Explosionsschutz Theorie und Praxis

Größe: px
Ab Seite anzeigen:

Download "Explosionsschutz Theorie und Praxis"

Transkript

1 Explosionsschutz Theorie und Praxis

2 Explosionsschutz Inhaltsverzeichnis Seite Diese Broschüre zum Thema Explosionsschutz will bei den Errichtern, Planern und Betreibern von Anlagen mit explosionsfähigen Atmosphären Verständnis für die besonderen Risiken wecken und eine Hilfestellung bei der täglichen Arbeit bieten. Nicht nur in klassischen Anlagen der chemischen und petrochemischen Industrie muss man sich diesem Thema stellen. Auch in auf den ersten Blick harmlosen Bereichen z.b. der Lebensmittelindustrie ist ein erhebliches Gefahrenpotential vorhanden. Gerne bringt man Explosionsschutz mit Gasen in Verbindung. Doch auch bei Stäuben können explosionsfähige Atmosphären entstehen. 1 2 Grundlagen Explosionsschutz Richtlinien, Normen, Bestimmungen Zoneneinteilung Zündschutzarten Kennzeichnung von Ex-Produkten 25 Errichtung von Anlagen in explosionsgefährdeten Bereichen Installation eigensicherer Stromkreise Überspannungsschutz im Ex-Bereich Verbindungstechnik Gehäuseeinführungen Installationsbeispiele Nachweis der Eigensicherheit 42 3 Technisches Basiswissen MSR-Technik SIL Grundlagen Begriffe und Abkürzungen 58 Zu den in dieser Broschüre angegebenen Produkten finden Sie weitergehende Informationen in den Katalogen von Phoenix Contact und im Internet unter In dieser Broschüre werden im ersten Teil die Grundlagen zum Explosionsschutz erläutert. Dadurch soll das Verständnis für die besonderen Risiken geweckt Der Explosionsschutz stützt sich weltweit im wesentlichen auf die europäischen und amerikanischen Normen, Standards und Richtlinien. Der zweite Teil hilft dem Anwender von elektrischen n für den explosionsgefährdeten Bereich. Es wird in anschaulicher Weise dargestellt, welche Explosionsschutz-Kriterien berücksichtigt werden müssen. Neben den n der MSR-Technik für eigensichere Stromkreise finden Sie auch Informationen zu Reihenklemmen und Überspannungsschutz für den explosionsgefährdeten Bereich. Der dritte Teil enthält technisches Basiswissen zur MSR-Technik und zur Funktionalen Sicherheit. 2 Phoenix CONTACT Phoenix CONTACT 3

3 1 Grundlagen Explosionsschutz Entstehung einer Explosion Die Sicherheit von Menschen, ein sicherer, störungsfreier Produktionsprozess und eine saubere Umwelt sind wichtige Ziele. Das Wissen um die Entstehung und Vermeidung von Explosionen überall dort, wo brennbare Stoffe, Sauerstoff und Zündquellen aufeinander treffen können, ist die Voraussetzung, diese Ziele zu brennbarer Stoff erreichen. Zündquelle Sauerstoff Vollkommene Verbrennung Eine vollkommene Verbrennung ist eine rasch ablaufende Oxidation. Sie wird als Schadfeuer bezeichnet, bei dem unter ausreichender Zufuhr von Sauerstoff ein brennbares Material exotherm zersetzt wird. Mit zunehmender Ausbreitungsgeschwindigkeit spricht man von einer Verpuffung, dann von einer Explosion und im Extremfall von einer Detonation. Bei einer vollkommenen Verbrennung wird Schaden verursacht, der mit der Ausbreitungsgeschwindigkeit erheblich zunimmt. Größenordnung der Ausbreitungsgeschwindigkeit: Verpuffung cm/s Explosion m/s Detonation km/s Übersicht wirksamer Zündquellen Zündquelle Funken Lichtbögen Heiße Oberflächen Explosion Eine Explosion kann entstehen, wenn eine Schnittmenge aus einem brennbaren Stoff, Sauerstoff und einer Zündquelle besteht. Fehlt eine Komponente, so wird die exotherme Reaktion nicht erfolgen. Brennbarer Stoff Ein brennbarer Stoff, der in Form von Gas, Nebel, Dampf oder Staub vorliegt, wird als explosionsfähiger Stoff bezeichnet. Nebel und Stäube sind explosionsfähig, wenn die Tröpfchen- bzw. Teilchengröße kleiner als 1 mm ist. Stäube mit einer größeren Teilchengröße sind in der Regel nicht zündfähig. In der Praxis vorkommende Nebel, Aerosole und Stäube haben Teilchengrößen zwischen 0,001 mm und 0,1 mm. Sauerstoff In Verbindung mit einem explosionsfähigen Stoff entsteht mit Sauerstoff eine explosionsfähige Atmosphäre. Beispiel für die Ursache Mechanisch erzeugte Funken (z.b. durch Reib-, Schlag- oder Abtragvorgänge), elektrische Funken Kurzschluss, Schaltvorgänge Heizkörper, spanabhebende Bearbeitung, Erwärmung im Betrieb Flammen und heiße Gase Elektrische Anlagen Statische Elektrizität Elektrische Ausgleichsströme, kathodischer Korrosionsschutz Elektromagnetische Wellen im Bereich 3 x x Hz Hochfrequenz x Hz Blitzschlag Ionisierende Strahlung Ultraschall Adiabatische Kompression und Stoßwellen Exotherme Reaktionen Verbrennungsreaktionen, Funkenflug bei Schweißarbeiten Öffnen/Schließen von Kontakten, Wackelkontakt Schutzkleinspannungen (U< 50V) sind keine Maßnahme des Explosionsschutzes. Es kann auch bei kleinen Spannungen noch genügend Energie erzeugt werden, um eine explosionsfähige Atmosphäre zu entzünden. Entladung aufgeladener, isoliert angeordnete leitende Teile, bei z.b. vielen Kunststoffen Rückströme von Generatoren, Körper-/ Erdschluss bei Fehlern, Induktion Laserstrahl zur Entfernungsmessung, insbesondere bei Fokussierung Funksignale, industrielle Hochfrequenzgeneratoren für Erwärmung, Trocknung oder Schneiden Atmosphärische Wetterstörungen Röntgengerät, radioaktiver Stoff, Absorption von Energie führt zur Erwärmung Absorption von Energie in festen/flüssigen Stoffen führt zur Erwärmung Schlagartiges Öffnen von Ventilen Chemische Reaktion führt zur Erwärmung 4 Phoenix CONTACT Grundlagen Explosionsschutz 1 1 Grundlagen Explosionsschutz Phoenix CONTACT 5

4 Obere und untere Explosionsgrenzen Bei Gasen entscheidet das Konzentrationsverhältnis, ob eine Explosion möglich ist. Nur wenn die Konzentration des Stoffes in Luft innerhalb der unteren Explosionsgrenze (UEG) und oberen Explosionsgrenze (OEG) liegt, kann das Gemisch gezündet Einige chemisch unbeständige Stoffe (z.b. Acetylen, Ethylenoxid) können auch ohne Sauerstoff durch Selbstzersetzung exotherme Reaktionen eingehen. Die obere Explosionsgrenze (OEG) verschiebt sich auf 100 Volumen-Prozent. Der Explosionsbereich eines Stoffes erweitert sich mit steigendem Druck und steigender Temperatur. Explosionsgrenzen von Wasserstoff zu mager untere Explosionsgrenze Für Stäube lassen sich ähnliche Angaben machen wie für Gase, auch wenn die Explosionsgrenzen hier nicht die gleiche Bedeutung haben. Staubwolken sind in der Regel inhomogen und die Konzentration innerhalb einer Stauwolke schwankt sehr stark. Es lassen sich für Stäube eine untere Zündgrenze (bei ca g/ m 3 ) und eine obere Zündgrenze (bei ca kg/m 3 ) ermitteln. obere Explosionsgrenze zu fett 1.1 Richtlinien, Normen und Bestimmungen Explosionsschutz in Europa ATEX-Richtlinien Mit den sogenannten ATEX-Richtlinien wird der freie Warenhandel in Europa festgelegt. Der Begriff ATEX ergibt sich aus den französischen Worten ATmosphère EXplosible. In dem Konzept der Europäischen Union sind für den Explosionsschutz die ATEX- Richtlinie 94/9/EG für Hersteller und die Richtlinie 1999/92/EG für Betreiber eingeführt. Diese Richtlinien sind in den Mitgliedsstaaten in nationales Recht umzusetzen. Gerätegruppe und -kategorie nach ATEX-Richtlinie 94/9/EG Gerätegruppe II Über Tage Explosionsgefährdete Bereiche Gerätegruppe I Unter Tage Schlagwettergefährdete Bereiche = Kohlebergbau Explosive Atmosphäre Volumen-% brennbarer Stoffe Beispiele von Gasen unter Normaldruck Aceton 2,5 13 Acetylen 2, Ammoniak 15,5 33,6 Butan 1,4 9,3 Zielgruppe Richtlinie Gebräuchliche Bezeichnung* Hersteller 94/9/EG ATEX 100a ATEX 95 Betreiber 1999/92/EG ATEX 118a ATEX 137 * Die Richtlinie stützt sich jeweils auf einen Artikel des Vertrages zur Gründung der europäischen Union. Der Artikel hat sich in der Nummerierung verschoben. Um das geeignete Verfahren zur Konformitätsbewertung festzulegen, muss der Hersteller zunächst anhand der bestimmungsgemäßen Verwendung entscheiden, zu welcher Gerätegruppe und -kategorie das Produkt gehört (siehe Tabelle nächste Seite). Gerätegruppe I: Geräte zur Verwendung im Untertagebetrieb von Bergwerken und deren Übertageanlagen, die durch Grubengase (Methan) und/oder brennbare Stäube gefährdet Gerätegruppe II: Geräte zur Verwendung in den übrigen Bereichen, die durch eine explosionsfähige Atmosphäre gefährdet werden können. Den Gerätegruppen werden in der Richtlinie 94/9/EG Kategorien zugeordnet. Für die Gerätegruppe I wird die Kategorie M1 und M2 festgelegt. In der Gerätegruppe II werden drei Kategorien 1, 2 und 3 definiert. Über die Kategorie wird in der Betreiberrichtlinie 1999/92/EG die Verbindung zu den Zonen hergestellt. Dieselkraftstoff 0,6 6,5 Kohlenmonoxid 10,9 76 Methan 4,4 16,5 Ottokraftstoff 0,6 8 Schwefelkohlenstoff 0,6 60 Wasserstoff 4 77 Volumen-% brennbarer Stoffe Phoenix CONTACT Grundlagen Explosionsschutz Richtlinien, Normen und Bestimmungen Phoenix CONTACT 7

5 Anforderungen an Gerätegruppe und -kategorie Gerätegruppe Kategorie Schutzgrad Gewährleistung des Schutzes Betriebsbedingungen I M1 sehr hoher Grad an Sicherheit I M2 hoher Grad an Sicherheit Konformitätsbewertung Grundlage der Konformitätsbewertung ist die Einstufung der elektrischen in Gerätegruppe und Kategorie. Die Grafik zeigt den Zusammenhang. Mit Ausnahme von Geräten der Kategorie 3 und der Einzelprüfung ist im Rahmen der Konformitätsbewertung eine EG-Baumusterprüfung notwendig. Die Überprüfung der Module wird durch eine benannte Stelle durchgeführt. Hier ein Beispiel: CE 0344 CE: EG-Konformität bei n. Komponenten werden nicht mit dem CE Zeichen gekennzeichnet. 0344: benannte Stelle, hier KEMA. Kategorie 3 Geräte werden nicht mit der Nummer einer benannten Stelle gekennzeichnet, da sie nicht der Fertigungsüberwachung einer benannten Stelle unterliegen. Zwei unabhängige Schutzmaßnahmen. Sicher, wenn zwei Fehler unabhängig voneinander auftreten. Schutzmaßnahmen bei normalem Betrieb auch unter erschwerten Bedingungen wirksam. II 1 sehr hoch Zwei unabhängige Schutzmaßnahmen. Sicher, wenn zwei Fehler unabhängig voneinander auftreten. II 2 hoch Im normalen Betrieb und bei üblicherweise auftretenden Fehlern sicher. Produkte müssen aus Sicherheitsgründen bei vorhandener explosionsfähiger Atmosphäre weiter betrieben werden können. Diese Produkte müssen beim Auftreten einer explosionsfähigen Atmosphäre abgeschaltet werden können. Geräte bleiben in den Zonen 0, 1, 2 (G) und 20, 21, 22 (D) weiter einsatzbereit und werden weiter betrieben. Geräte bleiben in den Zonen 1, 2 (G) und 21, 22 (D) weiter einsatzbereit und werden weiter betrieben. II 3 normal Im normalen Betrieb sicher. Geräte bleiben in den Zonen 2 (G) und 22 (D) weiter einsatzbereit und werden weiter betrieben. Kategorie 1 M1 M2 QS Produktion oder Prüfung Produkt c 0344 QS Produkt * optional möglich, ähnliches Verfahren Kategorie 2 EG-Baumusterprüfung oder Konformität mit Bauart c 0344 Gruppe II Gruppe I * * Interne Fertigungskontrolle Konformitätsbewertung nach Richtlinie 94/9/EG für elektrische c Kategorie 3 Einzelprüfung c 0344 Benannte Stelle (Notified Body) nach 94/4/EG (Auszug) Das EG-Baumusterprüfungszertifikat bescheinigt die durchgeführte Prüfung durch eine benannte Stelle. Benannte Stellen sind durch die EU festgelegt. Explosionsschutz in Nordamerika Auf Grundlage des North American Hazardous Location Systems (HazLoc) werden grundlegende Regeln für den Explosionsschutz festgelegt. Das HazLoc-System wird von den folgenden Institutionen geprägt: Underwriters Laboratories Inc. (UL), CSA International (CSA), Factory Mutual Research (FM), Institute of Electrical and Electronics Engineers (IEEE), National Electrical Code (NEC) in USA Artikel Inhalt 500 Allgemeine Anforderungen an Divisions der Class I, II und III 501 Anforderungen an Divisions der Class I 502 Anforderungen an Divisions der Class II 503 Anforderungen an Divisions der Class III 504 Anforderungen an Divisions der Class I, II und III in Bezug auf Eigensicherheit (IS) 505 Allgemeine und spezielle Anforderungen an die Zone 0, 1 und Allgemeine und spezielle Anforderungen an die Zone 20, 21 und 22 Prüfstelle Land Kennung PTB Deutschland 0102 DEKRA EXAM Deutschland 0158 TÜV Nord Deutschland 0044 IBExU Deutschland 0637 ZELM Ex Deutschland 0820 BAM Deutschland 0589 SIRA Großbritannien 0518 INERIS Frankreich 0080 LCIE Frankreich 0081 LOM Spanien 0163 KEMA Niederlande 0344 CESI Italien 0722 UL DEMKO Dänemark 0539 NEMKO Norwegen 0470 The Instrumentation, Systems and Automation Society (ISA), Mine Safety and Health Administration (MSHA), National Electrical Manufacturers Association (NEMA), National Fire Protection Association (NFPA), United States Coast Guard (USCG). Als Basis des Explosionsschutzes in Nordamerika gelten in den USA der National Electrical Code (NEC) und in Kanada der Canadian Electrical Code (CEC). Die aufgeführten Auszüge aus NEC und CEC beziehen sich auf den Explosionsschutz. Canadian Electrical Code (CEC) in Kanada Artikel Inhalt Allgemeine Anforderungen an Class I/Zone und Class II und III/Divisions Anforderungen an Zone 0 der Class I Anforderungen an Zone 1 und 2 der Class II Anforderungen an Divisions der Class II Anforderungen an Divisions der Class III Anhang J Allgemeine und spezielle Anforderungen an Divisions der Class I 8 Phoenix CONTACT Richtlinien, Normen und Bestimmungen Richtlinien, Normen und Bestimmungen Phoenix CONTACT 9

6 Normung elektrischer Explosionsschutz Bei der Entwicklung von Geräten gibt die Einhaltung von Normen Herstellern und den späteren Betreiber eine gewisse Handlungssicherheit. Je nach Einsatzgebiet können entsprechende Normen und Standards herangezogen Die ATEX-Richtlinie zum Beispiel, legt die Einhaltung Grundlegender Sicherheits- und Gesundheitsanforderungen fest. Die Umsetzung kann von Herstelern/Betreibern durch harmonisierte Normen erfüllt werden oder durch ein geeignetes eigenes Konzept. Die harmonisierten Normen werden im Amtsblatt der Europäischen Union veröffentlicht und durch deren Anwendung gilt die Konformitätsvermutung. Wählt der Hersteller ein eigenes Konzept, ist ein ausführlicher Nachweis erforderlich. Ein Certificate of Conformity durch IECEx ist nur bei Einhaltung der entsprechenden IEC-Normen möglich. Staubexplosionsschutz in Europa In der Analogie zur Normung für den Gasexplosionsschutz gibt es Normen für den Staubexplosionsschutz. Es wird an der Zusammenführung der Gas- und Staub-Normen gearbeitet. Normen bzw. Standards für elektrische in staubexplosionsgefährdeten Bereichen Zündschutzart USA-Basis Prinzip EN-Norm IEC-Norm FM (USA) Allgemeine Bestimmungen Basis für Zündschutzarten Dies ist möglich, da die Normenreihe für den Staubexplosionsschutz 61241, wie die Normenreihe für den Gasexplosionsschutz 60079, Zündschutzarten beinhaltet. Die Normenreihe ist bereits zum Teil in die Normenreihe übernommen worden. UL (USA, Div.) UL (USA, Zone) EN IEC FM 3600 ISA CSA (Canada) Normen bzw. Standards für elektrische in gasexplosionsgefährdeten Bereichen Zündschutzart USA-Basis Prinzip EN-Norm IEC-Norm FM (USA) Allgemeine Bestimmungen Basis für Zündschutzarten EN IEC FM 3600 (ISA ) UL (USA, Div.) UL (USA, Zone) CSA (Canada) CSA E Eigensicherheit Ex i Energiebegrenzung EN IEC AEx i NEC505 FM 3610 UL 913 UL CSA E (IS) NEC504 FM 3610 Erhöhte Ex e Konstruktive Maßnahmen EN IEC durch Abstand und Sicherheit AEx e NEC505 FM 3600 Dimensionierung (ISA ) UL2279 Pt.7 UL CSA E Non-incendive (NI) NEC500 Konstruktive Maßnahmen durch Abstand Explosionproof (XP) NEC500 Konstruktive Maßnahmen durch Einschluss FM 3611 ISA C22.2 No. 213 FM 3615 z.b. Gehäuse: UL 1203 C22.2 No. 30 Druckfeste Ex d Konstruktive Maßnahmen EN IEC Kapselung AEx d NEC505 durch Einschluss FM 3600 UL2279 Pt.1 UL CSA E (ISA ) Vergusskapselung Ex m Ausschluss explosionsfähiger EN IEC AEx m NEC505 Atmosphäre FM 3600 UL2279 Pt.18 UL CSA E (ISA ) Ölkapselung Ex o Ausschluss explosionsfähiger EN IEC AEx o NEC505 Atmosphäre FM 3600 UL2279 Pt.6 UL CSA E (ISA ) Sandkapselung Ex q Ausschluss explosionsfähiger EN IEC FM 3622 AEx q NEC505 Atmosphäre FM 3600 UL2279 Pt.5 UL CSA E (ISA ) Überdruckkapselung Ex p Ausschluss explosionsfähiger EN IEC AEx p NEC505 Atmosphäre UL CSA E Typ X, Y, Z NEC500 FM 3620 NFPA 496 Zündschutzart Ex n Verbesserte Industriequalität EN IEC n AEx n NEC505 FM 3600 UL2279 Pt.15 UL CSA E (ISA ) Eigensichere elektrische Systeme i-sys Ex i Energiebegrenzung in zusammengeschalteten eigensicheren Stromkreisen EN IEC Eigensichere Feldbussysteme Optische Strahlung Ex i Energiebegrenzung EN IEC Ex op Begrenzung der Strahlungsleistung EN IEC Schutz durch Gehäuse (NI) NEC500 FM 3611 Eigensicherheit Ex i Energiebegrenzung EN IEC FM 3610 UL 913 ISA Ex t Schutz durch Gehäuse- EN IEC ISA (DIP) NEC500 Konstruktion FM 3616 FM 3611 UL 1203 Überdruckkapselung Vergusskapselung Ex p Ex m Ausschluss explosionsfähiger Atmosphäre Ausschluss explosionsfähiger Atmosphäre Abkürzungen auf Basis der NEC500 in Nordamerika XP Explosionsgeschützt IS mit eigensicheren Stromkreisen AIS Zugehörige mit eigensicheren Stromkreisen ANI Zugehöriger nichtzündender Feldstromkreis PX, PY, PZ Überdruckkapselung APX, APY, APZ Zugehöriges Überdrucksystem oder Komponente NI Nichtzündende und nichtzündender Feldstromkreis DIP Staub-Zündschutz Normung mechanischer Explosionsschutz Die ATEX-Richtlinie 94/9/EG enthält harmonisierte Anforderungen an nichtelektrische Geräte, auch für den Einsatz in staubexplosionsgefährdeten Bereichen. In Analogie zur Normung für elektrische Geräte gibt es Normen für nichtelektrische Geräte. EN IEC FM 3620 NFPA 496 ISA EN IEC ISA Normen für nichtelektrische in explosionsgefährdeten Bereichen Zündschutzart EN-Norm Grundlagen und Anforderungen EN fr Schwadenhemmendes Gehäuse EN (nur für Gerätekategorie 3) d Druckfeste Kapselung EN c Konstruktive Sicherheit EN b Zündquellenüberwachung EN p Überdruckkapselung EN k Flüssigkeitskapselung EN Phoenix CONTACT Richtlinien, Normen und Bestimmungen Richtlinien, Normen und Bestimmungen Phoenix CONTACT 11

7 Normung Planung, Errichtung und Betrieb 1.2 Zoneneinteilung Die Richtlinie 1999/92/EG erfordert vom Betreiber prozesstechnische Anlagen, die Sicherstellung des Explosionsschutzes. Die hierzu einzuhaltenden Anforderungen sind in EN- und IEC-Normen angegeben. Bezeichnung EN-Norm IEC-Norm Explosionsschutz Teil 1: Grundlagen und Methodik EN Europa Elektrische für gasexplosionsgefährdete Bereiche Teil 10: Einteilung der explosionsgefährdeten Bereiche EN neu: EN IEC neu: IEC Explosionsgefährdete Bereiche werden genormten Zonen zugeordnet, die in zwei Bereiche unterschieden werden: Beispiel für Zoneneinteilung Ventil Elektrische für gasexplosionsgefährdete Bereiche Teil 14: Elektrische Anlagen in explosionsgefährdeten Bereichen Elektrische für gasexplosionsgefährdete Bereiche Teil 17: Prüfung und Instandhaltung elektrischer Anlagen in explosionsgefährdeten Bereichen (ausgenommen Grubenbaue) Explosionsfähige Atmosphäre Teil 19: Gerätereparatur, Überholung und Regenerierung Elektrische zur Verwendung in Bereichen mit brennbarem Staub Teil 10: Einteilung von staubexplosionsgefährdeten Bereichen Elektrische zur Verwendung in Bereichen mit brennbarem Staub Teil 14: Auswahl und Errichten EN IEC EN IEC EN IEC EN IEC neu: EN neu: IEC EN IEC gasexplosionsgefährdete Bereiche und staubexplosionsgefährdete Bereiche. Die Zonen wurden bisher für Gase in der EN und für Stäube in EN definiert. Im Rahmen der Überführung der Staubnormenreihe EN in die Normenreihe EN wurde die Einteilung in Gas- und Staubexplosionsgefährdete Bereiche in die EN Teil 10-1 und 10-2 übernommen. Weiterhin wurde von dem Europäischen Komitee Normung (CEN) die Norm EN erstellt. Die EN beinhaltet grundlegende Informationen zum Explosionsschutz und unterstützt beide ATEX-Richtlinien (94/9/EG und 1999/92/ EG). Die Einteilung der Zonen erfolgt auf Grund der Häufigkeit des Auftretens von explosionsfähiger Atmosphäre. In den Explosionsschutz-Regeln der Berufsgenossenschaft Chemie in Deutschland sind weitere Hilfestellungen zur Zoneneinteilung zu finden. Zonen für gasexplosionsgefährdete Bereiche In der EN sind die Zonen für gasexplosionsgefährdete Bereiche definiert. Zonen Zone 0 Zone 1 Senke Art der Gefahr ständig, lange Zeiträume, häufig gelegentlich Zone 1 Zone 0 Zone 2 Elektrische zur Verwendung in Bereichen mit brennbarem Staub EN IEC Zone 2 normalerweise nicht, nur kurzzeitig Teil 17: Prüfung und Instandhaltung elektrischer Anlagen in explosionsgefährdeten Bereichen (ausgenommen Grubenbaue) 12 Phoenix CONTACT Richtlinien, Normen und Bestimmungen Zoneneinteilung Phoenix CONTACT 13

8 Zonen für staubexplosionsgefährdete Bereiche In der EN sind die Zonen erstmals für staubexplosionsgefährdete Bereiche* definiert. Heute sind sie in der EN zu finden. Einteilung in Deutschland vor ATEX Zone 10 Einteilung nach ATEX Zone 20 Zone 21 Art der Gefahr ständig, lange Zeiträume, häufig gelegentlich Zone 11 Zone 22 normalerweise nicht, nur kurzzeitig Zusammenhang zwischen Zone und Kategorie Der Zusammenhang zwischen den Zonen und Gerätekategorien wir im Anhang 2 in der Betreiberrichtlinie 1999/92/EG hergestellt. Zuordnung nach 1999/92/EG Zone Gerätekategorie 0, , 21 1, 2 2, 22 1, 2, 3 Bedeutung der Classes, Divisions und Zones Einteilung Explosionsfähige Atmosphäre Art der Gefahr Class I, Division 1 Class I, Division 2 Gas, Flüssigkeit und Dampf Gas, Flüssigkeit und Dampf Zündfähige Konzentrationen entflammbarer Gase, Dämpfe oder Flüssigkeiten können permanent oder zeitweise unter normalen Betriebsbedingungen existieren. Zündfähige Konzentrationen entflammbarer Gase, Dämpfe oder Flüssigkeiten treten wahrscheinlich nicht unter normalen Betriebsbedingungen auf. * Grobe Zuordnung, im Einzelfall zu überprüfen Stäube wurden früher in Deutschland in zwei Zonen unterteilt. Im Rahmen der Überarbeitung von Normen auf Grund von europäischen Richtlinien wurde die Zoneneinteilung auch bei Stäuben europaweit in drei Zonen unterteilt. Es ist Nordamerika aber zu berücksichtigen, dass die Zonen 10 und 11 nicht ungeprüft auf die neue Zoneneinteilung übertragen werden können. Class I, Zone 0 Class I, Zone 1 Gas, Flüssigkeit und Dampf Gas, Flüssigkeit und Dampf Zündfähige Konzentrationen entflammbarer Gase, Dämpfe oder Flüssigkeiten treten unter normalen Betriebsbedingungen permanent oder über einen langen Zeitraum auf. Zündfähige Konzentrationen entflammbarer Gase, Dämpfe oder Flüssigkeiten treten wahrscheinlich unter normalen Betriebsbedingungen auf. Entsprechend dem National Electrical Code (NEC) werden in den USA Zonen bzw. Divisionen eingeteilt. Für Kanada wird gemäß dem Canadian Electrical Code (CEC) entsprechend verfahren. Der Vergleich mit den IEC/EN Zoneneinteilung kann nur als grobe Näherung betrachtet Die Konvertierung muss im Einzelfall überprüft Insbesondere gilt dies für elektrische für Division 2. Diese lassen sich oft nicht ohne zusätzliche Prüfung und Zertifizierung in Zone 2 einsetzen. Im vereinfachten Zuordnungsschema werden die Möglichkeiten dargestellt. Explosionsgefährdete Bereiche mit typischen Stoffen Bereich CLASS I (Gase und Dämpfe) Groups (typischer Stoff) Group A (Acetylen) Group B (Wasserstoff) Group C (Ethylen) Group D (Propan) Class I, Zone 2 Class II, Division 1 Gas, Flüssigkeit und Dampf Staub Zündfähige Konzentrationen entflammbarer Gase, Dämpfe oder Flüssigkeiten treten wahrscheinlich nicht unter normalen Betriebsbedingungen auf. Zündfähige Konzentrationen brennbaren Staubs können permanent oder zeitweise unter normalen Betriebsbedingungen existieren. CLASS II (Stäube) CLASS III (Fasern) Group E (Metallstaub) Group F (Kohlestaub) Group G (Getreidestaub) Keine Untergruppen Class II, Division 2 Staub Zündfähige Konzentrationen brennbaren Staubs treten wahrscheinlich nicht unter normalen Betriebsbedingungen auf. Vereinfachtes Zuordnungsschema für Zonen und Division Bereiche Class III, Division 1 Fasern Bereiche, in denen leicht entzündbare Fasern verarbeitet oder transportiert IEC/EN Zone 0 Zone 1 Zone 2 USA: NEC 505 Zone 0 Zone 1 Zone 2 USA: NEC 500 Division 1 Division 2 Explosionsfähiger Stoff Class Group Explosionsfähiger Stoff Class Group Class III, Division 2 Fasern Bereiche, in denen leicht entzündbare Fasern gelagert oder transportiert Gas/Nebel oder Flüssigkeit I A, B, C, D Gas/Nebel oder Flüssigkeit I A, B, C, D Staub II E, F, G Staub II F, G Fasern III Fasern III 14 Phoenix CONTACT Zoneneinteilung Zoneneinteilung Phoenix CONTACT 15

9 1.3 Zündschutzarten Temperaturklassen/-grenzen bei Gasen und Stäuben Temperaturen für die Gruppe I Die max. zulässige Oberflächentemperatur der ist abhängig von der Art der Ablagerung von Kohlestaub. Temperaturen für die Gruppe I Gruppe I Temperatur Bedingungen Schlagwettergefährdeter Grubenbau (Kohlebergbau) 150 C 450 C mit Ablagerung von Kohlestaub am ohne Ablagerung von Kohlestaub am Allgemeine Anforderungen Die Basis für die genormten Zündschutzarten sind die Anforderungen an die Oberflächentemperatur, die Luft- und Kriechstrecken, die Kennzeichnung von elektrischen n, die Zuordnung der elektrischen an das Einsatzgebiet und der Zonen. Alles, was über die grundsätzlich notwendigen und allgemein gültigen Anforderungen hinausgeht, wird in der jeweiligen Zündschutzart festgelegt. Einteilung der Geräte in Gruppen Die ATEX-Richtlinie fordert eine Einteilung der Geräte in Gerätegruppen. Dem Untertagebetrieb wird die Gerätegruppe I zugeordnet. Diese Gruppe wurde früher mit dem Begriff Schlagwettergefährdet (alte Abkürzung: Sch ) bezeichnet. Alle anderen explosionsgefährdeten Bereiche werden der Gerätegruppe II zugeordnet. Beispiele sind Petrochemie, Chemie und Siloanlagen mit brennbaren Stäuben. Diese Gruppe wurde früher mit dem Begriff "Explosionsgefährdet" (alte Abkürzung Ex) bezeichnet. Zusätzlich zu den Gerätegruppen nach ATEX-Richtlinie werden Geräte nach der Normenreihe entsprechend ihrem späteren Einsatzbereichs einer weiteren Gruppe zugeordnet. In den Zündschutzarten Eigensicherheit, Druckfeste Kapselung und Zündschutzart n wurden die Geräte für Gase zusätzlich in die Gruppen IIA, IIB und IIC eingeordnet. Maximal zulässige Energie nach EN Gruppe Maximal zulässige Energie IIC 20μJ IIB 80μJ IIA 160μJ In der neuen EN :2009 wird nicht mehr zwischen den Zündschutzarten unterschieden. Die Zuordnung zu den Gruppen IIA, IIB oder IIC ist für alle vorzunehmen. Weiterhin wird in der EN :2009 eine dritte Gruppe eingeführt. Die Gruppe III beschreibt die brennbaren Stäube, die ebenfalls weiter unterteilt wird, in IIIA, IIIB, IIIC. Temperaturklassen für die Gruppe II Die Zündung der explosionsfähigen Atmosphäre kann verhindert werden, wenn die Oberflächentemperatur der niedriger ist als die Zündtemperatur des umgebenden Gases. Die Oberflächentemperatur gilt für alle Teile eines elektrischen s, die in Berührung mit dem explosionsfähigen Stoff kommen können. Der überwiegende Teil der Gase läßt sich den Temperaturklassen T1 bis T3 zuordnen. Beispiel In einem Gehäuse der Zündschutzart Ex e IIC T6 werden Reihenklemmen eingesetzt. Dabei muss die maximal zulässige Stromstärke so bemessen werden, dass die Temperaturklasse T6 auch an den Reihenklemmen eingehalten wird. Das Gehäuse ist in IP-Schutzart IP 54 aus- Zulässige Oberflächentemperatur für Gase Zündtemperatur des Gases Ammoniak 630 C Methan 595 C Wasserstoff 560 C Propan 470 C Ethylen 425 C Butan 365 C Acetylen 305 C Cyclohexan 259 C Diethylether 170 C Schwefelkohlenstoff 95 C Quelle: GESTIS-Stoffdatenbank geführt, aber das explosionsfähige Gas kann dennoch in das Gehäuse eindringen. Daher ist es nicht ausreichend, nur die Oberflächentemperatur des Gehäuses zu betrachten. Temperaturklasse Gruppe II für Europa und USA Gruppe II T1=450 T2=300 T3=200 T4=135 T5=100 T6=85 Gehäuse Ex e mit Reihenklemmen ºC T1=450 T2=300 T2A=280 T2B=260 T2C=230 T2D=215 T3=200 T3A=180 T3B=165 T3C=160 T4=135 T4C=120 T5=100 T6=85 Bereiche Schlagwettergefährdete Grubenbaue Gasexplosionsgefährdete Bereiche Gerätegruppe nach Richtlinie 94/9/EG Gruppe nach EN :2006 Gruppe nach EN :2009 Gruppe I Gruppe I Gruppe I Gruppe II Gruppe II IIA Gruppe II ** IIB Staubexplosionsgefährdete IIC IIIA Bereiche Gruppe II Gruppe III * IIIB IIIC IIA IIB IIC Temperaturgrenze bei Staub Bei staubexplosionsgefährdeten Bereichen wird die maximale Oberflächentemperatur als Temperaturwert [ C] angegeben. Die maximale Oberflächentemperatur des s darf die Zündtemperatur einer Staubschicht oder einer Wolke des brennbaren Staubes nicht überschreiten. Luft- und Kriechstrecke Bei den Zündschutzarten Eigensicherheit, Erhöhte Sicherheit und Zündschutzart n sind Luft- und Kriechstrecken einzuhalten. Unter dem Begriff Luftstrecke wird die kürzeste Verbindung zwischen zwei Potentialen durch die Luft definiert. Als Kriechstrecke wird die kürzeste Verbindung zwischen zwei Potentialen über eine Oberfläche bezeichnet. Abhängig von der vergleichenden Kriechstromzahl (CTI) des Werkstoffs muss ein Mindestabstand eingehalten Die Mindestabstände für Luft- und Kriechstrecken sind in der jeweiligen Zündschutzart festgelegt, die angewendet werden soll. Luftstrecken Kriechstrecken * IIIA: brennbare Flusen, IIIB: nicht-leitfähiger Staub, IIIC: leitfähiger Staub ** in Abhängigkeit von der Zündschutzart Luft- und Kriechstrecke 16 Phoenix CONTACT Zündschutzarten Zündschutzarten Phoenix CONTACT 17

10 Zündschutzarten und ihre Anwendung Zündschutzarten für elektrische Betriebs mittel in gasexplosionsgefährdeten Bereichen Zündschutzart Schutzprinzip EN/IEC Zone Anwendung d Druckfeste Kapselung Verhinderung der Ausbreitung einer Explosion EN IEC oder 2 Schalt- Befehls- und Meldegeräte, Steuerungen, Motoren, Leistungselektronik Zündschutzarten für elektrische Betriebs mittel in Bereichen mit brennbarem Staub Zündschutzart Schutzprinzip EN/IEC Zone Anwendung td Schutz durch Gehäuse Ausschluss explosionsfähiger EN Atmosphäre IEC neu: ta, tb, tc neu: EN IEC oder 22 Schalt-, Befehls- und Meldegeräte, Leuchten, Abzweig- und Verbindungskästen, Gehäuse px, py, pz Überdruck kapselung Ausschluss explosionsfähiger Atmosphäre EN IEC q Sandkapselung Funken verhindern EN IEC o Ölkapselung Ausschluss explosionsfähiger Atmosphäre EN IEC oder 2 Schalt- und Steuerschränke, Motoren, Mess- und Analysegeräte, Rechner 1 oder 2 Transformatoren, Relais, Kondensatoren 1 oder 2 Transformatoren, Relais, Anlaufsteuerungen, Schaltgeräte pd zukünftig: p iad, ibd zukünftig: ia, ib, ic Überdruckkapselung Eigensicherheit Ausschluss explosionsfähiger Atmosphäre Begrenzung der Zündenergie und Obrflächentemperatur EN IEC zukünftig: EN IEC EN IEC zukünftig: EN IEC oder 22 Schalt- und Steuerschränke, Motoren, Mess- und Analysegeräte 20, 21 oder 22 Mess-, Steuer- und Regeltechnik, Sensoren, Aktoren, Instrumentierung e Erhöhte Sicherheit Funken verhindern EN IEC oder 2 Abzweig- und Verbindungskästen, Gehäuse, Motoren, Klemmen mad, mbd neu: ma, mb, mc Vergusskapselung Ausschluss explosionsfähiger Atmosphäre EN IEC neu: EN IEC , 21 oder 22 Spulen und Relais der Motoren, Elektronik und Anschluss-Systeme ia, ib, ic Eigensicherheit Begrenzung der Zündenergie EN IEC Eigensichere Systeme EN IEC Eigensichere Felbussysteme (FISCO), nicht funkende Feldbussysteme (FNICO) EN IEC , 1 oder 2 Mess-, Steuer- und Regeltechnik, Sensoren, Aktoren, Instrumentierung 0, 1 oder 2 1 bzw. 2 Die Anforderungen der EN- und IEC- Normen werden zukünftig in die entsprechenden Normen für in gasexplosionsgefährdete Bereiche überführt. Bei einigen Normen ist dies bereits erfolgt. na Nicht funkendes vergleichbar mit Ex e EN IEC Nur Zone 2 nc Funkendes vergleichbar mit Ex d EN IEC Nur Zone 2 nl* Energiebegrenzt * unterschiedl. in Nord amerika und Europa, zukünftig "ic" vergleichbar mit Ex i EN IEC Nur Zone 2 nr Schwadensicheres Gehäuse Schutz durch Gehäuse EN IEC Nur Zone 2 np Vereinfachte Überdruckkapselung vergleichbar mit Ex p EN IEC Nur Zone 2 ma, mb, mc Verguss kapselung Ausschluss explosionsfähiger Atmosphäre EN IEC , 1 oder 2 Spulen von Relais und Motoren, Elektronik, Magnetventile, Anschlusssysteme op is, op pr, op sh Optische Strahlung Energieübertragung von optischer Strahlung begrenzen oder vermeiden EN IEC oder 2 Optoelektronische Geräte 18 Phoenix CONTACT Zündschutzarten Zündschutzarten Phoenix CONTACT 19

11 Eigensicherheit Ex i Prinzip Die Zündschutzart Eigensicherheit bezieht sich im Unterschied zu anderen Zündschutzarten (z.b. erhöhte Sicherheit) nicht nur auf einzelne, sondern auf den gesamten Stromkreis. Ein Stromkreis wird als eigensicher bezeichnet, wenn Strom und Spannung soweit begrenzt sind, dass ein Funke oder thermischer Effekt keine Zündung einer explosionsfähigen Atmosphäre auslösen kann. U R L Prinzipschaltbild eines Stromkreises C Um die Energie des Funken unterhalb der Zündenergie des umgebenden Gases zu halten, wird die Spannung begrenzt. Der thermische Effekt, also zu heiße Oberflächen, wird durch die Strombegrenzung verhindert. Dieses gilt auch für die an den eigensicheren Stromkreisen angeschlossenen Sensoren. Energie kann auch gespeichert sein in Kapazitäten oder Induktivitäten innerhalb des eigensicheren Stromkreises und müssen ebenfalls bei der Betrachtung des eigensicheren Stromkreises berücksichtigt U O I O =I max R U O =U Z Prinzipschaltbild zur Spannungs- und Strombegrenzung Die Zener-Diode wird ab einem definierten Spannungswert leitend. Dadurch wird die Spannung Uo in den explosionsgefährdeten Bereich begrenzt. Ein in Reihe geschalteter Widerstand begrenzt den maximalen Strom Io. Imax = Io= Uo R Mit der Begrenzung von Spannung und Strom gilt für die maximale Leistung: Po = Uo2 4R Die maximal zulässigen Werte ergeben sich aus den Zündgrenzkurven, die in der Norm EN angegeben sind. Die Zündgrenzkurven wurden mit einem Funkenprüfgerät ermittelt, wie es im Anhang B der EN beschrieben ist. Die Zündgrenzkurven enthalten Festlegungen für die Gasgruppen I sowie II. Die Gruppe II wird anhand der Zündernergien nochmals in IIA, IIB und IIC unterteilt. Zündenergien typischer Gase Gruppe I II A II B II C Typisches Gas Methan Propan Äthylen Wasserstoff Zündenergie/μJ 280 > < 60 Elektrische und zugehörige elektrische Ein eigensicherer Stromkreis besteht aus mindestens einem elektrischen und einem zugehörigen. Die Stromkreise der elektrischen erfüllen die Anforderungen der Eigensicherheit. Elektrische dürfen nur über zugehörige mit nichteigensicheren Stromkreisen verbunden Ein zugehöriges besitzt sowohl eigensichere als auch nichteigensichere Stromkreise. Die Trennung der Stromkreise erfolgt durch Zener-Barrieren oder galvanische Trenner. Eigensichere elektrische und eigensichere Teile von zugehörigen n werden nach EN in die Schutzniveau ia, ib und ic eingeordnet. Schutzniveau nach EN Schutzniveau ia ib ic Fehlerbetrachtung Nicht in der Lage, im Normalbetrieb, beim Auftreten irgendeiner Kombination von zwei Fehlern eine Zündung zu verursachen. Nicht in der Lage, im Normalbetrieb, beim Auftreten eines Fehlers eine Zündung zu verursachen. Gerät ist nicht in der Lage, im Normalbetrieb eine Zündung zu verursachen. zulässige Zonen 0,1,2 1,2 Das Schutzniveau ia, ib oder ic legt fest, ob in der Schutzbeschaltung eine 2-Fehler- oder 1-Fehler-Sicherheit oder keine Fehlersicherheit vorhanden ist. Es wird bei der Eigensicherheit eine Fehlerbetrachtung durchgeführt, um eine Explosionsgefahr auszuschließen. Damit wird aber über die Betriebssicherheit keine Aussage gemacht. Das bedeutet, ein funktionaler Totalausfall des s kann bezogen auf den Explosionsschutz zulässig sein. 2 Zugehörige mit/ohne galvanischer Trennung Für eigensichere Stromkreise in die Zone 0 wird von der Norm EN Kap empfohlen, zusätzlich zum Schutzniveau ia die galvanische Trennung zu bevorzugen. R Explosionsgefährdeter Bereich Einfaches elektrisches Explosionsgefährdeter Bereich F1 Sicherer Bereich Ohne galvanische Trennung: Zenerbarriere Explosionsgefährdeter Bereich Mit galvanischer Trennung: Trenner Sicherer Bereich Einfache elektrische Einfache elektrische benötigen keine Zulassung, müssen jedoch einer Temperaturklasse zugeordnet sein und den weiteren zutreffenden Anforderungen der EN entsprechen. Die Maximaltemperatur kann aus der Leistung Po des zugehörigen s berechnet und die Temperaturklasse bestimmt Die Kennwerte der Energiespeicher müssen genau festgelegt werden und sind bei der Bestimmung der Gesamtsicherheit des Systems zu berücksichtigen. Zugehöriges elektrisches Sicherer Bereich Übersicht einfache elektrische (EN ) passive Bauelemente Energiespeicher Energiequellen* Eigensicheres elektrisches Explosionsgefährdeter Bereich Zugehöriges elektrisches Sicherer Bereich Beispiel: Zusammenschaltung elektrischer in der Zündschutzart Eigensicherheit. Die elektrischen dürfen entsprechend dem Schutzniveau bis in Zone 0 eingesetzt Bei zugehörigen n erfolgt die In stallation im sicheren Bereich, lediglich die eigensicheren Stromkreise werden entsprechend der Schutzniveaus in den explosionsgefährdeten Bereich geführt. Grundsätzlich ist es möglich, zugehörige in einer weiteren Zündschutzart auszuführen, um diese dann in Zone 2 oder ggf. sogar in Zone 1 zu installieren. PT 100 Kondensator Thermoelement Schalter Spule Photozellen Verteilerkästen Widerstände * Anforderung U 1,5V I 100mA P 25mW 20 Phoenix CONTACT Zündschutzarten Zündschutzarten Phoenix CONTACT 21

12 Zündschutzart n Die Zündschutzart n lässt sich als eine verbesserte Industriequalität beschreiben, die für den Normalbetrieb ausgelegt ist. Eine Fehlerfallbetrachtung wie zum Beispiel bei der Zündschutzart Eigensicherheit wird nicht durchgeführt. Angewendet werden kann diese nur für die Gerätegruppe II und den Einsatz des elektrischen s in der Zone 2. Der Hersteller legt die technischen Daten für den Normalbetrieb fest. Bei der Zündschutzart n werden fünf verschiedene Ausführungen unterschieden, die sich zum Teil aus den bekannten Zündschutzarten Erhöhte Sicherheit, Eigensicherheit, Druckfeste Kapselung, Überdruckkapselung und Vergusskapselung ableiten lassen. Diese Zündschutzart ist in Anlehnung an die US-Zündschutzart Non-Incendive (NI) entstanden und wurde normativ im Jahr 1999 in Europa eingeführt. Es wird hier in die Untergruppen na, nc, nr, nl und np unterschieden. Die Zündschutzart nl wird in der nächs- Unterteilung der Zündschutzart n in Europa Kurz zeichen Bedeutung Vergleichbar mit Methode A Nicht funkend Ex e Auftreten von Lichtbögen, Funken oder heißen Oberflächen wird minimiert C R Funkende Betriebs mittel Schwadensichere Gehäuse teilweise Ex d, Ex m umschlossene Schalteinrichtung, nichtzündfähige Bauteile, hermetisch dichte, abgedichtet oder gekapselte Einrichtungen --- Eindringen von explosiven Gasen wird beschränkt L * Energie begrenzt Ex i Energiebegrenzung, damit weder Funke noch thermische Wirkung eine Zündung hervorruft P Vereinfachte Überdruckkapselung * unterschiedlich in Nordamerika und Europa Unterteilung der Zündschutzart n in Nordamerika Bezeichnung nach NEC Bedeutung Energy Limited nc * Energiebegrenzt Hermetically Sealed nc Hermetisch verschlossen Nonincendive nc Nichtzündende Non-Sparking na Nichtfunkende Restricted Breathing nr Schwadensicher Sealed Device nc Verschlossene Simplified Pressurization np ** Einfache Überdruckkapselung * unterschiedlich in Nordamerika und Europa ** in USA als Typ X, Y und Z bezeichnet Ex p Eindringen von explosiven Gasen wird durch Überdruck verhindert, Überwachung ohne Abschaltung ten Ausgabe der EN nicht mehr enthalten sein. Sie wird in der Norm EN in das Schutzniveau "ic" aufgenommen. Untergliederung der Gruppe II ab EN :2009 Unterteilung in IIA, IIB, IIC IIA, IIB, IIC ab EN :2009 Unterteilung in IIA, IIB, IIC IIA, IIB, IIC ab EN :2009 Unterteilung in IIA, IIB, IIC Erhöhte Sicherheit Ex e Druckfeste Kapselung Ex d In der Zündschutzart Erhöhte Sicherheit können Spannungen bis 11 kv in den explosionsgefährdeten Bereich gebracht Insbesondere zur Versorgung von Motoren, Leuchten und Transformatoren ist die Erhöhte Sicherheit geeignet. Das Schutzprinzip beruht auf konstruktiven Maßnahmen. Unterteilt in Spannungsebenen werden Luft- und Kriechstrecken für die spannungsführenden Teile festgelegt. Dadurch werden elektrische Funken verhindert. Zusätzlich muss mindestens die IP-Schutzart (EN 60529) IP 54 erfüllt Verguss-, Sand- oder Ölkapselung Ex m, Ex q, Ex o Prinzip der Zündschutzarten Vergusskapselung, Sandkapselung und Ölkapselung ist das Einschließen von möglichen Zündquellen in einem elektrischen durch das Medium Vergussmasse, Sand oder Öl. Damit wird die Zündung der explosionsfähigen Atmosphäre verhindert. Mit der Begrenzung der Oberflächentemperatur wird sichergestellt, dass während des Betriebes an keiner Stelle, auch im Inneren des Gehäuses, die explosionsfähige Atmosphäre entzündet werden kann. Das Gehäuse schließt nicht das Eindringen von Gasen aus. Bei der Zündschutzart Druckfeste Kapselung wird die Ausbreitung einer Explosion durch die Gehäusekonstruktion verhindert. Eine im Inneren stattfindende Explosion ist nicht in der Lage, die das Gehäuse umgebende explosionsfähige Atmosphäre zu zünden. Dies führt zu sehr robusten Gehäusen. Die Gehäuse besitzen Deckel und Einführungsstellen, zum Beispiel für Kabel und Leitungen. Die hier vorhandene Grenzspaltweite wird so dimensioniert, dass eine Übertragung der Explosion vom Inneren des Gehäuses in die umgebende explosionsfähige Atmosphäre verhindert wird. Es ist nicht zulässig, bei Kabel- und Leitungseinführungen in der Zündschutzart Ex d das Gewinde zu fetten oder mit der Drahtbürste Rost zu entfernen. Dadurch kann die Spaltweite verändert und das Schutzprinzip zerstört Die Vorgaben des Herstellers sind unbedingt einzuhalten. In diesen Zündschutzarten können auch Spannungen bis kv verwendet 22 Phoenix CONTACT Zündschutzarten Zündschutzarten Phoenix CONTACT 23

