, Berlin S. 463ff

J. Bortz/N. Döring: Forschungsmethoden und Evaluation (jeweils neueste Auflage) Springer, Berlin S. 463ff J. Bortz/N. Döring: Forschungsmethoden und Evaluation (jeweils neueste Auflage) Springer, Berlin S. 463ff Signifikanztests Zur Logik des Signifikanztests Tests zur statistischen Überprüfung von Hypothesen

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Commercial Banking Übung 1 Kreditscoring

Commercial Banking Übung 1 Kreditscoring Commercial Banking Übung Kreditscoring Dr. Peter Raupach raupach@wiwi.uni-frankfurt.de Sprechzeit Dienstag 6-7:00 Uhr Raum 603 B Kreditscoring Gliederung Grundanliegen Das Sample Modellspezifikation Diskriminanzanalyse

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) :

1 Von den Ereignissen U und V eines Zufallsexperiments kennt man die Eigenschaften (1) bis (3) : Prof. Dr. E. Mammen SEMINAR FÜR STATISTIK Prof. Dr. H. Stenger UNIVERSITÄT MANNHEIM Vierstündige Klausur in statistischer Methodenlehre 9. Juli 003; 8:30 - :30 Zulässige Hilfsmittel: keine, insbesondere

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr