(zur deiterleitimg an das RIGA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "(zur deiterleitimg an das RIGA)"

Transkript

1 Atg de Beuf sshulispektoekofeez die DK (zu deiteleitig ds GA) i. dei? geeblihidustielle Beufsshule besteht de Ffi Lhtuteiht fü lle Lehlige US Teile: d2heiid. de beuf skudlihe Jteiht luf ed i t de ElFs ie.je. Lehpl5e de sih stdig delde Gegebeheite de fieufsgis gepsst ud o otedig studessig eeitet ude, sid die llgeeibildede Fähe totz de zuehede Asiihe i diese Uteiht qutittiv iif de gleihe?lt;d gebliebe. Die Folge d.us ist eie StoffLibelstug,.~ i:ih,t bkoke ede k? i de ds LehplLe y p. _ i i;.lht...5.e Ziele diese Lehp:.Se sid ubestitte u6 ~ i A 2ii.i.i L: iht, eduziet ege. >. 2 de g e e b i h i d s t. L e L D i. G die ilgeibildede FEhe bestehe, Lehple :?2. li Studvtfl fu die l.lgeeibildde Fähe dde i e:iie~i Bief des BGA VE 22. ktobe 96 festgelegt ud seithe bei Aufs telle de. éiie Lehple gedt. F?!i;ze Aiishe bildet ds Fh lehe, ds bei zhleihe ii~iiv~!,h~le iht eh l:: llgeeib iliedes Fssh ~s;ctllf:;i FPATE

2 . L. Atäge 4.. Uebe ds Fh "ehe" ist Klheit zu shffe. De BGA id betgt, de Lehpl vo 4. Jui 98 ufzuhebe ud de Stff o otedig i llmthotiktl ode "Fhehe" zu itegiee este Lhjh de ud 4Xhig9 Lehe ist die duh de egfll des ehes feiedede Lektioeziil (L) it Geshäftskude zu belege (d.h. i. Lehjh ie: Doppellektio). De Lehpl i diese Fh ist e,tspetie;d zu Libebeite (Eeiteug de ehtskude,, Elbzup gudlegede fotikthee!. /A.;. Beufe it & Tge, Uteiht po ohe ehlte ähed de gze Lehe eie Doppellektio Lkuish po ohe (log Tue ud Spot). Die zusztzlihe Lektioe (60 bei eie /+jähige Lehe) soilei de Födeug d.es 5lihe ud shiftlihe Ausduks diee. De 2 eut s h L eh pl i d e t sp?e k:e d Lih e b e it e tf A St. Gzlle,. Ju 84 Fhgeiu de DBK : Beufssulipekt~eofeez De Psidet: Est See

3 GEEBESCHULE DE STADT BE FPATE 4 JAHE^? ALLGEME BLDEDE UTECHT LEHPLAE KUZFASSUG FU BEUFE MT EE LEHZET V 4 JAHE UEBESCHT ÜBE DE CHTZELE FU DE FACHE DEUTSCH, GESCHAFTSKUDE, STAATS UD TSCHAFTSKUDE, ECHE D E BL GAT SCH zu BEHADELDE STFFGEB ETE

4 i < V i f 0. l: p e v, > 0 L CD. i L T i X V D p l f V i L. l i > 4 D l v) E i 0 (o i l E io U e u e (o fi i i =. i = =Y L... oi o, L L. i ip. 0 k ul o e.. V 5 i V. l (D i T o> (T 5 5 o, o Tt hl 0 D i V 0: 0 (o D i i u io o v X u o o : ;D i ip D i v

5 ehtskude S T F F G E B E T E ud ihtliie fu die Lektioezuteilug 4 J h e ~ l, LEHJAH DEUTSCH GESCHAEFTSKUDE ~ K = Koespode Z = Zhlugsvekeh ECHE. ~ Sphshulug. Gudstzlihes. Gudopetioe Spehe: Gesph Ezhle Diskussio Sheibe: Zusefssug Besheibug Elebis gezielte Uebuge 2. Litetu, bildede Kust, Musik, Mediekude, Lebesfge h pesolihe Pl des Lehes Gudlge K Gudlge Z Gudlge 2. Beufsbildug Lehvetg ehte ud Pflihte de Vetgspte K Etshuldigug Dispestiosgesuh 2 Kssbuh íkoto) Betiebskosteehug fu Fhzeug. Veei gistio eies Veeis K Biefe eies Veeisitgliedes Z Kssbuh it Belege Postzhlugsvekeh Posthekkoto vet ud Bilz zusehgede Aufgbe Shtze ud ude Buhe Deistz, Pozete eltioe Tbelle ud gph stelluge Foel Poi le, ;he D Egzug diese duh fotiosziele us de Lehpl fu de beuflihe Uteiht des beteffede Beufes, elhe fu ds Fh ehe i. Lehjh vogesehe sid

6 S T F F G E B E T E ud ihtliie fu die Lektioezuteilug 4 J h e Stoffgebi 2. LEHJAH DEUTSCH ete GESCHAEFTSKUDE eltitskiii K = Koespodez Z Zhlugsvekeh STAATSKUDE _ekt.. Sphshulug 4. Vesihuoe. illesbildugspozess Spehe : Kuzvotg Sheibe: Beiht Shildeug gezielte Uebuge 2. Litetu, bildede Kust, Musik, ~ _ ~..~ Mediekude, Lebesfge h pesolihe Pl des Lehes Kke Ufllvesiheug AHV, V. E, AlV Lebesvesiheug Hftpfliht Shvesiheug K Shiftvekeh it Agetu Z ukkufset eie Lebesves. _ ~ 5. Kufvetg Abluf eies Bkufes Besodee Ate des Kufes Stóuge i Vetgsbluf Folge de ihtefullug Ausikuge Ab ud Vouszhlugsvetg Eigetusvobehlt K Mgeluge eitee Biefe zu Kufvetg Z Quittug Aufbehug de Quittuge 2. stitutioelehe. ehtssetzug 4. ehte ud Pflihte de Buge 6. Soe ud Geldle Spheft Bkkoto bgeldlose Zhlugsvekeh Kssshei, bligtio, Aktie 2 Bkkoti

7 S T F F G E B E T E ud ihtliie fu die Lektioezuteilug, EHJAH DEUTSCH GESCHAEFTSKUDE = ehtskude K = Koespodez Z Zhlugsvekeh STAATSKUDE. Sphshulug. Dlehe, Kedit ud Siheheit 5. Die Sheiz i de elt Spehe : Kuzvotg Tehik de Veslugsleitug K Kleikedit Siheheite Shiftvekeh it Bk 6. Deoktie ud Dikttu Sheibe: Eoteug vo Shfge Egudug vo etfge gezielte Uebuge 2. Litetu, bildede Kust, Musik, Mediekude, Lebesfge h pesolihe Pl des Lehes 8. Steue Begiffe Steuepogessio Besteueugsoglihkeite K Shiftvekeh it Steuebehode Z Steueeklug etshiftevezeihis, Veehugssteue 9. Filie ehte ud Pflihte de Filie. itgliede Gütestde Velöbisbuh, Ehesheidug K Guteehtlihe Teilug Ebteilug Voudshft pivte Biefe Filiebudget TSCHAFTSKUDE. Ziele ud Gudlge des itshftes 2. Etiklug de itshft. itshftsoduge..

8 ~ ~~ K?podez S T F F G E B E T E ud ihtliie fu die Lektioezuteilug 4 J h e 4, LEHJAH DEUTSCH = Hehtskud K ~ GESCHAEFTSKUDE 2 = Zhlugsvekti TSCHAFTSKUDE.ekt.. SDhshulu Spehe: iedeholug ud Eeiteug de vogeggee Stof fgebiete Shei be: Chkteistik gezielte Uebuge 2. Litetu, bildede Kust, Musik, Mediekude, Lebesfge h pesolihe Pl des Lehes 0. Abeitsvetge ehte ud Pflihte de Vetgs pte Eizel GAV Sozilpolitishe Bedeutug des GAV ehtseg stze bei Abeitskoflikte K Stellebeebug Kudigug eitee Biefe 2 Kotevebiduge. ekvetg ud eifhe Auftg Uteshiede zu Abeitsvetg ud Kufvetg ehte ud Pflihte de Vetgspte 2. Miete Bestiuge ube de Mietvetg Mieteshutz K Kudigug eitee Biefe 2 Kotevebiduge. Beteibug Abluf eie Beteibug uf Pfdug Kokus des Abeitgebes 4. Betieb Abeitseht (Shutzbestiuge) 4. Geld ud Kojuktu 5. Ausseitshft 6. itshftszeige de Sheiz

Übungsaufgaben zur Finanzmathematik - Lösungen

Übungsaufgaben zur Finanzmathematik - Lösungen Wshfsmhemk II Übugsufgbe zu Fzmhemk - Lösuge. Ee Bk lok m dem Agebo " W vedoppel h pl Jhe!! ". ) Welhe Vezsug bee Ihe de Bk? ( ) Edkpl od. Ede : Lufze od. Läge des Algezeumes Zse " Zseszsehug" z. B.: (

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Lösuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Beekuge: Kle vo ie h usse uflöse; Pukt vo Stih 0. / /. π lr lr Q lr d 00 ln Beekug zu d Geht uh ohe TR! Küze Nee: ud Zähle:

Mehr

Der Landrat als Kreispolizeibehörde Gütersloh

Der Landrat als Kreispolizeibehörde Gütersloh De Ld s espozebehöde Güesoh Jhesbech zu sewckug 2016 Ihsvezechs See - Ld Nodhe-Wesfe - 1 - Regeugsbezk Deod - 2 sge Regeugsbezk Deod - Gfk 3 - espozebehöde Güesoh - 4 Eee Tvedchge 5 Mehfchvedchge 6 Nchdeusche

Mehr

Der Landrat als Kreispolizeibehörde Gütersloh

Der Landrat als Kreispolizeibehörde Gütersloh De Ld s espozebehöde Güesoh Jhesbech zu sewckug 2015 Ihsvezechs See - Ld Nodhe-Wesfe - 1 - Regeugsbezk Deod - 2 sge Regeugsbezk Deod - Gfk 3 - espozebehöde Güesoh - 4 Eee Tvedchge 5 Mehfchvedchge 6 Nchdeusche

Mehr

Der Landrat als Kreispolizeibehörde Gütersloh

Der Landrat als Kreispolizeibehörde Gütersloh De Ld s espozebehöde Güesoh Jhesbech zu sewckug 2014 Ihsvezechs See - Ld Nodhe-Wesfe - 1 - Regeugsbezk Deod - 2 sge Regeugsbezk Deod - Gfk 3 - espozebehöde Güesoh - 4 Eee Tvedchge 5 Mehfchvedchge 6 Nchdeusche

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Der Landrat als Kreispolizeibehörde Gütersloh

Der Landrat als Kreispolizeibehörde Gütersloh De Ld s espozebehöde Güesoh JAHRESBERICHT zu sewckug 2013 Ihsvezechs See - Ld Nodhe-Wesfe - 1 - Regeugsbezk Deod - 2 sge Regeugsbezk Deod - Gfk 3 - espozebehöde Güesoh - 4 Eee Tvedchge 5 Mehfchvedchge

Mehr

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart:

Ein Kredit von 350.000 soll mit 10% p.a. verzinst werden. Folgende Tilgungen sind vereinbart: E. Tlgugsechuge Aufgabe E Ked vo 350.000 soll 0% p.a. vezs wede. Folgede Tlguge sd veeba: Ede Jah : 70.000 Ede Jah : 63.000 Ede Jah 6:.500 Ede Jah 7: Reslgug. A Ede des 3. ud 5. Jahes efolge keele Zahluge

Mehr

UNTERPUT)EINSÄT)E Schaltbilder

UNTERPUT)EINSÄT)E Schaltbilder UNTERPUT)EINSÄT)E Schaltbilder ANSCHLUSS-BEISPIELE Auss haltu g it U i e sals halte We hsels haltu g K euz-/we hsels haltu g Doppel-We hsel- K euzs haltu g Auss halte, Auss halte, Se ie s halte Ko t ollauss

Mehr

Der Landrat als Kreispolizeibehörde Gütersloh

Der Landrat als Kreispolizeibehörde Gütersloh De Ld s espozebehöde Güesoh Jhesbech zu sewckug 2017 Ihsvezechs See - Ld Nodhe-Wesfe - 1 - Regeugsbezk Deod - 2 sge Regeugsbezk Deod - Gfk 3 - espozebehöde Güesoh - 4 Eee Tvedchge 5 Mehfchvedchge 6 Nchdeusche

Mehr

n 4 Dr. A. Brink Dr. A. Brink 1

n 4 Dr. A. Brink Dr. A. Brink 1 E. Tlgugsechuge Aufgabe E/3 E Ked ee chuldsue vo. s übe Jahe ach de Mehode de quaalswese-achschüssge Auäelgug zuückzuzahle. Eel e de Jahesauä sowe de Rückzahlugsae ud eselle e ee Fazpla fü ee Jaheszssaz

Mehr

ALTE KÜHLSCHRÄNKE SIND STROMFRESSER WER HAT DEN ÄLTESTEN KÜHLSCHRANK IM LANDKREIS AUGSBURG?

ALTE KÜHLSCHRÄNKE SIND STROMFRESSER WER HAT DEN ÄLTESTEN KÜHLSCHRANK IM LANDKREIS AUGSBURG? 10.02.2018 22:29 1/10 LANDKREIS AUGSBURG (DRUCKANSICHT) ALTE KÜHLSCHRÄNKE SIND STROMFRESSER WER HAT DEN ÄLTESTEN KÜHLSCHRANK IM LANDKREIS AUGSBURG? Gib mir ei A+ ++ Dur chs ch ittli ch 35 Pro z t des Str

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen:

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen: Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Block Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeschltet!. Bereche Sie vo Hd ud Bechte Sie dei die Reihefolge der Opertioe:

Mehr

Zur Bestimmung des Terms der Regressionsgeraden

Zur Bestimmung des Terms der Regressionsgeraden Nme: Zu Betmmug de Tem de Regeogede Auggput ue Üeleguge t e vte Stz vo Dte ; ; ; ;; ; Dtum: mt de etpehede Mttelwete ud, de ze ud,de Kovz ud dem Koeltooeffzete. Geuht d de Wete de Stegugfto ud de Odtehtt

Mehr

r r a = k b mit k IR \{0} nicht gleichzeitig erfüllbar. 4 Die beiden Vektoren sind nicht kollinear (linear unabhängig) 3

r r a = k b mit k IR \{0} nicht gleichzeitig erfüllbar. 4 Die beiden Vektoren sind nicht kollinear (linear unabhängig) 3 Liee Ahägigeit Wehe Vetoe sse sih duh zwei gegeee Vetoe dstee? Bethtug des Poes i de Tfeeee: Ae! Wie hätte ih eie Vetoe iht wähe düfe: Pe! Aso: Spezif: We eie de Vetoe eie eue Ifotio (Rihtug) eisteuet

Mehr

Überblick: Teil C Systemnahe Softwareentwicklung. Speicherorganisation. Speicherorganisation (Forts.) 12 Programmstruktur und Module

Überblick: Teil C Systemnahe Softwareentwicklung. Speicherorganisation. Speicherorganisation (Forts.) 12 Programmstruktur und Module Üerlik: Teil C Systehe Softwreetwiklug 12 Progrstruktur ud Module 13 Zeiger ud Felder 14 µc-systerhitektur 15 Neeläufigkeit 16 Speiherorgistio 17 Zusefssug Speiherorgistio it ; it = 1; ost it = 2; void

