Lernhilfe in Form eines ebooks

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lernhilfe in Form eines ebooks"

Transkript

1 Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite 1/23

2 1. Eiführug - Allgemeie Ifos zu dem Thema Ziseszis Zis ud Ziseszis stamme aus der Welt der Fiazmathematik. Wie der Name scho adeutet, geht es hier um Berechuge ud Eischätzuge, die das apital betreffe. Zisrechug ist ichts aderes als eifache Prozetrechug ud somit auch Ziseszisrechug, die eie Erweiterug dieser darstellt. Jeder, der mal mit eiem ax-oto der Sparkasse o.ä. agefage hat, eriert sich, dass die Erwachsee immer gesagt habe: "Leg dei Geld auf eiem Sparkoto a ud am Ede des Jahres wirst Du mehr habe." Ud was hat das Sparbuch gezeigt? Tatsächlich ist, je ach Eisatz, aus dem Afagsbetrag mehr geworde ud die Bak hat eiem auf de scho vorhadee Betrag etwas draufgezahlt. Wie viel das ist, hägt vo de agebotee Zise ab ud wie lage ma wartet. Die allgemeie Zisrechug teilt mit, wie viel ma ach eier eimalige Laufzeit a apital zu eiem Startkapital hizugewit. Die Ziseszisrechug geht etwas weiter. Hier geht es i der Regel darum, apitalwerte zu Be- Zis-Ziseszis.de 212 Seite 2/23

3 gi oder am Ede mehrerer Jahre zu bereche ud berücksichtigt, dass ach jeder Eiheit ei eu verzister, also höherer Betrag als Startkapital vorliegt. Auf eie geauere Vergleich zwische Zis ud Ziseszis wird a späterer Stelle och eigegage.promiete Frage, die es zu beatworte gilt, sid: "Wie viel habe ich ach eiige Jahre, we ich eie bestimmte Summe alege?" oder "Damit ich eie bestimmte Betrag herausbekomme, wie lage muss ich mei Geld alege bzw. wie viele Prozete pro Jahr sid ötig, damit ich auf de gewüschte Betrag komme?" Diese Frage, die im Prizip jede Bakkude irgedwa im Laufe seies udedaseis iteressiere, werde mit der Ziseszisrechug beatwortet. Warum heißt es icht eifach Zis, soder Ziseszis? Das kommt daher, dass ach Ablauf des erste Verrechugszeitraumes ierhalb eier Laufzeit (wie lag ma etwas alegt) die auf de Afagsbetrag bezogee Zise i Euro agerechet werde. Neuer Ausgagsbetrag ist da icht mehr der Erstwert, soder der Erstwert + die erste Zise. Am Ede der zweite Laufzeit komme da zum erst- Zis-Ziseszis.de 212 Seite 3/23

4 verziste Betrag eue Zise hizu usw., d.h. Zis auf Zis, wie Bausteie. So etsteht der Begriff Ziseszis. Zis-Ziseszis.de 212 Seite 4/23

5 2. Theorie - Formel, die für die Ziseszisrechug erforderlich sid Für die Ziseszisrechug wird im Prizip ur eie eizige Gleichug beötigt. Ist das icht toll? Nur eie Gleichug, die ma sich merke muss. Hake a der Sache ist, dass es i der Formel selbst mehrere Variable gibt, ach dee ma etspreched umstelle ka. Ma sollte sich also icht ur im lare über die Schreibweise der Grudformel sei, soder auch um ihre ach de jeweilige Variable umgestellte Schreibweise. Wer icht aus dem Stegreif ach Variable umforme ka, der sollte sie alle eifach auswedig lere. Übrig bleibt da ur och das Eisetze, was auch icht das Schlechteste ist. Trost: Es gibt isgesamt vier Variable i der Formel, d.h., es sid auch ur vier verschiedee Versioe derselbe Formel zu lere. Zis-Ziseszis.de 212 Seite 5/23

6 Am Wichtigste ist folgede Ausgagsformel (2.1) = p mit als verzistes Edkapital, d.h., was ma am Ede herausbekommt, als Ausgagskapital zum Zeitpukt Null, p als de Zissatz für die Laufzeit ud als die Laufzeit selbst, wie lage das apital also agelegt wird. Ma spricht zwar beim Zissatz p immer vo Prozet, setzt i die Gleichuge jedoch ur die reie Zahl ei. Erst i der Atwort bekommt p da die Eiheit %. Im Gegesatz dazu werde Eurobeträge immer mit der Eiheit EUR i der Gleichug gekezeichet. Wie scho gesagt, gibt es vier Variable, ach dee ma frage ka. Die Grudformel fägt mit a, fragt also ach dem Edbetrag, das, was ma eiem festgelegte Zeitraum herausbekommt. Somit bleibe och drei weitere Variable ud ihre jeweilige Gleichug übrig. Gleichug Nummer zwei würde also, we wir ach Zis-Ziseszis.de 212 Seite 6/23

7 der obige Reihefolge gehe, ach frage, "Wie viel hatte ich zu Begi, was war mei Eisatz?" Umforme ach würde folgede Gleichug ergebe: (2.2) = p 1+ 1 Wir lese: Das agelegte Startkapital ergibt sich aus dem Quotiete des Edkapitals ud der jährliche Verzisug über eie defiierte Laufzeit vo Jahre. Gleichug Nummer drei fragt ach - richtig - p. Wie scho i der Eileitug agedeutet, ket ma p aus der Zisrechug. We i der Fragestellug also irgedwo ei Prozetbzw. Zissatz ( p %) agegebe ist, da immt ma eifach diese Zahl ohe Eiheit ud setzt sie für p ei. Bei eiem Zissatz vo 4% wäre dies somit die 4. Zis-Ziseszis.de 212 Seite 7/23

8 Umforme ach p ergibt Folgedes: (2.3) p = 1 1 Wir lese: Der Zissatz ist gleich der -te Wurzel aus dem Quotiete vo Ed- ud Ausgagskapital mius 1. I der Ausgagsgleichug (2.1) steht das och im Neer des Bruchs ud fugiert als Expoet. Durch die zwagsläufige Umformug der Gleichug wird bei der Berechug vo p der ehrwert gebraucht. Das Gegeteil vo expoetieller Rechug ist das Wurzelziehe. Daher fide wir hier als Wurzel wieder. Zu guter Letzt bleibt och die Frage ach de Jahre. "Wie lage wurde das Geld agelegt uter de gegebee Umstäde?" Formt ma ach um, so erhält ma die Gleichug Zis-Ziseszis.de 212 Seite 8/23

9 (2.4) lg = p lg1+ 1 Wir lese: Die Laufzeit ergibt sich aus dem Logarithmus (LOG oder lg) des Quotiete aus Edkapital ud Startkapital, geteilt durch de Logarithmus der jährliche Verzisug. Wo kommt der Logarithmus her? Zieht ma eie Expoete () vo eier Seite der Gleichug auf die adere (hier vo rechts ach liks), muss zum Ausgleich auf der ursprügliche Seite der Logarithmus vo alle übrige Terme berechet werde. Die Gleichuge (2.1) ud (2.2) ka ma evetuell och schriftlich oder im opf bereche. Für (2.3) ud (2.4) brauchst Du jedoch defiitiv eie Tascherecher. We icht: Respekt! Je ach Hersteller gibt es verschiedee Tastekombiatioe auf eiem Tascherecher, um Logarithme zu bereche, Poteze zu ehme, Wurzel zu ziehe ud Gleichuge partiell i lammer auszureche ud abzuspeicher. Setze Dich damit auseiader. All diese Umformuge gehe davo aus, dass im- Zis-Ziseszis.de 212 Seite 9/23

10 mer alle Variable bis auf eie eizige, ach der logischerweise umgeformt werde muss, gegebe sid. Asoste wäre eie alkulierug icht möglich. Exkurs: Vergleich mit Zisrechug Der Uterschied zwische Zis ud Ziseszis ist, dass bei Ersterem das apital liear wächst, bei Letzterem ei expoetielles, somit viel stärkeres Wachstum der Fall ist. Dies liegt a der Potezierug vo (1+p/1) durch, hägt also mit der Laufzeit zusamme. Die allgemeie Formel zur Berechug der Höhe der Zise i Euro sieht wie folgt aus: t p Z = 1 p durch 1 kee wir aus Ausgagsgleichug (2.1). ist ichts aderes als user ud t stellt die Laufzeit dar, ist jedoch icht auf Jahre beschräkt, soder ka sich auch auf kleiere Zeiträume beziehe. Was hier als Z berechet wird, ist der reie Zugewi zum Ausgagskapital. Immer wieder eu verzistes Guthabe wird wie bei der Ziseszisrechug, bei der ei Uterschied zwische Start- ud Edkapital gemacht wird, i dieser Gleichug icht Zis-Ziseszis.de 212 Seite 1/23