13 Überdruckkapselung Ex p 1.4 Kennzeichnung von Ex-Produkten Möglichkeiten der Überdruckkapselung Überdruckkapselung Statisch Ausgleich der Leckverluste Ständige Durchspülung Druckluft ohne Nachführen Ausgleich der Leckverluste Ständiges Nachführen Die Zündschutzart Überdruckkapselung beschreibt Methoden, mit denen das Eindringen von explosionsfähiger Atmosphäre in Gehäuse oder in die Schaltwarte durch Überdruck verhindert wird. Der Umgebungsdruck um das Gehäuse ist immer niedriger als innerhalb. Es sind drei Formen der Überdruckkapselung möglich (siehe Tabelle). Bei statischem Überdruck muss das Gehäuse hermetisch abgedichtet sein. Ein Druckverlust findet nicht statt. Weiter verbreitet sind jedoch Methoden, bei denen der Überdruck durch den Ausgleich der Leckverluste oder ständiger Spülung gehalten wird. Der Überdruck wird meist durch einfache Druckluft erzeugt. Die Zündschutzart Ex p erfordert eine Überwachungseinheit, die die elektrischen im Inneren des Gehäuses sicher abschaltet, sobald nicht mehr ausreichend Überdruck vorhanden ist. Dabei muss die Überwachungseinheit in einer anderen Zündschutzart ausgeführt sein, damit diese auch ohne Überdruck betrieben werden kann. Im Inneren können ohne Berücksichtigung des Explosionsschutzes betrieben Die Oberflächentemperatur der darf nach dem Abfall des Überdrucks die eindringende explosionsfähige Atmosphäre nicht entzünden. Ist es aus betrieblichen Gründen erforderlich, dass ein Gerät oder eine Komponente im Inneren des Gehäuses nicht abgeschaltet werden darf, muss es in einer anderen Zündschutzart explosionsgeschützt sein. Betriebszustände --- Vorspülphase: Das Gehäuse wird gespült und möglicherweise vorhandene explosionsfähige Atmosphäre wird aus dem Gehäuse entfernt. Betriebsphase: Der Überdruck im Gehäuse wird überwacht. Falls dieser abfällt, werden die elektrischen im Gehäuseinneren abgeschaltet Kennzeichnung für elektrische Kennzeichnung nach ATEX-Richtlinie c 10 X II G Aktuelles Herstellerjahr Konformitätsbewertung nach 94/9/EG (ATEX) elektrisches Atmosphäre (G=Gas, D=Staub) Gerätekategorie (1, 2, 3) Gerätegruppe (I, II) benannte Stelle Fertigungsüberwachung (z.b. KEMA) Kennzeichnung nach EN :2009 Ex ia IIC T6 Ga elektrisches Geräteschutzniveau, EPL (Ga, Gb, Gc, Da, Db, Dc) Temperaturklasse (für direkt im Ex-Bereich eingesetzte ) (T1 T6) Gasgruppe (IIA, IIB, IIC) oder Staubgruppe (IIIA, IIIB, IIIC) Zündschutzart (ia, ib, ic, e, d, ) Explosionsgeschützt EG-Baumusterprüfbescheinigung TÜV 01 ATEX 1750 Nummer der Bescheinigung Baumustergeprüft nach 94/9/EG (ATEX) Jahr der EG- Baumusterprüfbescheinigung benannte Stelle (Notified Body) 24 Phoenix CONTACT Zündschutzarten Kennzeichnung von Ex-Produkten Phoenix CONTACT 25

14 Zusammenhang von Kategorien, EPL und Zonen Der Equipment Protection Level (EPL) wird in der Norm EN :2009 neu eingeführt und gibt das Geräteschutzniveau des Gerätes oder der Komponente an. Das Geräteschutzniveau ist in Analogie zu den Kategorien der ATEX-Richtlinie zu sehen. Somit ist jetzt auch über die Kennzeichnung nach Zündschutzart eine einfachere Zuordnung der Geräte zu den Zonen möglich. Gerätekategorie nach ATEX-Richt - linie 94/9/EG Geräteschutzniveau EPL (Equipment Protection Level) Zone Art der Gefahr Gas 1G Ga 0 Ständig, lange Zeiträume, häufig 2G Gb 1 Gelegentlich 3G Gc 2 Normalerweise nicht, nur kurzfristig Staub 1D Da 20 Ständig, lange Zeiträume, häufig 2D Db 21 Gelegentlich 3D Dc 22 Normalerweise nicht, nur kurzfristig Bergbau M1 Ma Ständig, lange Zeiträume, häufig M2 Mb Gelegentlich Kennzeichnung nach IECEx Beispiele für Kennzeichnung mit IECEx-Zertifikatsnummer und nach IEC Gas - Ex Nummer des Kennzeichnung IECEx Certificate of Conformity nach Norm nach Norm U: Komponente IEC :2004 IEC :2007 X: besondere Einbaubedingungen Elektrisches Zugehöriges elektrisches nach Norm IEC :2007 Alternative IECEx IBE X Ex na II T4 Ex na IIC T4 Gc Ex nac IIC T4 IECEx BVS X [Ex ia] IIC [Ex ia Ga] IIC [Ex ia] IIC Komponente IECEx KEM U Ex e II Ex e IIC Gb Ex eb IIC Kennzeichnung nach ATEX-Richtlinie 94/9/EG Beispiele für Kennzeichnung nach ATEX Richtlinie 94/9/EG und nach EN Gas - Ex Elektrisches Zugehöriges elektrisches Nummer EG-Baumusterprüfbescheinigung/ Konformitätsaussage U: Komponente, X: besondere Einbaubedingungen Kennzeichnung nach ATEX X nach Norm EN :2006 nach Norm EN :2009 nach Norm EN :2009 Alternative IBExU 09 ATEX 1030 CE II 3 G Ex na II T4 Ex na IIC T4 Gc Ex nac IIC T4 X BVS 08 ATEX E 094 X CE 0344 II (1) G [Ex ia] IIC [Ex ia Ga] IIC [Ex ia] IIC Beispiele für Kennzeichnung nach IEC bzw Staub - Ex Nummer des Kennzeichnung IECEx Certificate of Conformity nach Norm U: Komponente IEC :2005 X: besondere Einbaubedingungen Elektrisches Zugehöriges elektrisches Beim IECEx-System ergibt sich die Kennzeichnung nur aus den Anforderungen der IEC-Normen nach Norm IEC :2007 nach Norm IEC :2007 Alternative IECEx IBE X Ex td A21 IP 65 T80 C Ex t IIIC T80 C Db Ex tb IIIC T80 C IECEx BVS X [Ex iad] [Ex ia Da] IIIC [Ex ia] IIIC Komponente KEMA 07 ATEX 0193 U 0344 II 2 G Ex e II Ex e IIC Gb Ex eb IIC Beispiele für Kennzeichnung nach EN bzw. EN Staub - Ex Elektrisches Zugehöriges elektrisches Nummer EG-Baumusterprüfbescheinigung/ Konformitätsaussage U: Komponente, X: besondere Einbaubedingungen Kennzeichnung nach Norm EN 61241:2006 nach Norm EN :2009 In Europa setzt sich die Kennzeichnung von n, Komponenten und Schutzsystemen aus der Richtlinien- und der Normenkennzeichnung zusammen. X nach Norm EN :2009 Alternative PTB 00 ATEX 0000 X Ex td A21 IP 65 T80 C Ex tb IIIC T80 C Db Ex tb IIIC T80 C TÜV 00 ATEX 0000 [Ex iad] [Ex ia Da] IIIC [Ex ia] IIIC Kennzeichnung in den USA Kennzeichnungsbeispiel für ein zugehöriges elektrisches Einstufung des s 1M68 Zulassungsstelle in USA: hier UL; c für Kanada; us für USA U Listed CD-No: Suitable for Class I, Div. 2, Groups A, B, C and D installation; providing intrinsically safe circuits for use in Class I, Div. 1, Groups A, B, C and D; Class II, Div. 1, Groups E, F and G; and Class III, Hazardous Locations Controldrawing-No. (Kontrolldokument) Kann in Div 2* eingesetzt werden für Class I: Gase Gase Stäube Fasern A: Acetylen B: Wasserstoff C: Ethylen D: Propan geeignet für Stromkreise in Div 1* * nach NEC Phoenix CONTACT Kennzeichnung von Ex-Produkten Kennzeichnung von Ex-Produkten Phoenix CONTACT 27

15 2 Errichtung von Anlagen in explosions gefährdeten Bereichen Die Errichtung von Anlagen in explosionsgefährdeten Bereichen erfordert ein besonderes Maß an Vorkehrungen. Der Arbeitgeber/Betreiber teilt Bereiche, in denen explosionsfähige Atmosphären vorhanden sein können, in Zonen ein. stellt sicher, dass die Mindestvorschriften angewendet kennzeichnet die Zugänge zu explosionsgefährdeten Bereichen. Bei der Auswahl der, Kabel/ Leitungen und Konstruktion sind besondere Anforderungen zu beachten. Auszug aus RL 1999/92/EG: (1) Artikel 137 des Vertrags sieht vor, dass der Rat durch Richtlinien Mindestvorschriften erlassen kann, die die Verbesserung insbesondere der Arbeitsumwelt fördern, um die Sicherheit und die Gesundheit der Arbeitnehmer verstärkt zu schützen. (7) In der Richtlinie 94/9/EG des Europäischen Parlaments und des Rates vom 23. März 1994 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten für Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen (5) ist festgelegt, dass eine ergänzende Richtlinie nach Artikel 137 des Vertrags vorgesehen ist, die sich insbesondere mit der Gefahr durch Explosionen aufgrund der Verwendung und/oder der Art und Weise der Installation der Geräte befasst. Risikoanalyse Der Betreiber einer Anlage hat eine genaue Beurteilung durchzuführen. Grundlage dafür sind z.b. die Normen EN , EN und EN (siehe auch Normenübersicht auf Seite 12). Auf Grund dieser Beurteilung werden die Zonen festgelegt und die zulässigen ausgewählt. Jede Anlage ist auf ihre Besonderheiten hin zu untersuchen. Sollte es dennoch zur Explosion kommen, ist bereits im Vorfeld das mögliche Gefahrenszenario zu betrachten. Können z.b. Kettenreaktionen eintreten, wie sind die Gebäudeschäden und welche Auswirkung hat die Explosion auf weitere Anlagenteile? Es kann sein, dass Wechselwirkungen mit benachbarten Anlagen auftreten, die bei der einzelnen Anlage alleine nicht vorkommen können. Die Risikobeurteilung erfolgt in der Regel in einem Team, welches alle relevanten Aspekte der Anlage abdeckt. Im Zweifelsfall empfiehlt es sich, weitere Experten zu Rate zu ziehen. Die Risikobeurteilung ist die Grundlage aller weiteren Maßnahmen bis hin zum Betrieb der Anlage. Im Explosionsschutzdokument sind diese Beurteilungen festzuhalten. Der Leitfaden nach Artikel 11 der Richtlinie 1999/92/EG enthält folgende methodische Vorgehensweisen (anlehnende Darstellung): Beurteilungsverlauf zur Erkennung und Verhinderung von Explosionsgefahren: 1 Kann durch ausreichende Verteilung in Luft eine explosionsfähige Atmosphäre entstehen? 2 Ja 3 Ja Ist die Bildung einer sog. gefährlichen explosionsfähigen Atmosphäre 4 möglich? Ja Weitere Maßnahmen erforderlich! 5 Ist die Bildung von gefährlichen explosionsfähigen Atmosphären zuverlässig verhindert? 6 Nein Weitere Maßnahmen erforderlich! 7 8 Ist die Entzündung von gefährlichen explosionsfähigen Atmosphären 9 zuverlässig vermieden? Nein Weitere Maßnahmen erforderlich! 10 Sind brennbare Stoffe vorhanden? Wo kann explosionsfähige Atmosphäre auftreten? Verhinderung von Bildung gefährlicher explosionsfähiger Atmosphären. (Primärer Explosionsschutz) In welche Zonen lassen sich die Bereiche mit gefährlichen explosionsfähigen Atmosphären einteilen? Vermeiden von wirksamen Zündquellen in Bereichen mit gefährlichen explosionsfähigen Atmosphären. (Sekundärer Explosionsschutz) Begrenzung der Auswirkungen einer Explosion durch konstruktive und organisatorische Maßnahmen. (Tertiärer Explosionsschutz) Nein Nein Nein Ja Ja Keine Explosionsschutzmaßnahmen erforderlich. Keine Explosionsschutzmaßnahmen erforderlich. Keine Explosionsschutzmaßnahmen erforderlich. Keine weiteren Explosionsschutzmaßnahmen erforderlich. Keine weiteren Explosionsschutzmaßnahmen erforderlich. Explosionsschutzdokument Die Dokumentation ist wesentlich für den sicheren Betrieb der Anlage im explosionsgefährdeten Bereich. Sie wird vor dem Errichten erstellt und ist immer auf dem aktuellen Stand zu halten. Bei Veränderungen an der Anlage müssen alle beschriebenen Einflussgrößen berücksichtigt Beispiel für Aufbau der Dokumentation Verantwortlicher für das Objekt Namentlich benannt Beschreibung der baulichen und geografischen Gegebenheiten Lageplan, Gebäudeplan, Be- /Entlüftung Verfahrensbeschreibung Beschreibung der Anlage bezogen auf Explosionsschutz Stoffdaten Auflistung der Daten mit explosionsrelevanten Kennwerten Risikobeurteilung siehe obenstehenden Leitfaden Schutzkonzepte Zoneneinteilung, angewendete Zündschutzarten Organisatorische Maßnahmen Unterweisung, schriftliche An weisungen, Arbeitsfreigaben 28 Phoenix CONTACT Errichtung von Anlagen in explosionsgefährdeten Bereichen 2 2 Errichtung von Anlagen in explosionsgefährdeten Bereichen Phoenix CONTACT 29

16 2.1 Installation eigensicherer Stromkreise Auslegung von eigensicheren Stromkreisen Installation in Zündschutzart Eigensicherheit Der gesamte eigensichere Stromkreis muss gegen das Eindringen von Energie aus anderen Quellen, elektrischen oder magnetischen Feldern geschützt sein. Verantwortlich für den Nachweis der Eigensicherheit ist der Errichter oder Betreiber, nicht der Hersteller. Einfache eigensichere Stromkreise Einfache eigensichere Stromkreise enthalten nur eine Energiequelle. Zur Planung und Installation empfiehlt es sich, die Betriebsanleitungen und die EG-Baumusterprüfbescheinigung (bzw. die Zertifikate) der eingesetzten bereitzuhalten. Diesen werden die notwendigen Parameter entnommen. Im ersten Schritt werden die Kriterien entsprechend der folgenden Tabelle geprüft. Explosionsgefährdeter Bereich Überprüfung des Einsatzes im explosionsgefährdeten Bereich Kriterien Elektrische Zugehörige elektrische Gerätegruppe, Einsatzbereich II, G, D II, G, D Kategorie 1, 2, 3 (1), (2), (3) Gruppe IIA, IIB, IIC IIA, IIB, IIC Zone 0, 1, 2 0, 1, 2 Zündschutzart Ex ia, Ex ib [Ex ia], [Ex ib] Temperaturklasse T1 T6 -- Dimensionierung eigensicherer Stromkreise mit einem zugehörigen Sicherer Bereich SPS 4 20mA Als nächster Schritt werden die elektrischen Daten des eigensicheren Stromkreises (Spannung, Strom, Leistung, Kapazität und Induktivität) gemäß der folgenden Abbildung überprüft. Im eigensicheren Stromkreis sind alle auftretenden Kapazitäten und Induktivitäten zu berücksichtigen und mit der Kapazität Co und Induktivität Lo des zugehörigen s zu vergleichen. In der Praxis ist besonders auf die Kapazität zu achten, da durch diese Kabel oder Leitungen in der Länge erheblich eingeschränkt Als Richtwerte können die Kapazität Cc mit ca nf/km und die Induktivität Lc mit ca. 0,8 1 mh/km angenommen Im Zweifel ist immer vom worst case auszugehen. Gebräuchliche Bezeichnungen Europa USA für Feldgerät: max. Eingangsspannung max. Eingangsleistung max. innere Kapazität max. innere Induktivität für zugehörige max. Ausgangsspannung max. Ausgangsleistung max. äußere Kapazität max. äußere Induktivität für Kabel/Leitung: Kabel-/Leitungskapazität Kabel-/Leitungsinduktivität Ui Ii Ci Li Uo Io Co Lo Cc Lc Vmax Imax Ci Li Voc Isc Ca La Ccable Lcable Eigensichere Stromkreise mit mehr als einer Energiequelle Die beschriebene Dimensionierung eines eigensicheren Stromkreises ist aber nur dann zulässig, wenn maximal ein konzentrierter Energiespeicher Ci oder Li im Stromkreis vorhanden ist. Beim Auftreten von mehreren konzentrierten Energiespeicher Ci und Li ist die maximal zulässige Kapazität Co und Induktivität Lo vor dem Vergleich mit Ci + Cc und Li + Lc zu halbieren. Ci bzw. Li sind als konzentrierter Energiespeicher zu sehen, wenn ihr jeweilige Wert 1% der maximal zulässigen äußeren Kapazität Co bzw. Induktivität Lo überschreitet. Die Kabel-/Leitungskapazität Cc bzw. die Kabel-/Leitungsinduktivität Lc gelten nicht als konzentrierte Kapazitäten bzw. konzentrierte Induktivitäten. Für den Einsatz in Zone 0 ist die Zu sammenschaltung von mehreren zugehörigen elektrischen n nicht zulässig. Besteht der eigensichere Stromkreisen für Anwendungen in Zone 1 und Zone 2 aus mehr als einem zugehörigen, muss durch theoretische Berechnungen oder Prüfungen mit dem Funkenprüfgerät (entsprechend EN ) ein Nachweis erfolgen. Dabei ist zu beachten, ob eine Stromaddition vorliegt. Daher wird die Beurteilung durch einen Sachverständigen empfohlen. Für die Zusammenschaltung mehrerer eigensicherer Stromkreise mit linearen Strom-Spannungskennlinien werden im Anhang A und B der EN Beispiele aufgeführt. Bei der Zusammenschaltung zugehöriger mit nichtlinearen Kennlinien führt die Bewertung an Hand der Leerlaufspannung und des Kurzschlussstroms nicht zum Ergebnis. Die Berechnungen kann aber auf Grundlage des PTB-Berichts PTB-ThEx-10 Zusammenschaltung nichtlinearer und linearer eigensicherer Stromkreise durchgeführt Dieser ist in die EN (Eigensichere Systeme) einbezogen worden. Hier werden grafische Methoden zur Beurteilung der Eigensicherheit bis in die Zone 1 beschrieben. Erdung in eigensicheren Stromkreisen Bei der Erdung eigensicherer Stromkreise kann es zu Potentialdifferenzen kommen. Diese müssen in der Betrachtung der Stromkreise berücksichtigt Eigensichere Stromkreise dürfen gegen Erde isoliert sein. Die Gefahr der elektrostatischen Aufladung ist zu beachten. Die Verbindung über einen Widerstand R = 0,2 1 MΩ zur Ableitung elektrostatischer Aufladung gilt nicht als Erdverbindung. Ein eigensicherer Stromkreis darf an das Potentialausgleichssystem angeschlossen sein, wenn dies nur an einer Stelle innerhalb eines eigensicheren Stromkreises geschieht. Wenn ein eigensicherer Stromkreis aus mehreren galvanisch getrennten Teilstromkreisen besteht, kann jeder Teil einmal mit Erde verbunden Ist eine funktionsbedingte Erdung für einen in Zone 0 befindlichen Sensor/ Aktor notwendig, so ist diese unmittelbar außerhalb der Zone 0 zu realisieren. Anlagen mit Zener-Barrieren müssen an diesen geerdet sein. Gegebenenfalls ist sogar ein mechanischer Schutz gegen Beschädigung vorzusehen. Diese Stromkreise dürfen nicht an einer weiteren Stelle geerdet Alle elektrischen, die die Spannungsprüfung mit mindestens 500 V gegen Erde nicht bestehen, gelten als geerdet. Bei der galvanischen Trennung von Versorgungs- und Signalstromkreisen müssen die Fehler und/oder transiente Ströme in Potentialausgleichsleitungen berücksichtigt Wartung und Instandhaltung Eine Wartung der eigensicheren Stromkreise ist ohne besondere Genehmigung (z.b.: Feuerschein) möglich. Die Leitungen der eigensicheren Stromkreise können kurzgeschlossen oder unterbrochen werden, ohne die Zündschutzart zu gefährden. Es dürfen eigensichere ausgebaut (bzw. Steckmodule gezogen) werden, ohne dass die Anlage spannungsfrei geschaltet werden muss. In eigensicheren Stromkreisen treten üblicherweise keine berührgefährlichen Ströme und Spannungen auf, so dass sie für Personen sicher sind. Das Messen von eigensicheren Stromkreisen erfordert zugelassene eigensichere Messgeräte. Werden die Daten dieser Messgeräte nicht berücksichtigt, kann zusätzliche Energie in den eigensicheren Stromkreis gelangen. Die zulässigen Höchstwerte werden ggf. überschritten und die Anforderungen an die Eigensicherheit nicht mehr erfüllt. Gleiches gilt für alle Prüfgeräte, die eingesetzt werden sollen. Zulässige Leiterquerschnitte für Erdverbindung Anzahl der Leiter Leiterquerschnitt* Bedingung mind. 2 getrennte Leiter min. 1,5 mm 2 jeder einzelne Leiter kann den größtmöglichen Strom führen ein Leiter min. 4 mm 2 * Leiter aus Kupfer 30 Phoenix CONTACT Installation eigensicherer Stromkreise Installation eigensicherer Stromkreise Phoenix CONTACT 31