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g

Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g a u s Sta h l Ed e l s ta h l u n d Gl a s 2 Ve r z i n k t e Sta h l k o n s t r u k t i o n m i t g e k l e bt e n Ec h t g l a s- s c h e i b e n Da c h ü b e r s p a n n t d i e Fr ü h s t ü c k s

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Rentenrechnung 4. Manuel Schneider Yanfeng Han. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999

Rentenrechnung 4. Manuel Schneider Yanfeng Han. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 eteechug Mauel Scheide Yafeg Ha Ihig/Pflaue Fiazatheatik Oldebug Velag 999 )Aus eie apital v 0000 sll 0 Jahe lag eie vschüssige Matsete bezahlt wede.wie hch ist diese bei vieteljähliche Vezisug v %? 0000

Mehr

1 * B. Finanzmathematische Grundlagen 4 Aufgaben Aufgabe B/4

1 * B. Finanzmathematische Grundlagen 4 Aufgaben Aufgabe B/4 Fizmhemik Them: Fizmhemische Grudlge A Eiführug B Fizmhemische Grudlge Gegesd der Fizmhemik Folge- ud Reiherechug ls Bsis der Fizmhemik 3 Reche mi Logrihme 4 Aufgbe - Lösuge Dr. Alfred Brik Fizmhemik Dr.

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitle Codierug ud Üertrgug 2.1 Iformtiostheoretische Grudlge 2.2 Speicheredrf ud Kompressio 2.3 Digitlisierug, Digitle Medie Weiterführede Litertur zum Them Dtekompressio: Khlid Syood: Itroductio

Mehr

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule

So schaffst du deine Ausbildung. Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE. Bildelement: Jugendliche in der Schule Bildelement: Jugendliche in der Schule Ausbildungsbegleitende Hilfen (abh) INFORMATION FÜR JUGENDLICHE So schaffst du deine Ausbildung Bildelement: Logo SO SCHAFFST DU DEINE AUSBILDUNG Schließ deine Ausbildung

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

Alles wird teurer, nur Druckereien bekommen weniger!

Alles wird teurer, nur Druckereien bekommen weniger! Alle wid teue, u Duckeeie bekomme weige! uch a b Ve Ezeugep eiidex % De Vebauchepeiidex zeigt, da die Peie aufgud de Iflatio laufed teige. De Ezeugepeiidex zeigt, da Duckeeie weige fü ihe Leitug ehalte.

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Formelsammlung Chemie. Berufliches Gymnasium Fachoberschule. Formelsammlung. Chemie. Heinrich-Emanuel-Merck-Schule Darmstadt Stand: 28.10.

Formelsammlung Chemie. Berufliches Gymnasium Fachoberschule. Formelsammlung. Chemie. Heinrich-Emanuel-Merck-Schule Darmstadt Stand: 28.10. Forelsalug Cheie eruflihes Gyasiu Fahobershule Forelsalug Cheie eirih-eauel-merk-hule arstadt tad: 8..8 Forelsalug Cheie eruflihes Gyasiu Fahobershule toffege, olare Masse, olares olue ud Norvolue erehug

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch egetmte zum uch etet vo Mg. Ev Swy u t We t we? Vebe e Sätze mt em chtge Nme. Fo Pu Nko Ko Vkto Emm... t e ckche ebe Mäche, eh gee cht.... ht ee Sptzme vo eem Refet übe Aute.... ht chefe Zähe u mu ee Zhpge

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5 Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Blok Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeshltet!. Berehe Sie vo Hd: : 9 9. Berehe Sie vo Hd: / /. Zu welhe Zhleege ln,

Mehr

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER

HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER HINWEISE ZUR ANTRAGSTELLUNG GASTSPIELFÖRDERUNG THEATER I. VERGABEKRITERIEN 1. D i e g a s t i e r e n d e Gr u p p e k o m m t a u s e i n e m a n d e r e n B u n d e s l a n d. 2. D i e g e p l a n t

Mehr

S a ra h C. J one s Ph y sik a m S a m st a g 4. J uni

S a ra h C. J one s Ph y sik a m S a m st a g 4. J uni Be e inf lusse n H urr ic a ne s d a s W e t t e r in Eur opa? S a ra h C. J one s Ph y sik a m S a m st a g 4. J uni 2 0 0 5 Institutfür fürmeteorologie Meteorologie Institut undklimaforschung Klimaforschung

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Versicherungsmathematische Formeln und Sätze WS 2001/02

Versicherungsmathematische Formeln und Sätze WS 2001/02 Pof. D. Detma Pfefe Vescheugsmathematsche Fomel ud Stze WS 200/02 Zsechug effete Zssatz: totale Zsetag aus dem fagsaptal "" ehalb ees Jahes Bawet des ach eem Jah fllge Kaptals "" Edwet des ach eem Jah

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

JUBILÄUMSTAFEL. 18. Ju l i. 18: 0 0 U hr. 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l

JUBILÄUMSTAFEL. 18. Ju l i. 18: 0 0 U hr. 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l 18. Ju l i 18: 0 0 U hr 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l #01 Pizzeria Ristorante Salmen G e f ü l l t e r M o zza r e l l a m i t S p i na t u n d G a r n e l

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Sitzungsberichte. der. philosophisch-philologischen und historischen Classe. der» k. b. Akademie der Wissenschaften. zu IVEünchen Heft I.

Sitzungsberichte. der. philosophisch-philologischen und historischen Classe. der» k. b. Akademie der Wissenschaften. zu IVEünchen Heft I. Sitzungsberichte der philosophisch-philologischen und historischen Classe der» k. b. Akademie der Wissenschaften zu IVEünchen. 1881. Heft I. M ü n c h e n. Akademische Buchdruckerei von F. Straub 1881.

Mehr

1. Märchen Des Kaisers neue Kleider Märchen Die Sterntaler Sage Das Riesenspielzeug Fabel Der Rabe und der Fuchs 16-19

1. Märchen Des Kaisers neue Kleider Märchen Die Sterntaler Sage Das Riesenspielzeug Fabel Der Rabe und der Fuchs 16-19 Inhalt Seite 1. Des Kaisers neue Kleider 4-7 2. Die Sterntaler 8-11 3. Sage Das Riesenspielzeug 12-15 4. Fabel Der Rabe und der Fuchs 16-19 5. Kurzgeschichte Annas Wiese 20-23 6. Gruselgeschichte Die geklaute

Mehr

Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald

Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald Der Bereich Wirtschaftswissenschaften der Ernst-Moritz-Arndt- Universität Greifswald Sachstandsbericht 2004 PR O F. D R. M A N FR ED JÜ RG EN M A TS CH K E G R EI FS W A LD 20 04 Im pr es su m ISBN 3-86006-209-3

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Kapitel 10: Optimalcodierung IV

Kapitel 10: Optimalcodierung IV Kpitel 10: odierug IV Ziele des Kpitels Lempel-Ziv Codig Cover, pp. 319ff 2 Lempel-Ziv Codig Lempel-Ziv Codig Wurde 1977 zum erste Ml vorgestellt Beötigt keie Quellesttistik Wesetlihes Chrkteristikum ist

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Datenstruktur : MT940 (Swift)

Datenstruktur : MT940 (Swift) Datestruktur : MT940 (Sift) Nachfolged ird uterschiede zische dem Satzaufbau MT940 (Sift) de Erläuteruge zum Geschäftsvorfallcode (GVC) eiem Beisiel zum MT940-Satz (Sift) Die MT940-Sätze (Sift) verfüge