11 berücksichtigt. De größte Effekt hat der Ziseszis daher bei Tagesgeldkote, wo eie tägliche Potezierug des Vermöges stattfidet ud icht jährlich, wie bei ormale Sparkote. Wir zähle hier i Jahre, da es um lägerfristige apitalalage geht. Zis-Ziseszis.de 212 Seite 11/23

12 3. Beispiele für Ziseszisrechuge Die folgede Aufgabe gebe je ei Beispiel für je eie Variable ud die etsprechede Fragestellug. (3.1) Frage: We ich 15EUR bei eiem Zissatz vo 3,5% für die ächste 6 Jahre festlege, wie hoch ist da der Gewi, sprich, wie viel kommt zu meiem jetzige Ausgagskapital hizu? (3.2) Frage: We ich ach 5 Jahre 28EUR herausbekomme ud eie jährliche Zissatz vo 2% hatte, wie viel habe ich zu Begi der Laufzeit agelegt? (3.3) Frage: We ich 36EUR zur Bak gebracht habe, das Geld 3 Jahre lag habe ruhe lasse ud am Ede 58EUR herausbekomme, wie hoch war der Zissatz? (3.4) Frage: Ich habe 23EUR Startkapital bei eiem Zissatz vo 1,9% agelegt ud will bei Erreiche der 46EUR-Marke mir de Betrag auszahle lasse. Wie lage muss ich warte? Zis-Ziseszis.de 212 Seite 12/23

13 Heragehesweise: Zu (3.1): Hier wird eideutig ach dem Edbetrag gefragt, also. Die etsprechede Gleichug, die diese Frage beatwortet, ist die erste, folglich = p Setze wir alle gegebee Zahle ei, mit = 15 EUR, p = 3,5 ud = 6, da erhalte wir Folgedes: 6 3,5 = 15EUR 1+ 1 Wir lese: Das Edkapital setzt sich zusamme aus dem Startkapital vo 15EUR multipliziert mit dem jährliche Zissatz vo 3,5% über die ächste sechs Jahre. Das Ergebis ist = 1843,88EUR. Atwort: Bei eier Alegug vo 15EUR zu eiem Zissatz vo 3,5% ud eier Laufzeit vo 6 Jahre, bekommt ma 1843,88EUR heraus, hat also eie Gewi vo 343,88EUR. Zis-Ziseszis.de 212 Seite 13/23

14 Zu (3.2): Die Frage zielt auf das agelegte Startkapital ab, d.h.. Die Gleichug wird wie folgt ach umgestellt: = p 1+ 1 ud Eisetze der Werte mit = 28, p = 2 ud = 5 ergibt Folgedes: 28EUR = Wir lese: Das Startkapital ergibt sich aus dem Quotiete des Edkapitals vo 28EUR ud der jährliche Verzisug vo 2% über füf Jahre. Das richtige Ergebis müsste = 253,6EUR laute. Atwort: Um ach füf Jahre Laufzeit ud 2% Zise eie Betrag vo 28EUR zu erhalte, muss ma 253,6EUR alege. Zis-Ziseszis.de 212 Seite 14/23

15 Zu (3.3): Hier wird ach dem erforderliche Prozetsatz gefragt, der ötig ist um ach drei Jahre 58EUR zu erhalte. Es wird wie folgt ach p umgeformt, uter der Aahme, dass = 36EUR, = 58EUR ud = 3 ist: p = Eisetze ergibt 3 58EUR p = EUR Wir lese: Der Zissatz ist gleich der -te Wurzel, i diesem Fall der dritte Wurzel aus dem Quotiete vo Ed- ud Ausgagskapital mius 1. Das Ergebis lautet 17,2 = p. Atwort: Um ach drei Jahre Laufzeit ud eiem Startkapital vo 36EUR, 58EUR zu erhalte, muss der Betrag zu eiem Zissatz vo 17,2% agelegt werde. Zis-Ziseszis.de 212 Seite 15/23