17 Bei der Installation von Kabeln/Leitungen sollen diese gegen mechanische Beschädigungen, Korrosion, chemische und thermische Einwirkungen geschützt sein. In der Zündschutzart Eigensicherheit ist dies verbindlich gefordert. In Schächten, Kanälen, Rohren und Gräben muss das Ansammeln von explosionsfähiger Atmosphäre verhindert Ebenso dürfen sich brennbare Gase, Dämpfe, Flüssigkeiten oder Stäube nicht darüber ausbreiten können. Innerhalb des explosionsgefährdeten Bereichs sollen Kabel/Leitungen möglichst unterbrechungsfrei geführt Ist dies nicht realisierbar, so dürfen die Kabel/Leitungen nur in einem Gehäuse, das in einer für die Zone zugelassenen Schutzart ausgeführt ist, verbunden Muss aus Gründen der Installation davon abgewichen werden, so sind die Bedingungen aus der Norm EN einzuhalten. Bei eigensicheren Stromkreisen, auch außerhalb des explosionsgefährdeten Bereichs, gilt ferner: Schutz gegen das Eindringen äußerer Energie. Schutz gegen äußere elektrische oder magnetische Felder. Mögliche Ursache: Hochspannungsfreileitung oder einphasige Hochspannungsleitungen. Aderleitungen von eigensicheren und nichteigensicheren Stromkreisen dürfen nicht in derselben Leitung geführt ortsveränderliche, transpor table flexible Kabel und Leitungen Außenmantel Kabel/Leitungen für die Zone 1 und 2 Kabel/Leitung Anforderung ortsfeste Mantel Thermoplast, Duroplast, Elastomer oder metallisoliert mit Metallmantel Mindestquerschnittsfläche Ausführung In mehradrigen Kabeln oder Leitungen dürfen mehrere eigensichere Stromkreise geführt Bei bewehrten, metallummantelten oder geschirmten Kabeln/Leitungen können eigensichere und nichteigensichere Stromkreise in ein und demselben Kabelkanal verlegt Im Schaltschrank sollen die eigensicheren Stromkreise eindeutig gekennzeichnet sein. Die Norm schreibt kein einheitliches Verfahren vor, weist lediglich darauf hin, dass die Kennzeichnung bevorzugt durch eine hellblaue Farbe erfolgen soll. Meist werden die Neutralleiter von Auswahlkriterien für Kabel/Leitungen bei Zündschutzart Eigensicherheit Kriterium Bedingung Anmerkung isolierte Kabel/Leitungen Durchmesser einzelner Leiter feindrahtige Leitungen mehradrige Kabel/ Leitungen Kenndaten Prüfspannung 0,1mm gegen Aufspleißen schützen zulässig (Cc und Lc) oder (Cc und Lc/Rc) 500 V AC 750 V DC Leiter-Erde, Leiter-Schirm und Schirm-Erde auch bei feindrahtigen Leitern z.b. durch Aderendhülsen Bedingungen der Fehlerbetrachtung berücksichtigen aus EN im Zweifel: worst-case Schwerem Polychloropren, synthetischem Elastomer, schwere Gummischlauchleitung oder vergleichbarer robuster Aufbau 1,0 mm 2 leichte Gummischlauchleitung ohne/mit Polychloroprenummantelung schwere Gummischlauchleitung ohne/mit Polychloroprenummantelung kunststoffisolierte Leitung, vergleichbar schwere Gummischlauchleitung Energiekabeln auch mit blauer Farbe gekennzeichnet. Dann sollte eine andere Kennzeichnung von eigensicheren Stromkreisen verwendet werden, um eine Verwechslung auszuschließen. Von Vorteil ist die übersichtliche Anordnung und räumliche Trennung im Schaltschrank. Die Erdung leitender Schirme darf nur an einer Stelle erfolgen, die sich üblicherweise im nichtexplosionsgefährdeten Bereich befindet. Siehe hierzu auch den Abschnitt Erdung in eigensicheren Stromkreisen (Seite 31) und die Tabelle Seite 33. Abstand zwischen nicht-ex i und Ex i Eigensichere Stromkreise Hellblaues Kabel in Ex-Zone Stromkreise zur SPS im sicheren Bereich Sonderfälle zur Erdung leitender Schirme in eigensicheren Stromkreisen Grund Bedingungen a Schirm hat hohen Widerstand, zusätzliche Abschirmung gegen induktive Störeinflüsse Robuster Erdleiter (min. 4 mm 2 ), isolierter Erdleiter und Schirm: Isolationsprüfung 500 V, beide an einem Punkt geerdet, Erdleiter erfüllt die Anforderungen der Eigensicherheit und wird beim Nachweis berücksichtigt b c Potentialausgleich zwischen beiden Enden Mehrfacherdung über kleine Kondensatoren Abstände an Anschlussklemmen Zwischen verschiedenen eigensicheren Stromkreisen Die Luftstrecken zwischen Klemmen verschiedener eigensicherer Stromkreise müssen mindestens 6 mm betragen. Die Luftstrecken zwischen den leitenden Teilen der Anschlussklemmen und leitenden Teilen, die geerdet sein können, muss mindestens 3 mm betragen. Eigensichere Stromkreise müssen deutlich gekennzeichnet sein. Zwischen eigensicheren und anderen Stromkreisen Der Abstand an Reihenklemmen zwischen den leitenden Teilen von eigensicheren Stromkreisen und den leitenden Teilen von nicht eigensicheren Stromkreisen muss mindestens 50 mm betragen. Der Abstand kann auch durch eine Trennplatte aus Isolierstoff oder durch eine geerdete Metallplatte hergestellt Kabel/Leiter von eigensicheren Stromkreisen dürfen selbst dann, wenn sie sich an der Reihenklemme lösen sollten, nicht mit einem nicht-eigensicheren Stromkreis in Kontakt kommen. Bei der Installation sind die Kabel/Leiter entsprechend einzukürzen. Es ist im höchsten Maß sichergestellt, dass ein Potentialausgleich über den gesamten Bereich besteht, in dem der eigensichere Stromkreis installiert ist. Gesamtkapazität nicht über 10 nf Abstände nach EN 60079,Abschnitt bzw. Bild 1. Spezielle Anforderungen in Zone 0, Europa Die Norm EN Spezielle Anforderungen an Konstruktion, Prüfung und Kennzeichnung elektrischer für Gerätegruppe II, Kategorie 1G ergänzt die EN Reihe. Hier werden weitere Anforderungen beschrieben, um auch in anderen Zündschutzarten als Eigensicherheit in der Zone 0 einzusetzen. 32 Phoenix CONTACT Installation eigensicherer Stromkreise Installation eigensicherer Stromkreise Phoenix CONTACT 33

18 Überspannungsschutz im Ex-Bereich Überspannungsschutz eigensicherer Stromkreise IN 1 2 Schirm Brücke Schutzbeschaltung des SPD S-PT-EX(I)-24DC GDT 2 GDT 1 Überspannungsschutzgerät PLUGTRAB PT 2xEX(I) Überspannungen, meist verursacht durch Schalthandlungen, Sicherungsauslösungen, Frequenzumformern oder Blitzeinwirkungen, sind ein wichtiges Thema, wenn es um den Funktionserhalt und die Verfügbarkeit von elektrischen Anlagen geht. Bei diesen Störgrößen handelt es sich um zeitlich schnell veränderliche Störimpulse (Transienten), die in wenigen Mikrosekunden Amplituden von mehreren Kilovolt erreichen. Kommt es zu Überspannung entstehen gefährliche Potenzialdifferenzen, die u.a. Fehlsteuerungen, kurzzeitige Funktionsunterbrechungen oder im ungünstigsten Fall auch Zerstörungen zur Folge haben. Nur der konsequente Einsatz von Überspannungsschutzableitern (kurz SPD, Surge Protective Device) an den zu schützenden Geräten, sorgt für eine Begrenzung der hervorgerufenen Potenzialdifferenzen auf ungefährliche Werte. SPDs in EX-Zonen müssen zur Vermeidung gefährlicher Potenzialdifferenzen aufgrund von Überspannungen den Anforderungen der DIN EN genügen. Hierin ist gefordert, dass mindestens 10 Impulse der Impulsform 8/20 µs mit einem Mindestableitstoßstrom von 10 ka sicher beherrscht werden müssen, wenn gefährliche Potenzialdifferenzen in die EX-Zone 0 eingekoppelt werden können. Diese Anforderung wird durch die Nutzung von Gasentladungsableitern (GDT) erreicht (Abbildung: Schutzbeschaltung des SPD SP-PT-EX(I)-24DC). Die geforderte Isolationsfestigkeit von 500 V gegen Erde nach DIN EN wird durch den speziell bemessenen GDT 2 erreicht. besitzen meist eine Isolationsfestigkeit von 1,5 kv gegen Erde, die Spannungsfestigkeit zwischen den Adern beträgt oft nur ein paar hundert Volt oder weniger. Während zur Aufrechterhaltung der Isolationsfestigkeit bei Transienten ein GDT ausreicht, müssen zusätzliche Suppressordioden für die Spannungsfestigkeit zwischen den Adern UG ΔU US Entkopplungswiderstand GDT = Gasentladungsableiter Suppressordiode OUT ÜSG SURGETRAB (Durchgangs- oder Parallelverdrahtung S-PT-EX(I)-24DC S-PT-EX-24DC (Kennzeichnung nach ATEX) sorgen. Diese Halbleiterbauelemente zeichnen sich durch ein sehr schnelles Ansprechen bei Transienten und einer engen Spannungsbegrenzung aus ihr Ableitvermögen beträgt aber nur ein paar hundert Ampere. Mehrstufig aufgebaute SPDs, wie der SURGETRAB sind daher zu empfehlen. Im Falle einer Transiente begrenzt die Suppressordiode so lange, bis die Summe aus Restspannung der Suppressordiode US und dem Spannungsabfall an den Entkopplungswiderständen U, der Ansprechspannung des GDT 1 UG entspricht (Kirchhoffsche Regel). Während also die Supressordiode zwischen den Adern für ein schnelles Ansprechen bei gleichzeitig niedrigen Schutzpegel sorgt, wird mit dem GDT ein hohes Ableitvermögen von 10 ka erreicht. In der Praxis ist es vorteilhaft noch am Einbauort entscheiden zu können, ob der Schirm direkt oder indirekt über einen GDT mit der Erde kontaktiert werden soll. Dieses kann, wie im Fall des SURGETRAB durch das Heraustrennen einer vorinstallierten Brücke am GDT 3 erfolgen (vgl. Schaltbild). Beispiel Hochtanklager Eine Füllstandsmessung an einem Tank ist oftmals über lange Leitungswege von z.b. 100 m mit der Messwarte verbunden. Im Inneren des Tanks liegt aufgrund der dauerhaft vorhandenen explosionsfähigen Atmosphäre die EX-Zone 0 vor. Die Messwerte werden aufgrund der Unempfindlichkeit gegen äußere Einkopplungen als Stromsignal (4-20 ma) an die Messwarte übertragen. Um die unzulässig hohen Potentialdifferenzen der Erdungsanlage zu vermeiden, wird zunächst ein Potentialausgleich zwischen Messwarte und den Hochtanks errichtet. Für das hier gezeigte Fallbeispiel wird ein Blitzeinschlag von 30 ka mit einem 10/350 µs Impuls* angenommen. Während eine Hälfte des Stromes über die Erde abfließt gelangt die Andere unmittelbar in die Anlage. Somit wird angenommen, dass 15 ka über die Potentialausgleichsleitung zur Messwarte hin fließen. Bei einem Kupferquerschnitt der Potentialausgleichsleitung von 95 mm 2 ergibt sich die nachfolgende Berechnung für den ohmschen Spannungsfall zwischen Messwarte und Hochtank: Û R = î B I R CU mit R CU = und 2 A =17,3 mω mm2 m Û R = 30 ka mω mm2 17,3 100 m 2 m 95 mm 2 Û R = 273 V Ui = 30 V Ii = 200 ma Pi = 1 W Ci1 = 0 nf Li1 = 20 nh Ci = 30V Ii = 200 ma Pi = 1 W Ci1 = 0 nf Li1 = 20 nh % % OUT R CU R CU IN L L 100 m / / / / / / Füllstandsmessung: Schutz durch SURGETRAB S-PT-EX(I)-24DC in Durchgangsverdrahtung und PLUGTRAB PT-2xEX(I)-24DC 100 m / / S-PT-EX-24 DC Ci2 = 1,65 nf Li2 = 1 μh Ui = 36 V Ii = 350 ma Pi = 3 W / / CLeitung = 20 nf LLeitung = 100 μf Füllstandsmessung: Schutz durch SURGETRAB S-PT-EX-24DC in Parallelverdrahtung und PLUGTRAB PT 2xEX(I)-24DC Die Kombination aus Potentialausgleichsleitungen und der normativen geforderten Isolationsfestigkeit von 500 V scheint auf den ersten Blick einen ausreichenden Schutz vor Blitzteilströmen in eigensicheren Systemen zu bieten. Die Leitung besitzt neben einem Widerstandsbelag jedoch auch einen Induktivitätsbelag L. Für einen runden Kupferleiter wird in der Praxis ein querschnittsunabhängiger Induktivitätsbelag von L 1 µh/m angenommen. Fließt der zuvor definierte Blitzstrom in Höhe von 15 ka der Impulsform 10/350 µs entlang des Potentialausgleichleiters in Richtung Messwarte wird nach dem Induktionsgesetz ein induktiver Spannungsfall in Höhe von 150 kv generiert: U L (t) = - L di B(Teil) dt Û L (t) - L I Δi B(Teil) Δt Û L -1 μh 100 m m Û L -150 kv S-PT-EX(I)-24 DC Ci2 = 2 nf Li2 = 1 μh Ui = 30 V Ii = 350 ma Pi = 3 W Nachweis der Eigensicherheit 1. Uo Ui Io Ii Co Ci 2. Ci1 + Ci2 + CLeitung + Ci3 Co 3. Lo1 + Li2 + LLeitung + Li3 Lo Nachweis der Eigensicherheit 1. Uo Ui Io Ii Po Pi 2. Ci1 + Ci2 + CLeitung + Ci3 Co 3. Li1 + Li2 + LLeitung + Li3 Lo 15 ka 10 μs CLeitung = 20 nf LLeitung = 100 μf Eigensichere Stromkreise, die zwischen Hochtank und Messwarte verlaufen, werden somit zerstört. Nur durch den konsequenten Einsatz von Überspannungsschutzgeräten kann dieser Effekt vermieden Der Installationsort eines SPD sollte sich dabei so nah wie praktisch möglich an der Einführung in die Zone 0 befinden. Der Abstand von 1 m sollte nicht überschritten / / IN IN OUT OUT IN 4 20 ma PT 2x EX(I)-24DC Ci3 = 1,3 nf Li3 = 1 μh Ui = 30 V Ii = 325 ma Pi = 3 W IN 4 20 ma PT 2x EX(I)-24DC Ci3 = 1,3 nf Li3 = 1 μh Ui = 30 V Ii = 325 ma Pi = 3 W OUT MACX Analog Ex RPSSI/I Uo = 28 V Io = 93 ma Po = 650 mw Co = 83 nf Lo = 4,3 mh OUT SPS SPS MACX MCR-EX-SL- RPSSI-I-UP Uo = 28V Io = 93 ma Po = 650 mw Co = 83 nf Lo = 4,3 mh Die Leitungen zwischen dem Messwertaufnehmer und dem SPD müssen so ausgeführt sein, dass sie gegen direkte Blitzbeeinflussung geschützt sind. Eine Leitungsverlegung in einem Metall-Installationsrohr ist hier eine Möglichkeit. Für den Überspannungsschutz von Sensorköpfen sind SPDs wie der SURGE- TRAB empfehlenswert, welche speziell für diese Anwendung entwickelt wurden. Sie werden direkt in den Leitungszug eingebunden und in den zu schützenden Sensorkopf eingeschraubt. * 10/350 µs = Impuls-Anstiegszeit 10 µs, Rückhalbwertszeit 350 µs 34 Phoenix CONTACT Überspannungsschutz im Ex-Bereich Überspannungsschutz im Ex-Bereich Phoenix CONTACT 35

19 2.3 Verbindungstechnik Typenschild Kennzeichnungsanforderung nach EN/IEC für ATEX und IECEx Name oder Warenzeichen des Herstellers oder Typenbezeichnung QTC 2,5 Kennzeichnung der Zündschutzart EG-Baumusterprüfbescheinigungs nummer nach ATEX Zertifikatsnummer nach IECEx Ex e II KEMA 05 ATEX 2148 U IECEx KEM U Reihenklemmen Reihenklemmen bei Erhöhter Sicherheit Ex e Reihenklemmen müssen den Anforderungen für den Anschluss äußerer Leiter entsprechen. Die Grundlage für die Prüfung bilden die Normen für die Erhöhte Sicherheit EN Neben den Typprüfungen der Produktnorm lassen sich die zusätzlichen Anforderungen für die erhöhte Sicherheit wie folgt zusammenfassen: ausreichend große Luft- und Kriechstrecken temperatur- und alterungsbeständige Isolierstoffe Schutz vor Ausweichen des Leiters während des Anschlusses gegen Selbstlockern gesichert Anschluss frei von Leiterbeschädigungen dauerhaft ausreichender Kontaktdruck Kontaktsicherheit bei wechselnden Temperaturen keine Kontaktdruckübertragung über Isolierstoff Mehrleiteranschluss nur bei geeigneten Klemmstellen elastisches Zwischenglied bei mehrdrähtigen Leitern ab 4 mm² festgelegtes Drehmoment bei Schraubanschlussklemmen Die technischen Daten für Reihenklemmen im Ex-Bereich werden durch die Baumusterprüfung festgelegt und in der Bescheinigung dokumentiert. Die grundlegenden Daten für die Anwendung von Reihenklemmen und Zubehör sind: Bemessungsisolationsspannung, Bemessungsspannung, anschließbare Leiterquerschnitte, Einsatztemperaturbereich, Temperaturklasse. Reihenklemmen werden als bescheinigte Komponenten im explosionsgefährdeten Bereich eingesetzt. Sie finden Anwendung in Anschlussräumen von Ex- n. Damit ist der Einsatz in Zone 1 und 2 bei Gasen bzw. 21 und 22 bei Stäuben erlaubt. Die Anforderungen für den IP- Schutz werden entsprechend der jeweiligen Zündschutzart durch den Anschlussraum erfüllt. Die Bescheinigung von Komponenten dient als Grundlage zur Zertifizierung eines Gerätes oder Schutzsystems. Durch die Bescheinigungsnummer (Zusatz U nach europäischer Norm) bzw. dem Zulassungszeichen (z.b. UL: Recognition Mark ) wird die Reihenklemme als Komponente ausgewiesen. Für Reihenklemmen der Zündschutzart Erhöhte Sicherheit Ex e besteht eine Kennzeichnungspflicht. Am Beispiel der Type QTC 2,5 werden die Elemente der Kennzeichnung beschrieben. Verpackungsetikett Wichtige Hinweise: Reihenklemmen sind für den Einsatz in der Temperaturklasse T6 vorgesehen. Angaben zu anderen Temperaturklassen sowie dem Einsatztemperaturbereich enthält die EG-Baumusterprüfbescheinigung und die Installationsanweisung. Für die Anwendung der Klemmen ist die Installationsanweisung auch bezüglich der Verwendung von Zubehör zu beachten! Kennzeichnungsanforderung lt. ATEX-Richtlinie 94/9/EG, Anhang II Name und Anschrift des Herstellers D Blomberg Typenbezeichnung QTC 2,5 Herstellungsdatum (Beispiel) Kenn-Nr. der benannten Stelle (KEMA) 0344 Baumustergeprüft nach ATEX-Richtlinie 94/9/EG Kategorie 2 Gerätegruppe II Kennbuchstabe für den Gasexplosionsschutz G Kennbuchstabe für den Staub explosionsschutz D X Reihenklemme in Ex e Reihenklemme im Ex e-gehäuse 36 Phoenix CONTACT Verbindungstechnik Verbindungstechnik Phoenix CONTACT 37

20 Reihenklemmen bei Eigensicherheit Ex i Bei der Zündschutzart Eigensicherheit werden an Leiteranschlüsse keine besonderen Anforderungen bezüglich gesicherter Schrauben, Lötverbindungen, Steckverbindungen usw. gestellt. Es besteht keine Explosionsgefahr, weil in nachweislich eigensicheren Kreisen Strom, Spannung und Leistungswerte ausreichend gering sind. Reihenklemmen und Steckverbinder gelten in der Eigensicherheit als passive Bauelemente. Daher sind für sie keine speziellen Typprüfungen vorgesehen. Dennoch werden strenge Anforderungen an die Luftstrecken zwischen benachbarten Klemmen und zwischen Klemmen und geerdeten Metallteilen gestellt. Die Luftstrecke zwischen den äußeren Anschlüssen von zwei benachbarten eigensicheren Stromkreisen muss mindestens 6 mm betragen. Die Mindestluftstrecke zwischen nicht isolierten Anschlüssen und geerdeten Metall- oder anderen leitenden Teilen braucht dagegen nur 3 mm zu betragen. Luft- und Kriechstrecken, sowie Abstände durch feste Isolierung sind z.b. in der EN , Abschnitt 6.3 und Tabelle 5 festgelegt. Für passive Bauelemente wie z.b. Reihenklemmen und Steckverbinder ist keine spezielle Kennzeichnung vorgesehen. Allerdings ist zur deutlichen Kennzeichnung von eigensicheren Stromkreisen eine blaue Einfärbung der Klemmgehäuse üblich. Ex e- und Ex i-reihenklemmen im gleichen Gehäuse In elektrischen n, wie z.b. Klemmenkästen, können sowohl eigensichere (Ex i) als auch Stromkreise der erhöhten Sicherheit (Ex e) kombiniert Eine sichere mechanische und gegebenenfalls auch optische Trennung ist hier vorgeschrieben. Es muss dabei berücksichtigt werden, dass beim Lösen der Verdrahtung von der Reihenklemme einzelne Leiter nicht mit leitenden Teilen der jeweils anderen Stromkreise in Berührung kommen. Der Abstand zwischen den Reihenklemmen muss mindestens 50 mm betragen. Hierbei sind auch die üblichen Verdrahtungsverfahren zu beachten, damit eine Berührung zwischen den Stromkreisen auch dann, wenn sich ein Leiter löst, unwahrscheinlich ist. In Schaltschränken mit einer höheren Verdrahtungsdichte wird diese Trennung durch entweder isolierende oder geerdete metallische Trennwände erreicht. Auch hierbei muss der Abstand zwischen eigensicheren und nicht eigensicheren Stromkreisen 50 mm betragen. Gemessen wird dabei in alle Richtungen um die Trennwand. Der Abstand darf geringer sein, wenn die Trennwände bis mindestens 1,5 mm an die Gehäusewand heranreichen. Metallische Trennwände müssen geerdet sein und eine genügende Festigkeit und Steifigkeit besitzen. Sie müssen mindestens 0,45 mm dick sein. Nichtmetallische isolierende Trennwände müssen mindestens 0,9 mm dick sein. Die Ex e-stromkreise müssen im Gehäuse zusätzlich durch eine Abdeckung (mindestens IP30) geschützt sein, wenn während des Betriebes der Deckel geöffnet werden darf. Ansonsten ist das Öffnen nur zulässig, wenn die Ex e-stromkreise abgeschaltet sind. Entsprechende Warnschilder sind anzubringen. Luftstrecke durch Trennplatte zwischen eigensicheren und anderen Stromkreisen. Auch bei mehreren Tragschienen müssen Luftstrecken zu eigensicheren und anderen Stromkreisen eingehalten 2.4 Gehäuseeinführungen Kabel-/Leitungseinführung und Conduit System Weltweit finden zwei Installationstechniken Anwendung. In Europa sind Kabel-/Leitungseinführungen in den Zündschutzarten Druckfeste Kapselung oder Erhöhte Sicherheit am weitesten verbreitet. In den USA und Kanada wird traditionell das Rohrleitungssystem (Conduit System) eingesetzt. Kabel-/Leitungseinführung Die Kabel-/Leitungseinführungen sind am häufigsten in den Zündschutzarten druckfeste Kapselung Ex d oder Erhöhter Sicherheit Ex e ausgeführt. Druckfest gekapselte Kabel-/Leitungsführungen sind zünddurchschlagsicher und werden in Verbindung mit druckfest gekapselten Gehäusen verwendet. Kabel-/Leitungsführungen in Erhöhter Sicherheit werden in Verbindung mit Gehäusen in der Zündschutzart Erhöhte Sicherheit verwendet. Bei der Auswahl der Kabel-/Leitungsführung sind die Anforderungen an den IP-Schutz des Gehäuses zu berücksichtigen. Conduit System In den USA wird insbesondere Wert auf hohen mechanischen Schutz der Kabel/ Leitungen gelegt. Daher hat sich hier ein Rohrleitungssystem (conduit: englisch Isolierrohr für Leitungsdrähte) stark verbreitet. Vergleich Kabel-/Leitungseinführung mit Conduit System Die Installation von Conduit Systemen ist im Vergleich zu der Montage von Kabel/Leitungen bzw. Kabel-Leitungseinführungen aufwändiger. Bei der Installation von Conduit Systemen ist darauf zu achten, dass die Zündsperre ordentlich vergossen ist, da ansonsten der Schutz nicht gewährleistet wird. Hierbei ist unter anderem die Position der Öffnung für die Vergussmasse entscheidend. Zudem kann sich in dem Rohrleitungssystem sehr leicht Kondenswasser bilden, das Erdschlüsse und Kurzschlüsse als Folge von Korrosion verursachen kann. Die Kabel-/Leitungseinführung hingegen ist so aufgebaut, dass die Montage unabhängig von dem jeweiligen Monteur ist. Leitungen (Einzeladern) Vergussmasse Mineralfaserwolle (asbestfrei) Leitungschutzrohr (Ex d) Blaue Einfärbung der Klemmgehäuse für eigensichere Stromkreise Trennplatte zwischen Tragschiene, um Luftstrecke zu gewährleisten. Kabelsystem mit indirekter Einführung Kabelsystem mit direkter Einführung Conduit System (Rohrleitungssystem) mit Zündsperre (seal) 38 Phoenix CONTACT Verbindungstechnik Gehäuseeinführungen Phoenix CONTACT 39

Explosionsschutz Theorie und Praxis

Explosionsschutz Theorie und Praxis Explosionsschutz Theorie und Praxis Explosionsschutz Diese Broschüre liefert Ihnen einen Einblick in das Thema Explosionsschutz. Sie bietet Planern, Einrichtern und Betreibern von Anlagen eine Hilfestellung

Mehr

Ex-Gehäuse Multi-Box. Übersicht & Informationen. Ex-Gehäuse. Übersicht & Informationen

Ex-Gehäuse Multi-Box. Übersicht & Informationen. Ex-Gehäuse. Übersicht & Informationen Ex-Gehäuse Ex-Gehäuse Multi-Box Multi-Box Ex-Gehäuse IBExU 10 ATEX 1159 / 1158U Ex-Kennzeichnung nach Norm (Beispiel) Jahr Zulassungsnummer Zugehöriges Betriebsmittel [ ] Einsatz außerhalb des explosionsgefährdeten

Mehr

Informationen über ATEX und geeignete INDUSTRONIC Sprechstellen

Informationen über ATEX und geeignete INDUSTRONIC Sprechstellen Informationen über ATEX und geeignete INDUSTRONIC Sprechstellen Überblick über explosionsgeschützte Außensprechstellen für verschiedene Zonen 2 2 Überblick über explosionsgeschützte Sprechstellen für verschiedene

Mehr

PNEUMATIK UND EXPLOSIONS- GEFÄHRDETE BEREICHE: EUROPÄISCHE RICHTLINIE 94/9/EC (ATEX)

PNEUMATIK UND EXPLOSIONS- GEFÄHRDETE BEREICHE: EUROPÄISCHE RICHTLINIE 94/9/EC (ATEX) PNEUMATIK UN EXPLOSIONS- EFÄHRETE BEREICHE: EUROPÄISCHE RICHTLINIE 94/9/EC (ATEX) Seit 1. Juli 2003 müssen alle Produkte, die für die Verwendung in explosionsgefährdeten Bereichen in der Europäischen Union

Mehr

Zone 2. EEx n. Zone 1. Remote I/O I.S. Fieldbus. Zone 0. AExia

Zone 2. EEx n. Zone 1. Remote I/O I.S. Fieldbus. Zone 0. AExia KEINE KEINE Prozessleitsystem Control System EEx i- Trenner Barrier PCL I.S. Barrier Ventilinsel / Valve Island SPS PLC 24 VDC Profibus-DP (NEC 505) Division 2 (NEC 500) Gateway DP/AS-i 24 VDC 230 V AC

Mehr

ATEX. Swissi Process Safety GmbH - A member of TÜV SÜD Group. Slide 2 / 17. 11. September 2014

ATEX. Swissi Process Safety GmbH - A member of TÜV SÜD Group. Slide 2 / 17. 11. September 2014 ATEX Auch nach 10 Jahren noch aktuell! Swissi Process Safety GmbH - A member of TÜV SÜD Group. Slide 1 / 17 ATEX 137 & 95 ATEX = ATmosphère EXplosive ATEX 137 für Betreiber Richtlinie 1999/92/EG, 16.12.1999

Mehr

Grundlagen des Explosionsschutzes in der Gasversorgung. Dipl. Ing. Reinhard Franzke

Grundlagen des Explosionsschutzes in der Gasversorgung. Dipl. Ing. Reinhard Franzke Grundlagen des Explosionsschutzes in der Gasversorgung Dipl. Ing. Reinhard Franzke Regelungen zum Explosionsschutz 94/9/EG Bau- und Ausrüstung 1999/92/EG Sicherheit u. Gesundheitsschutz der Arbeitnehmer

Mehr

Neue Trends bezüglich Explosionsschutz in der Messtechnik

Neue Trends bezüglich Explosionsschutz in der Messtechnik Products Solutions Services Explosionsschutz Neue Trends bezüglich Explosionsschutz in der Messtechnik Folie 1 G-T/Technische Sicherheit Explosionsschutz Anlagensicherheit Funktionale Sicherheit (SIL)

Mehr

Neue Ex-Drehgeber für Zone 2 und Zone 22

Neue Ex-Drehgeber für Zone 2 und Zone 22 PT2006_487d,_Ex-Drehgeber (Streuversion) Pepperl+Fuchs GmbH Königsberger Allee 87 68307 Mannheim Bei Veröffentlichungen bitte folgende Kontaktdaten angeben: Tel.: +49 621 776-1111, Fax: +49 621 776-27-1111,

Mehr

~&~ EG-Bau m usterprüf.beschei TÜV 02 ATEX 1841

~&~ EG-Bau m usterprüf.beschei TÜV 02 ATEX 1841 (1) ~&~ EG-Bau m usterprüf.beschei nigung (2) (3) (4) (5) (6) (7) (8) (9) Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen-Richtlinie 94/9/EG EG Baumusterprüfbescheinigungsnummer

Mehr

H 4135A: Relais im Klemmengehäuse

H 4135A: Relais im Klemmengehäuse H 4135A H 4135A: Relais im Klemmengehäuse sicherheitsgerichtet, für Stromkreise bis SIL 3 nach IEC 61508 Abbildung 1: Blockschaltbild F1: max. 4 A - T, Lieferzustand: 4 A - T Die Baugruppe ist geprüft

Mehr

PV-Anlagen vor Blitz und Überspannungen schützen

PV-Anlagen vor Blitz und Überspannungen schützen PV-Anlagen vor Blitz und Überspannungen schützen Photovoltaik-Anlagen sind besonders durch Blitzeinschläge und Überspannungen gefährdet, da sie häufig in exponierter Lage installiert werden. Damit sich

Mehr

cf@z~ TÜV 03 ATEX 2006 X

cf@z~ TÜV 03 ATEX 2006 X .. cf@z~ (1 ) E G - Bau mus t er p r ü f b es ehe ini gun 9 (2) (3) Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung inexplosionsgefährdeten Bereichen - Richtlinie 94/9/EG EG Baumusterprüfbescheinigungsnummer

Mehr

Explosionsschutz in Biogasanlagen

Explosionsschutz in Biogasanlagen Explosionsschutz in Biogasanlagen Erstellung eines Explosionsschutzdokumentes Sicherheitstechnische Kenndaten von Biogas Biogas besteht im Wesentlichen aus: Methan (50-80 Vol.%) Kohlendioxid (20 50 Vol.%)

Mehr

NICHTZERTIFIZIERTE ÜBERSETZUNG. 2 Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen (Richtlinie 94/9/EG)

NICHTZERTIFIZIERTE ÜBERSETZUNG. 2 Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen (Richtlinie 94/9/EG) NICHTZERTIFIZIERTE ÜBERSETZUNG 1 EG-BAUMUSTERPRÜFBESCHEINIGUNG 2 Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen (Richtlinie 94/9/EG) 3 EG-Baumusterprüfbescheinigungsnummer

Mehr

Mennekes mit neuem Produktportfolio für den Einsatz in Zone 22

Mennekes mit neuem Produktportfolio für den Einsatz in Zone 22 Mennekes mit neuem Produktportfolio für den Einsatz in Zone 22 Ab sofort bietet Mennekes, der führende Hersteller genormter Industriesteckvorrichtungen, wieder ein Produktprogramm für die Installation

Mehr

Explosionsgeschützte Motoren

Explosionsgeschützte Motoren Explosionsgeschützte Motoren M O T O R E N Abbildung zeigt eine EG-Baumusterprüfbescheinigung für mechanische Abnahme Abbildung zeigt Datenblatt zur EG-Baumusterprüfbescheinigung für elektrische Auslegung

Mehr

Einfache Betriebsmittel der Zündschutzart Eigensicherheit einfach zu beurteilen?

Einfache Betriebsmittel der Zündschutzart Eigensicherheit einfach zu beurteilen? Physikalisch-Technische Bundesanstalt Braunschweig 27. Februar 2009 Fachbereich 3.6 Dr. U. Johannsmeyer Einfache Betriebsmittel der Zündschutzart Eigensicherheit einfach zu beurteilen? 1. Einleitung Das

Mehr

Praktische Umsetzung der Betriebssicherheitsverordnung (BetrSichV) hinsichtlich des Explosionsschutzes

Praktische Umsetzung der Betriebssicherheitsverordnung (BetrSichV) hinsichtlich des Explosionsschutzes Praktische Umsetzung der Betriebssicherheitsverordnung (BetrSichV) hinsichtlich des Explosionsschutzes Endress+Hauser Messtechnik GmbH+Co.KG www.karlheinz.gutmann@de.endress.com Rechtsgrundlage des Explosionsschutzes

Mehr

Tagung Umgang mit Regulierungen und Behörden

Tagung Umgang mit Regulierungen und Behörden Tagung Umgang mit Regulierungen und Behörden ATEX 137 Aus Sicht des Betreibers SUVA Luzern Do. 21 Sept. 2006 Referent François Schlessinger Leiter technische Kontrolle Clariant Produkte (Schweiz) AG Fragen

Mehr

Technische Daten. Allgemeine Daten. Schaltabstand s n 5 mm

Technische Daten. Allgemeine Daten. Schaltabstand s n 5 mm 0102 Bestellbezeichnung Merkmale 5 mm nicht bündig Bis SIL2 gemäß IEC 61508 einsetzbar Technische Daten Allgemeine Daten Schaltelementfunktion NAMUR Öffner Schaltabstand s n 5 mm Einbau nicht bündig Ausgangspolarität

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Für sicherheitsrelevante Bauteile und Systeme sollte geschultes Fachpersonal eingesetzt werden. scha-de, 04.07.2007. scha-de, 04.07.

Für sicherheitsrelevante Bauteile und Systeme sollte geschultes Fachpersonal eingesetzt werden. scha-de, 04.07.2007. scha-de, 04.07. Einschränkung der betrieblichen Sicherheit durch mangelhafte und nicht weisungsgemäße Instandhaltung am Beispiel von Sicherheitsarmaturen für Explosionsgefährdete Anlagen 1 Störfälle und betriebliche Schadensfälle

Mehr

Messtechnik für den Ex-Bereich

Messtechnik für den Ex-Bereich Ex-Pt 720 Ex 171-0 Ex 171-3 Messtechnik für den Ex-Bereich C % rf 2 Grundlagen des Explosionsschutzes Ex-Messgeräte von Testo Testo ist in der industriellen Messtechnik einer der weltweit führenden Hersteller

Mehr

Niederspannungsrichtlinie 2014/35/EU Änderungen und Anforderungen. EU-Beratungsstelle der TÜV Rheinland Consulting

Niederspannungsrichtlinie 2014/35/EU Änderungen und Anforderungen. EU-Beratungsstelle der TÜV Rheinland Consulting Niederspannungsrichtlinie 2014/35/EU Änderungen und Anforderungen Stefan Rost, 24.11.2015, Leipzig 1 EU-Beratungsstelle der TÜV Rheinland Consulting TÜV Rheinland Consulting GmbH EU-Beratungsstelle Tillystrasse

Mehr

Eine Übersicht zur Umsetzung der ATEX Richtlinien im Betrieb

Eine Übersicht zur Umsetzung der ATEX Richtlinien im Betrieb Explosionsschutz Eine Übersicht zur Umsetzung der ATEX Richtlinien im Betrieb Gemäss SUVA Merkblatt Explosionsschutz Grundsätze, Mindestvorschriften, Zonen, SUVA Bestellnummer 2153.d Inhalt dieser Übersicht

Mehr

Zulassung nach MID (Measurement Instruments Directive)

Zulassung nach MID (Measurement Instruments Directive) Anwender - I n f o MID-Zulassung H 00.01 / 12.08 Zulassung nach MID (Measurement Instruments Directive) Inhaltsverzeichnis 1. Hinweis 2. Gesetzesgrundlage 3. Inhalte 4. Zählerkennzeichnung/Zulassungszeichen

Mehr

Etikettierungsspezifikation

Etikettierungsspezifikation Diese Spezifikation beschreibt die Anforderungen an die Etikettierung von Verpackungseinheiten für die Zulieferanten der ERNI Production GmbH & Co. KG. Durch die konsequente Umsetzung dieser Spezifikation

Mehr

3. TECHNISCHE GRUNDLAGEN

3. TECHNISCHE GRUNDLAGEN 30 3. TECHNISCHE GRUNDLAGEN 3.5 ZÜNDSCHUTZARTEN In Bereichen, in denen mit dem Auftreten explosionsfähiger Atmosphäre zu rechnen ist, dürfen nur explosionsgeschützte Geräte verwendet werden. Elektrische

Mehr

Schulungsunterlagen Grenzwertverordnung & ATEX

Schulungsunterlagen Grenzwertverordnung & ATEX Schulungsunterlagen Grenzwertverordnung & ATEX Mackstraße 18, 88348 Bad Saulgau Grenzwertverordnung Definition Absauggeräte: Entstauber, Industriestaubsauger, Kehrsaugmaschinen und Arbeitsmittel mit integrierter

Mehr

Explosionsgefährdete Bereiche

Explosionsgefährdete Bereiche Magnetventile für Explosionsgefährdete Bereiche Entstehungsgeschichte Die Einteilung von explosionsgefährdeten Bereichen in Zonen bezieht sich auf den Schutzgrad für elektrische Betriebsmittel, die in

Mehr

Ex-Schutz. Explosionen physikalische Grundlagen:

Ex-Schutz. Explosionen physikalische Grundlagen: Ex-Schutz Explosionen physikalische Grundlagen: Voraussetzung für eine Explosion ist das gleichzeitige Vorhandensein der drei Komponenten "Brennbarer Stoff in fein verteilter Form", Sauerstoff und eine

Mehr

HBC Ex-Systeme (ATEX)

HBC Ex-Systeme (ATEX) HBC Ex-Systeme (ATEX) Gerätekategorie (Zone) M2 2G (Zone 1) 3G (Zone 2) 2D (Zone 21) 3D (Zone 22) Gruppe IIB IIC IIB IIC I M2 Ex ia I Mb II 2G Ex ia IIB T4 Gb II 2G Ex ia IIB T4 Gb II 2D Ex ia IIIC T100

Mehr

Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV)

Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV) Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV) Vom 20. Dezember 2001, BGBl. I S. 3854 geändert am 4. Dezember 2002, BGBl I S. 4456 zuletzt geändert am 13. Februar 2004, BGBl I S. 216

Mehr

Schutzbereiche für die Anwendung von Leuchten im Badezimmer

Schutzbereiche für die Anwendung von Leuchten im Badezimmer Schutzbereiche für die Anwendung von Leuchten im Badezimmer Badezimmer sind Feuchträume. Wo Elektrizität und Feuchtigkeit zusammentreffen, ist besondere Vorsicht geboten. Im Interesse der Sicherheit gibt

Mehr

BG ETEM - 7. Rheinsberger Fachtagung Arbeitssicherheit in der Energieversorgung

BG ETEM - 7. Rheinsberger Fachtagung Arbeitssicherheit in der Energieversorgung BG ETEM - 7. Rheinsberger Fachtagung Arbeitssicherheit in der Energieversorgung Prüfung des Explosionsschutzes an Gasanlagen nach TRBS Dipl.-Ing. Peter Warszewski Rheinsberg, 16.09.2014 1 Agenda Europäische

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

ATEX - ATmosphere EXplosiv

ATEX - ATmosphere EXplosiv 1. Zur Geschichte des Explosionsschutzes Die Grundlagen des elektrischen Explosionsschutzes entstanden mit den Anfängen der Nutzung der Elektrotechnik in der Industrie, vor allem im Bergbau. Zur Vermeidung

Mehr

Luft + brennbares Gas + Zündquelle = Explosion. Luft + brennbarer Staub + Zündquelle = Explosion

Luft + brennbares Gas + Zündquelle = Explosion. Luft + brennbarer Staub + Zündquelle = Explosion Ex-Schutz Explosionsschutz Ventile für die Fluidtechnik zur Verwendung in explosionsgefährdeten Bereichen Explosionschutz für Gas, Staub und Druckfeste Kapselung und Eigensicherheit Lösungen für alle Zonen

Mehr

Die Richtlinie 94/9/EG (ATEX 95) für Pneumatik und Explosionsschutz bei JOYNER

Die Richtlinie 94/9/EG (ATEX 95) für Pneumatik und Explosionsschutz bei JOYNER Die Richtlinie 94/9/EG (ATEX 95) für Pneumatik und Explosionsschutz bei JOYNER Allgemeine Information Geräte und Schutzsysteme für den Einsatz in Ex-Schutzbereichen müssen ab 1. Juli 2003 nach der Richtlinie

Mehr

Das Persönliche Budget in verständlicher Sprache

Das Persönliche Budget in verständlicher Sprache Das Persönliche Budget in verständlicher Sprache Das Persönliche Budget mehr Selbstbestimmung, mehr Selbstständigkeit, mehr Selbstbewusstsein! Dieser Text soll den behinderten Menschen in Westfalen-Lippe,

Mehr

Umsetzer Typ 2313. Bestelldaten. Keine zusätzliche Speisung erforderlich. Zwei Schnittstellen / Kanäle pro Karte. Zündschutzart: I M 1 EEx ia I

Umsetzer Typ 2313. Bestelldaten. Keine zusätzliche Speisung erforderlich. Zwei Schnittstellen / Kanäle pro Karte. Zündschutzart: I M 1 EEx ia I Bestelldaten Bezeichnung Typ Artikel Nr. Umsetzer 2313 118 306 01 AX Einschubbaustein, Europakarte 100 x 160mm An nicht eigensichere Telefonnetze anschließbar, mit eigensicherem Ausgang Keine zusätzliche

Mehr

Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV)

Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV) 05.07.2005 Verordnung über Medizinprodukte (Medizinprodukte-Verordnung - MPV) vom 20. Dezember 2001 (BGBl. I S. 3854), zuletzt geändert durch Artikel 1 der Verordnung vom 13. Februar 2004 (BGBl. I S. 216)

Mehr

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921 FAQ 04/2015 Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter mit https://support.industry.siemens.com/cs/ww/de/view/109475921 Dieser Beitrag stammt aus dem Siemens Industry Online Support. Es

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Maschinenrichtlinie 2006/42/EG 150 Fragen und Antworten zum Selbststudium

Maschinenrichtlinie 2006/42/EG 150 Fragen und Antworten zum Selbststudium QUALITY-APPS Applikationen für das Qualitätsmanagement Maschinenrichtlinie 2006/42/EG 150 Fragen und Antworten zum Selbststudium Autor: Prof. Dr. Jürgen P. Bläsing Die Maschinenrichtlinie 2006/42/EG ist

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

NICHTZERTIFIZIERTE ÜBERSETZUNG. (2) Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen Richtlinie 94/9/EG

NICHTZERTIFIZIERTE ÜBERSETZUNG. (2) Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen Richtlinie 94/9/EG NICHTZERTIFIZIERTE ÜBERSETZUNG (1) EG-BAUMUSTERPRÜFBESCHEINIGUNG (2) Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen Richtlinie 94/9/EG (3) EG-Baumusterprüfbescheinigungsnummer

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Anwenderdokumentation Prüfung nach dem Heilmittelkatalog

Anwenderdokumentation Prüfung nach dem Heilmittelkatalog Ausgabe August 2008 Anwenderdokumentation Prüfung nach dem Heilmittelkatalog 1 Einleitung... 2 2 Stammdateneinstellungen... 3 2.1 Zuordnung der Heilmittel... 3 3 Prüfung einer Verordnung... 7 3.1 Vorgehensweise

Mehr

Beeinflussung von Radio- und Fernsehempfang durch Sunny Central

Beeinflussung von Radio- und Fernsehempfang durch Sunny Central Beeinflussung von Radio- und Fernsehempfang durch Sunny Central für alle Solaranlagen mit SUNNY CENTRAL Inhalt Mit jedem elektrischen Gerät ist ein elektromagnetisches Feld verbunden. Somit müssen PV-Wechselrichter

Mehr

Explosionsschutz nach ATEX. Grundlagen und Begriffe

Explosionsschutz nach ATEX. Grundlagen und Begriffe Explosionsschutz nach ATEX Grundlagen und Begriffe 2 Inhalt 1 Einleitung und Zweck...4 2 Begriffsbestimmungen...5 3 Wie entstehen Explosionen? Das Explosionsdreieck...6 4 Explosionsbereich und Explosionsgrenzen...7

Mehr

6 Informationsermittlung und Gefährdungsbeurteilung

6 Informationsermittlung und Gefährdungsbeurteilung Verordnung zum Schutz vor Gefahrstoffen TK Lexikon Arbeitsrecht 6 Informationsermittlung und Gefährdungsbeurteilung HI2516431 (1) 1 Im Rahmen einer Gefährdungsbeurteilung als Bestandteil der Beurteilung

Mehr

DIN EN 1090: Was muss der Schweißbetrieb tun?

DIN EN 1090: Was muss der Schweißbetrieb tun? Referent: Roland Latteier Vortragsgliederung Einführung Details der Norm Ausblick Roland Latteier 2 Einführung DIN EN 1090-Reihe besteht aus 3 Teilen Teil 1: Teil 2: Technische Regel für die Ausführung

Mehr

Explosionsschutz. Betriebssicherheitsverordnung. Betriebssicherheitsverordnung. Dipl.-Ing. (FH) Horst Hofscheuer. Explosionsschutz

Explosionsschutz. Betriebssicherheitsverordnung. Betriebssicherheitsverordnung. Dipl.-Ing. (FH) Horst Hofscheuer. Explosionsschutz Explosionsschutz DEKRA Automobil GmbH, Dinnendahlstr. 9, 44809 Bochum Telefon +49.234.417561-0 Telefax +49.234.417561-11 Kontakt 1Tel. direkt +49.234.417561-0 Mobil 0157.331 96 458 E-Mail horst.hofscheuer@dekra.com

Mehr

WeSiTec. Beratung und Lieferung von elektrischen/mechanischen Produkten für explosionsgefährdete Bereiche. EEx de IIC T6

WeSiTec. Beratung und Lieferung von elektrischen/mechanischen Produkten für explosionsgefährdete Bereiche. EEx de IIC T6 Peter Weber Beratung und Lieferung von elektrischen/mechanischen Produkten für explosionsgefährdete Bereiche CE 0158 Zeichen-Erklärungen II 2G/D Explosionsschutz EEx de IIC T6 Funkfernsteuerungen, Leuchten,

Mehr

Abschnitt 1 Anwendungsbereich und Allgemeine Anforderungen an die Konformitätsbewertung 1 Anwendungsbereich

Abschnitt 1 Anwendungsbereich und Allgemeine Anforderungen an die Konformitätsbewertung 1 Anwendungsbereich 13.06.2007 Verordnung über Medizinprodukte - (Medizinprodukte-Verordnung - MPV)* vom 20. Dezember 2001 (BGBl. I S. 3854), zuletzt geändert durch Artikel 1 der Verordnung vom 16. Februar 2007 (BGBl. I S.

Mehr

DIN EN81 - A3 Sicherheitskonzept UCM

DIN EN81 - A3 Sicherheitskonzept UCM DIN EN81 - A3 Sicherheitskonzept UCM UCM: Unintended Car Movement Unbeabsichtigte Bewegung des Fahrkorbs von der Haltestelle weg bei geöffneter Tür Vorschrift Mit der 3. Änderung der Maschinenrichtlinie

Mehr

HART-Anschlussboard Reihe 9196

HART-Anschlussboard Reihe 9196 Anschlussboard > Kosten und platzsparendes System zum Aufbau von Übertragung > Verarbeitung von 4... 20 ma NichtExSignalen > Einfache Montage auf DIN Schiene www.stahl.de 07858E00 Das Anschlussboard Typ

Mehr

SAFEYTEAMS-Newsletter Nr. 5

SAFEYTEAMS-Newsletter Nr. 5 CE-Kennzeichnung I Gefahrenanalysen I Maschinen-Prüfungen I Workshops I Seminare SAFEYTEAMS-Newsletter Nr. 5 Thema Bedeutung des Performance-Levels (PL) Definition nach Norm EN 13849: Diskreter Level,

Mehr

Datensicherung. Beschreibung der Datensicherung

Datensicherung. Beschreibung der Datensicherung Datensicherung Mit dem Datensicherungsprogramm können Sie Ihre persönlichen Daten problemlos Sichern. Es ist möglich eine komplette Datensicherung durchzuführen, aber auch nur die neuen und geänderten

Mehr

WAGO AUTOMATION. Serie 288. Einsatz in explosionsgefährdeten Bereichen. Technische Information

WAGO AUTOMATION. Serie 288. Einsatz in explosionsgefährdeten Bereichen. Technische Information Einsatz in explosionsgefährdeten Bereichen Technische Information Version 10.11.2008 ii Allgemein Copyright 2008 by WAGO Kontakttechnik GmbH & Co. KG Alle Rechte vorbehalten. WAGO Kontakttechnik GmbH &

Mehr

Updatehinweise für die Version forma 5.5.5

Updatehinweise für die Version forma 5.5.5 Updatehinweise für die Version forma 5.5.5 Seit der Version forma 5.5.0 aus 2012 gibt es nur noch eine Office-Version und keine StandAlone-Version mehr. Wenn Sie noch mit der alten Version forma 5.0.x

Mehr

3 TECHNISCHER HINTERGRUND

3 TECHNISCHER HINTERGRUND Techniken und Voraussetzungen 3 TECHNISCHER HINTERGRUND 3.1 Was bedeutet Feldbus-Technik? Die Feldbus-Technik wird zur Datenübertragung zwischen Sensoren / Aktoren und Automatisierungsgeräten, z.b. Speicher-Programmierbaren-

Mehr

Haft- und Lesbarkeitsprüfung für Kennzeichnungsschilder

Haft- und Lesbarkeitsprüfung für Kennzeichnungsschilder 1. Zweck Die Norm IEC 60079-0 (Ed. 6)sowie EN 60079-0:2012 fordern im Abschnitt 29.2 eine deutlich lesbare Kennzeichnung von elektrischen Geräten. Die Richtlinie 94/9/EG (ATEX Richtlinie) fordert im Abschnitt

Mehr

Nicht über uns ohne uns

Nicht über uns ohne uns Nicht über uns ohne uns Das bedeutet: Es soll nichts über Menschen mit Behinderung entschieden werden, wenn sie nicht mit dabei sind. Dieser Text ist in leicht verständlicher Sprache geschrieben. Die Parteien

Mehr

VdS Schadenverhütung GmbH. Bereich Security

VdS Schadenverhütung GmbH. Bereich Security VdS Schadenverhütung GmbH Bereich Security Prüfvereinbarung Nr. 2015 xxx Auftraggeber: Die nachfolgende Vereinbarung wurde zwischen dem Antragsteller und VdS Schadenverhütung GmbH geschlossen und ist Grundlage

Mehr

Karl-Klein. Klein ATEX-Ventilatoren. Zündschutzarten. Zonen Temperaturklassen Umrichterbetrieb. Vertriebsleitung Karl Klein Ventilatorenbau GmbH

Karl-Klein. Klein ATEX-Ventilatoren. Zündschutzarten. Zonen Temperaturklassen Umrichterbetrieb. Vertriebsleitung Karl Klein Ventilatorenbau GmbH Karl-Klein Klein ATEX-Ventilatoren Zündschutzarten Zonen Temperaturklassen Umrichterbetrieb Zündschutzarten d druckfeste Kapselung Zündschutzart, bei der die Teile, die eine explosionsfähige Atmosphäre

Mehr

PRÜFMODUL D UND CD. 1 Zweck. 2 Durchführung. 2.1 Allgemeines. 2.2 Antrag

PRÜFMODUL D UND CD. 1 Zweck. 2 Durchführung. 2.1 Allgemeines. 2.2 Antrag 1 Zweck PRÜFMODUL D UND CD Diese Anweisung dient als Basis für unsere Kunden zur Information des Ablaufes der folgenden EG-Prüfung nach folgenden Prüfmodulen: D CD Es beschreibt die Aufgabe der benannten

Mehr

Bayerisches Landesamt für Maß und Gewicht. Neuregelung des Gesetzlichen Messwesens. aus Sicht der Landeseichbehörden

Bayerisches Landesamt für Maß und Gewicht. Neuregelung des Gesetzlichen Messwesens. aus Sicht der Landeseichbehörden Neuregelung des Gesetzlichen Messwesens aus Sicht der Landeseichbehörden 1 Landeseichbehörden und MessEG Was ist neu? Eichung statt Vor- und Nacheichung, Konformitätsbewertungsstelle, Meldepflicht für

Mehr

Wartung der Gasanlage eines Kühlschrankes

Wartung der Gasanlage eines Kühlschrankes Wartung der Gasanlage eines Kühlschrankes Eine Anleitung zur Wartung und Reinigung der Gasanlage eines Absorberkühlschrankes. Die Bilder stammen von einem Electrolux/Dometic RM 6401 L. Da das Funktionsprinzip

Mehr

H. Heinz Meßwiderstände GmbH. Betriebsanleitung eigensichere Einbautemperaturfühler

H. Heinz Meßwiderstände GmbH. Betriebsanleitung eigensichere Einbautemperaturfühler Betriebsanleitung eigensichere Einbautemperaturfühler Montagehinweise zum Betrieb in explosionsgefährdeten Bereichen (ATEX) Hersteller: H. Heinz Messwiderstände GmbH Goethestraße 16 D-98716 Elgersburg

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Explosionsschutz. ü www.nassmagnet.com ( +49 511 6746-0. Explosionsschutz

Explosionsschutz. ü www.nassmagnet.com ( +49 511 6746-0. Explosionsschutz Explosionsschutz ü www.nassmagnet.com ( +49 11 6746-0 Explosionsschutz MAGNETSPULEN FÜR EXPLOSIONSGEFÄHRDETE BEREICHE Für den Einsatz in potenziell explosionsgefährdeten Umgebungen bietet nass magnet geeignete

Mehr

UC-Cabinet. Sichere Unterflur Technologie. Der unterirdische Verteilerschrank. GE Industrial Solutions. GE imagination at work. GE imagination at work

UC-Cabinet. Sichere Unterflur Technologie. Der unterirdische Verteilerschrank. GE Industrial Solutions. GE imagination at work. GE imagination at work Verhindert jegliche Wassereindringung Das Prinzip der Tauchglocke Das Prinzip der Unterflurschränke basiert auf dem Prinzip der Tauchglocke. Eine Tauchglocke ist ein fünfwandiger, hermetisch versiegelter

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

Messmittelfähigkeit. Andreas Masmünster, Quality Control Event, 30. Juni 2011

Messmittelfähigkeit. Andreas Masmünster, Quality Control Event, 30. Juni 2011 Messmittelfähigkeit Andreas Masmünster, Quality Control Event, 30. Juni 2011 Agenda Messmittel Allgemeines Methode 1 Methode 2 Ziel der Methoden Praktischer Teil nach Methode 2 Formblatt Schlussfolgerung

Mehr

Wann ist eine Software in Medizinprodukte- Aufbereitungsabteilungen ein Medizinprodukt?

Wann ist eine Software in Medizinprodukte- Aufbereitungsabteilungen ein Medizinprodukt? DGSV-Kongress 2009 Wann ist eine Software in Medizinprodukte- Aufbereitungsabteilungen ein Medizinprodukt? Sybille Andrée Betriebswirtin für und Sozialmanagement (FH-SRH) Prokuristin HSD Händschke Software

Mehr

Ex-1 Einsatz in explosionsgefährdeten Bereichen

Ex-1 Einsatz in explosionsgefährdeten Bereichen Einsatz in explosionsgefährdeten Bereichen 1 Vorwort Ex-1 Einsatz in explosionsgefährdeten Bereichen Ex-1.1 Vorwort Die heutige Entwicklung zeigt, dass in vielen Betrieben der chemischen oder petrochemischen

Mehr

Mobile SCHWEISSRA ABSAUGUNG BRAND- & EXPLOSIONSSCHUTZ. Competence for you!

Mobile SCHWEISSRA ABSAUGUNG BRAND- & EXPLOSIONSSCHUTZ. Competence for you! Mobile SCHWEISSRA ABSAUGUNG BRAND- & EXPLOSIONSSCHUTZ Im Zeitraum 00 bis 0 gab es in Österreich 9 anerkannte Arbeitsunfälle mit 5 Todesopfern bei Staub- oder Gasexplosionen (Quelle: AUVA). Die Gefahr wird

Mehr

Die R. STAHL Technologiegruppe Mit Kompetenz und Kundennähe weltweit erfolgreich

Die R. STAHL Technologiegruppe Mit Kompetenz und Kundennähe weltweit erfolgreich 0 Die R. STAHL Technologiegruppe Mit Kompetenz und Kundennähe weltweit erfolgreich Die unternehmerische Konzeption der R. STAHL Technologiegruppe folgt einer langen Tradition. Das Produktprogramm ist auf

Mehr

ATEX - Prolog. gmc.ppt

ATEX - Prolog. gmc.ppt ATEX - Prolog Die Anforderungen der neuen Ex-Richtlinien haben z.t. massive Änderungen im Bereich des Explosionsschutzes zur Folge. Der Praktiker sucht aber oft vergeblich nach Hilfen und Anweisungen,

Mehr

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e...

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\39801700-e... Page 1 of 5 Komponentennummer 31 Identifikation Die Funktionsweise dieser Sensoren ist normalerweise überall gleich, obwohl sie sich je nach Anwendung oder Hersteller in der Konstruktion unterscheiden

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

DIN EN ISO 9000 ff. Qualitätsmanagement. David Prochnow 10.12.2010

DIN EN ISO 9000 ff. Qualitätsmanagement. David Prochnow 10.12.2010 DIN EN ISO 9000 ff. Qualitätsmanagement David Prochnow 10.12.2010 Inhalt 1. Was bedeutet DIN 2. DIN EN ISO 9000 ff. und Qualitätsmanagement 3. DIN EN ISO 9000 ff. 3.1 DIN EN ISO 9000 3.2 DIN EN ISO 9001

Mehr

Neue Regelungen für den Gerüstbau

Neue Regelungen für den Gerüstbau Neue Regelungen für den Gerüstbau Europäische Normen Auswirkungen auf die Praxis Neue BGI 663 Handlungsanleitung für den Umgang mit Arbeits- und Schutzgerüsten Neue Regelungen für den Gerüstbau - Was gilt?

Mehr

WAS finde ich WO im Beipackzettel

WAS finde ich WO im Beipackzettel WAS finde ich WO im Beipackzettel Sie haben eine Frage zu Ihrem? Meist finden Sie die Antwort im Beipackzettel (offiziell "Gebrauchsinformation" genannt). Der Aufbau der Beipackzettel ist von den Behörden

Mehr

Strukturen und Analogien im Physikunterricht der Sekundarstufe 1. Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8)

Strukturen und Analogien im Physikunterricht der Sekundarstufe 1. Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8) Strukturen und Analogien im Physikunterricht der Sekundarstufe 1 Das elektrische Potenzial im Anfangsunterricht (Klasse 7 / 8) Vorgaben der Standards für Klasse 8:... 7. Grundlegende physikalische Größen

Mehr

Elektrisch ableitfähige Fußbodensysteme

Elektrisch ableitfähige Fußbodensysteme Elektrostatische Grundlagen Maßgebliche Größen im Bereich der Elektrostatik sind elektrische Ladungen. Alle Gegenstände und Personen enthalten positive und negative elektrische Ladungen, die sich normalerweise

Mehr

Elektrische Spannung und Stromstärke

Elektrische Spannung und Stromstärke Elektrische Spannung und Stromstärke Elektrische Spannung 1 Elektrische Spannung U Die elektrische Spannung U gibt den Unterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei

Mehr

Sicherheits-Funkfernsteuerungen

Sicherheits-Funkfernsteuerungen Sicherheits-Funkfernsteuerungen zum Einsatz in explosionsgefährdeten Bereichen zum Einsatz in explosionsgefährdeten Bereichen www.hetronic.de hetronic.de1 2 Damit (k)ein Funke überspringt: HETRONIC Funkfernsteuerungen

Mehr

Welche Bereiche gibt es auf der Internetseite vom Bundes-Aufsichtsamt für Flugsicherung?

Welche Bereiche gibt es auf der Internetseite vom Bundes-Aufsichtsamt für Flugsicherung? Welche Bereiche gibt es auf der Internetseite vom Bundes-Aufsichtsamt für Flugsicherung? BAF ist die Abkürzung von Bundes-Aufsichtsamt für Flugsicherung. Auf der Internetseite gibt es 4 Haupt-Bereiche:

Mehr

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung 1. Problembeschreibung a) Ein Elektromonteur versetzt in einer überwachungsbedürftigen Anlage eine Leuchte von A nach B. b) Ein Elektromonteur verlegt eine zusätzliche Steckdose in einer überwachungsbedürftigen

Mehr

Die Übereckperspektive mit zwei Fluchtpunkten

Die Übereckperspektive mit zwei Fluchtpunkten Perspektive Perspektive mit zwei Fluchtpunkten (S. 1 von 8) / www.kunstbrowser.de Die Übereckperspektive mit zwei Fluchtpunkten Bei dieser Perspektivart wird der rechtwinklige Körper so auf die Grundebene

Mehr

Nüchtern betrachtet führt jegliche Wissenschaft lediglich zum vorläufig letzten Irrtum. (Kafka)

Nüchtern betrachtet führt jegliche Wissenschaft lediglich zum vorläufig letzten Irrtum. (Kafka) Nüchtern betrachtet führt jegliche Wissenschaft lediglich zum vorläufig letzten Irrtum. (Kafka) Funktionale Sicherheit bei baurechtlich vorgeschriebenen sicherheitstechnischen Anlagen Folie: 1 Funktionale

Mehr

Datenübernahme von HKO 5.9 zur. Advolux Kanzleisoftware

Datenübernahme von HKO 5.9 zur. Advolux Kanzleisoftware Datenübernahme von HKO 5.9 zur Advolux Kanzleisoftware Die Datenübernahme (DÜ) von HKO 5.9 zu Advolux Kanzleisoftware ist aufgrund der von Update zu Update veränderten Datenbank (DB)-Strukturen in HKO

Mehr

11.4 Zündschutzarten in staubexplosionsgefährdeten Bereichen

11.4 Zündschutzarten in staubexplosionsgefährdeten Bereichen 11.4 Zündschutzarten in staubexplosionsgefährdeten Bereichen In den Bestimmungen von DIN EN 60079-0 (VDE 0170-1) [16] und DIN EN 60079-31 (VDE 0170-15-1) [21] wird die Konstruktion und Prüfung des Schutzes

Mehr

Auswertung des Fragebogens zum CO2-Fußabdruck

Auswertung des Fragebogens zum CO2-Fußabdruck Auswertung des Fragebogens zum CO2-Fußabdruck Um Ähnlichkeiten und Unterschiede im CO2-Verbrauch zwischen unseren Ländern zu untersuchen, haben wir eine Online-Umfrage zum CO2- Fußabdruck durchgeführt.

Mehr