Mehr

Rechensystem-Modelle zur Kapazitätsplanung

Rechensystem-Modelle zur Kapazitätsplanung 2. orddeutche Kolloquium Recheytem-Modelle zur Kapazitätplaug 2. orddeutche Kolloquium ordaademie Elmhor. Mai 2007 Güter Totzauer FH OL/Otfrielad/WHV Emde Kapazitätplaug DKoll2007 0 2. orddeutche Kolloquium

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) . Mttelwete (Lagepaamete) Bespele aus dem täglche Lebe Po Hemspel hatte Boussa Dotmud de letzte Saso duchschttlch 7. Zuschaue. De deutsche Akte sd m Duchschtt um 0 Zähle gefalle. I Ide wude de letzte 0

Mehr

Formelsammlung Finanzmathematik

Formelsammlung Finanzmathematik FH D WS 9/ Pof. D. Hos Pees Oobe 9 Foelslug Fze BA-Sudegg Ieol Mgee See /7 Foelslug Fze Sue, Folge ud ee eceegel fü Sue: U Aesce Folge: U U... U U U (Dsbuvgesez) U U U U (Udzeug) d d,,3,... Aesce ee: d

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

Kreisler: Weihnachten ist eine schöne Zeit

Kreisler: Weihnachten ist eine schöne Zeit * * + - " - % )) ' eihachte it eie chöe Zeit Gerg Kreier (geb 17122 ie) 1 12,,,,,,,,, de e ird ge - fei - ert i - be - d - re, e e eit tüch - d tig!! eih-ach - te it ei - e chö - e et - te - ei - fe, eih-ach

Mehr

Deutsche Rentenversicherung Deutsche Sozialversicherung und Europarecht im H inb lick auf und ausländische d ie A l terssicherung W anderarb eitnehm er/ innen m o b il er W issenscha f tl er Aktuelle Entwicklungen

Mehr

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2 Werstoffe der letrotechi WS 11 / 1 Lösuge ur Übug Aufgbe 1: Wdh. De roglie-welleläge: ewegt sich ei Objet it icht verschwideder Ruhesse it de Ipuls p = v d ih eie Mteriewelle der Welleläge ugeordet werde:

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Wechse der Hausverwatug i WEG

Wechse der Hausverwatug i WEG Wechse der Hausverwatug i WEG 3Es ist eifacher as a de4t!6 Sie sid it der Quaitt ud de Service Ihrer Hausverwatug u9ufriede ud de4e :ber eie Wechse ach; Geich9eitig habe Sie isbes dere 2 Bede4e( ich (1)

Mehr

Aufbau der IBAN (International Bank Account Number)

Aufbau der IBAN (International Bank Account Number) a = alphanumerisch; n = numerisch 4 4 4670 IBAN AD (Andorra) AD 000 200 200 0 000 4 4 4 67 0 ; n 2n 4 4670 IBAN AT (Österreich) AT6 04 002 47 20 4 467 0 ; n ; n 0 467 IBAN BE (Belgien) BE 6 0 074 704 24

Mehr

Re ch n e n m it Term e n. I n h a l t. Ve re i n fac h e n vo n Te r m e n Ve r m i s c h t e Au fg a b e n... 8

Re ch n e n m it Term e n. I n h a l t. Ve re i n fac h e n vo n Te r m e n Ve r m i s c h t e Au fg a b e n... 8 Re ch n e n m it Term e n I n h a l t B e re c h n e n vo n Z a h l e n te r m e n........................................................ We rt e vo n Te r m e n b e re c h n e n........................................................