16 Zu (3.4): Zu guter Letzt wird ach der Läge der Laufzeit gefragt, um uter der Bedigug eies bestimmte Afagskapitals ud Zissatz, eie bestimmte Edbetrag zu erreiche. Wir gehe hier immer vo Jahre aus. Nach umgeformt, mit = 23EUR, = 46 EUR ud p =1,9, ergibt sich folgede Gleichug log = p log1+ 1 Durch Eisetze erhält ma = 46EUR log 23EUR 1,9 log1+ 1 Wir lese: Die Laufzeit ergibt sich aus dem Logarithmus des Quotiete aus 46EUR als Edkapital ud 23EUR als Startkapital, geteilt durch de Logarithmus der jährliche Verzisug vo 1,9%. Zis-Ziseszis.de 212 Seite 16/23

17 Das Ergebis ist =36,8. Atwort: Legt ma 23EUR a, mit 1,9% Zise ud eiem Edkapital vo 46EUR, so hat ma diesem Betrag eie Laufzeit vo midestes 36,8 Jahre gegebe. Schlusswort Wichtig ist Folgedes: Du musst für die Ziseszisrechug icht ubedigt wisse, wie sich die Gleichuge herleite lasse, auch icht wie ma, ausgehed vo Gleichug (2.1), ach de adere Variable umformt. Wichtig ist, dass Du die Aufgabestellug aufmerksam durchliest, Dir klarmachst, woach gefragt wird (,, p oder ) ud etspreched Deiem Urteil eie der vier Variate auswählst. Der Rest besteht aus Eisetze, Tascherecher zur Hilfe ehme ud dara zu deke, dass alles, was i lammer steht, zuerst berechet wird ud Puktvor Strichrechug geht, auch i de lammer. We Du all das beachtest, da sollte der Ziseszisrechug ichts im Wege stehe. Zis-Ziseszis.de 212 Seite 17/23

18 4. Teste Dich selbst - Beispielaufgabe ud Lösuge zur Ziseszisrechug So, jetzt wurde geug geredet. Du bist dra. We Du die obige Iformatioe geauestes gelese hast ud achvollziehe kotest, da sollte die folgede füf Aufgabe kei Problem mehr sei. Ud geschummelt wird icht, klar? Erst hiterher. Viel Erfolg! (4.1) Ei ude legt eie Betrag vo 55EUR a. Er bekommt ei lukratives Agebot vo 2,3% Zise ud eier Laufzeit vo vier Jahre. Was bekommt er ach de vier Jahre ausbezahlt? (4.2) Ei Schulkid plüdert sei Sparschwei, das 32,8EUR ethält. Es möchte ach 6 Jahre 1EUR erreicht habe. Wie viel Zise müsse gebote werde, damit dieser Wusch i Erfüllug geht? (4.3) Die Oma ist gestorbe ud hiterlässt ei Sparbuch mit 89EUR. Ursprüglich hatte sie mal 98EUR agelegt zu eiem Zissatz vo 1,2%. Vor wie viele Jahre hat sie dieses Sparbuch agelegt? Zis-Ziseszis.de 212 Seite 18/23

19 (4.4) Edlich ka sich Rolli de Traum vom eigee Auto erfülle. Er hat de ötige Betrag vo 23EUR beisamme. Dafür hatte seie Elter bei seier Geburt vor 18 Jahre eie bestimmte Betrag zu eiem Zissatz vo 3% agelegt. Wie viel Euro ware das? Zis-Ziseszis.de 212 Seite 19/23

20 Lösuge Zu (4.1) Gefragt wird ach Vorgegebe sid = 55, p = 2,3 ud = 4.. Du müsstest folgede Gleichug erhalte habe: = 55EUR 1+ 2,3 1 4 Das Ergebis ist = 553,88 EUR. Atwort: Nach eier Laufzeit vo vier Jahre, mit 2,3% Zise ud eiem Startkapital vo 55EUR, bekommt der ude 553,88EUR ausgezahlt. Zu (4.2) Hier iteressiere die gebotee Prozete, also p. Mit = 32,8EUR, = 1EUR ud = 6, Zis-Ziseszis.de 212 Seite 2/23

21 müsste folgede Gleichug herauskomme: 1EUR p = ,8 EUR Das Ergebis lautet p = 2,4. Atwort: Das Schulkid braucht ei Agebot mit 2,4% Zise, damit es auf ei Edkapital vo 1 EUR kommt. Ziemlich utopisch. Zis-Ziseszis.de 212 Seite 21/23