Mehr

Begleitmaterial zum Buch

Begleitmaterial zum Buch eetmte zum uch etet vo M. Ev Swy Vebe e pee Sätze mt em chte Chkte! Do uo Ev Leopo... t e wee Lexko fü Spchwöte u Ztte.... t emem mt Ktze oß ewoe.... chut u fucht.... t e Ruhcke mt Fempchekete.... bucht

Mehr

ev. Jugend Böckingen Freizeit Programm 2015

ev. Jugend Böckingen Freizeit Programm 2015 v. Jugd Böckig Fzt Poga 2015 Zltlag fü 9-13 Jähig 2. - 15. August 2015 Wi sog fü gaos ud uvgsslich Fzt i Mt ds Hohloh Walds, i Etthaus kl gütlich Dof. Dikt vo Bauhof ba gibt s täglich fischst Milch du

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwete (Lagepaamete) Athmetsches Mttel Bespele aus dem täglche Lebe Po Hemspel hatte Boussa Dotmud de letzte Saso duchschttlch 74.624 Zuschaue. De deutsche Akte sd m Duchschtt um 0 Zähle gefalle.

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Studium-Arbeitsmappe. Fabian Scherz

Studium-Arbeitsmappe. Fabian Scherz tudium-reitsmppe Fi herz Hier präsetiere ih eie uswhl vo ht exemplrishe reite, die währed meies seitherige rhitektur-tudiums etstde sid. Fi herz Theodor-Heuss-tr. 14 70174 tuttgrt Hdy: 0176 60838706, E-Mil:

Mehr

/-010 2% 3%.-&"(2#( 4#5% 6077## 7 8$$04%27.0& 905$0& :0;+

/-010 2% 3%.-&(2#( 4#5% 6077## 7 8$$04%27.0& 905$0& :0;+ ! "#$%&'() *+,-#.(! "#$%&'() *+,-#.( // /011#)1.#) 234#5: 61$03#7 8$("(1$5% 5 15#9($(-:1$5%4 # 90.+;(. 5 6. [?.] I.!"#$%&'(&) *&#+,-& "$./0-/1/

Mehr

IT-Remarketing Rücknahme und Wiedervermarktung von gebrauchten IT-Produkten. Warenaufnahme, Funktionstest und Aufbereitung

IT-Remarketing Rücknahme und Wiedervermarktung von gebrauchten IT-Produkten. Warenaufnahme, Funktionstest und Aufbereitung Waeaufahme, Fuktiostest ud Aufbeeitu Eeicht de Alteätetaspot use Remaketilae, wid jedes Geät übe eie Seieumme automatisch i usee Datebak efasst. Damit ka jedezeit de aktuelle Status achvollzoe wede. Use

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

Namenregister. Die f e t t gedruckten Zahlen bezeichnen Originalartikel.

Namenregister. Die f e t t gedruckten Zahlen bezeichnen Originalartikel. Namenregister. Die f e t t gedruckten Zahlen bezeichnen Originalartikel. A. A b a d j i e f f 438, 441. A b ra h a m 95, 360. A d l e r 426. A e b ly 417. A g r o n ik 151, 242. A i c h e n w a l d 145.

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

15.08.2006. Skript WS 2006/07. Prof. Dr. Waike Moos Fachbereich Wirtschaftswissenschaften Hochschule Niederrhein

15.08.2006. Skript WS 2006/07. Prof. Dr. Waike Moos Fachbereich Wirtschaftswissenschaften Hochschule Niederrhein 5.8.6 Sipt Fiazmathemati WS 6/7 Pof. D. Waie Moos Fachbeeich Witschaftswisseschafte Hochschule Niedehei Fiazmathemati Pof. D. Waie Moos FB Witschaftswisseschafte Egäzede Liteatuempfehluge... 4. Wofü beötigt

Mehr

Klaus Kremer, der Küchenchef des Luxus-Ozeanliners Queen Mary 2 macht das Schlemmen im Weingold zum kulinarischen Erlebnis

Klaus Kremer, der Küchenchef des Luxus-Ozeanliners Queen Mary 2 macht das Schlemmen im Weingold zum kulinarischen Erlebnis W E I N G O LD T r a d i t i o n u n d S t i l v e r e i n e n... V i e l f a l t u n d G e n u s s e r l e b e n... W e r t e u n d N a c h h a l t i g k e i t s c h ä t z e n... gu t e s s e n, gu t

Mehr