22 Zu (4.3) Gaz schöes Sümmche, das die Oma da hiterlasse hat. Darauf musste auch lage gewartet werde. Es wurde also ach gefragt. Mit = 98EUR, = 89 EUR ud p =1,2 sollte sich Folgedes ergebe: = 89 EUR log( 98EUR ) log (1+( 1,2 1 )) Das Ergebis lautet = 184,96. Atwort: Die Oma hat de Betrag vo 98EUR, bei eiem Zissatz vo 1,2% ud eiem daraus resultierede Betrag vo 89EUR, vor 185 Jahre agelegt. Die Laufzeit betrug folglich kapp 185 Jahre. Da muss die Oma aber das Geheimis ewige Lebes etschlüsselt habe, zumidest eie Teil davo. Dass dies keie realistische Zahl ist, ist scho klar. Regel: Bei solche Textaufgabe iemals beirre lasse vom Ergebis, soder auf die eigee Fähigkeit ud das erworbee Wisse vertraue. Zis-Ziseszis.de 212 Seite 22/23

23 Zu (4.4) Hier iteressiert das Ausgagskapital, das eimal agelegt wurde. Bei eier Laufzeit =18 Jahre, = 23 EUR ud p = 3, müsstest Du folgede Gleichug erstellt habe: 23EUR = Das richtige Ergebis müsste = 1351,1EUR laute. Atwort: Rollis Elter habe vor 18 Jahre eie Betrag vo 1351,1EUR agelegt. Zis-Ziseszis.de 212 Seite 23/23

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Finanzmathematische Modelle

Finanzmathematische Modelle Fiazmathematische Modelle Zum Zeitpukt der Erstellug dieses apitels Afag 7 war das absolute Zistief. Bei Guthabezissätze i der Größeordug vo, % macht die Betrachtug vieler asoste wichtiger fiazmathematischer

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Meine ersten Erfahrungen in Südkorea

Meine ersten Erfahrungen in Südkorea e -Moder d u o -Tradi3 Zwische -live ch - just-were-i a e -B lli ga a w G Busa's-View-from-oe-o f-its-moutais Meie erste Erfahruge i Südkorea VON Wie hat dich deie Familie aufgeomme? Vor meiem Abflug habe

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

APPENDX 3 MPS Umfragebögen

APPENDX 3 MPS Umfragebögen APPENDX 3 MPS Umfrageböge Iformatio zur Mitarbeiterbefragug Liebe Mitarbeiteri, lieber Mitarbeiter, die Etwicklug eies eiheitliche Produktiossystems für Mercedes-Bez ist abgeschlosse ud seit Jauar 2000

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

provadis School of International Managemet & Technology

provadis School of International Managemet & Technology Testvorbereitug Mathematik, V9 Prof. Dr. L. Eicher provadis School of Iteratioal Maagemet & Techology Hiweis: Alle Aufgabe sid ohe Hilfsmittel zu löse.. Bereche Sie: a 7, b, c, d, e 7, f 4. Kürze Sie ud

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

Beispiellösungen zu Blatt 105

Beispiellösungen zu Blatt 105 µ κ Mathematisches Istitut Georg-August-Uiversität Göttige Aufgabe 1 Beispiellösuge zu Blatt 105 Alva liebt Advetskaleder. Aber sie hat keie Lust, die Türe vo 1 bis i der ormale Reihefolge zu öffe. Daher

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1. Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge

Mehr

Mathematik 1 für Informatik

Mathematik 1 für Informatik Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i

Mehr

Die OÖGKK auf einen Klick Information und e-services für Unternehmen

Die OÖGKK auf einen Klick Information und e-services für Unternehmen PARTNERIN DER WIRTSCHAFT GEMEINSAM STARTEN IHR ERSTER MITARBEITER ERSTMALS DIENSTNEHMER ANMELDEN DIE E-SERVICES DER OÖGKK BEITRAGSGRUPPE ERMITTELN ELDA DAS ELEKTRONISCHE DATENAUSTAUSCHSYSTEM KRANKENSTANDSBESCHEINIGUNG

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Projektmanagement Solarkraftwerke

Projektmanagement Solarkraftwerke Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr