LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

Größe: px
Ab Seite anzeigen:

Download "LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie"

Transkript

1 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler Department Biologie II Telefon: Großhaernerstr. Fa: Planegg-Martinsrie. Übung/Lösung Mathematik für Stuierene er Biologie.0.08 Abgabe in en Tutorien. Die Aufgaben weren in en Tutorien vom 8. un 9. November besprochen. Aktuelle Infos un Übungszettel finen Sie unter: (Nichtlineare Iterierte Abbilungen - Stabilität einer Fipunkt-Lösung) [ P] Die nichtlineare Iterierte Abbilung t+ = f( t ) habe eine Fipunkt-Lösung (,,,...) t N mit = f( ). Um eren Stabiltät zu untersuchen, betrachten wir kleine Störungen y t = t. (a) Durch welche (nichtlineare) Iterierte Abbilung wir ie Zeitentwicklung von y t beschrieben? Um iese Frage zu beantworten, setzen Sie ie Iterierte Abbilung t+ = f( t ) in ie Gleichung y t+ = t+ ein un ersetzen Sie anschließen t urch t = + y t. (b) Entwickeln Sie nun f( + y t ) für kleine Störungen y t in eine Taylorreihe bis einschließlich es linearen Terms. Welche (lineare) Iterierte Abbilung erhalten Sie für y t? (c) Unter welchen Beingungen an f ( ) ist ie Fipunkt-Lösung asymptotisch stabil, wann instabil un wann marginal stabil? () Wenen Sie Ihr Ergebnis auf ie nichtlineare Iterierte Abbilung t+ = a t ( t ) an. Betrachten Sie en trivialen Fipunkt = 0 un (für a > 0) ie von Null verschieene Lösung. (a) y t+ = t+ y t+ = f( t ) y t+ = f( + y t ) (b) f( + y t ) f( ) + f ( )y t für y t. y t+ = f( + y t ) y t+ f ( )y t + f( ) = f ( )y t mit er zeitabhängigen Lösung y t = c [f ( )] t, c = y 0 = 0. (c) Asymptotisch stabil: Für < f ( ) <. Marginal stabil: Für f ( ) =. Instabil: Sonst. () Fipunkt = 0: f ( ) = a ( ) wir mit = 0 zu f ( ) = a. Asymptotisch stabil für < a <. Für y t gilt y t+ f ( )y t = ay t. Fipunkt = a : f ( ) = a ( ) wir zu f ( ) = a. Asymptotisch stabil für < a <. Für y t gilt y t+ f ( )y t = ( a)y t.. (Kurveniskussion) Diskutieren Sie ie Funktionen f() = 4 4, un g() = + [ P]

2 nach folgenem Schema: (a) Welche Symmetrieeigenschaften hat ie Funktion? (b) Welche Nullstellen hat ie Funktion? (c) Wie ist as asymptotische Verhalten er Funktion für ±? () Ist ie Funktion stetig? Wie verhält sich ie Funktion an en Polstellen (falls sie welche besitzt)? (e) Bestimmen sie für f() sämtliche höhere Ableitungen un für g() ie ersten rei Ableitungen. (f) Hat ie Funktion lokale Etrema? Wo liegen sie? (g) Hat ie Funktion absolute Etrema? Wo liegen sie? (h) Für welche ist ie Funktion monoton steigen bzw. monoton fallen? (i) Wie ist as Krümmungsverhalten? In welchen Bereichen ist ie Funktion konve, in welchen ist sie konkav? Wo sin Wenepunkte? (j) Skizzieren Sie ie Funktion (ohne weitere Funktionswerte zu berechnen!). Hinweis: Ist ie Ableitung von g() stetig bei = 0? Kann man in em Fall einer Unstetigkeit ie Gleichungen g() = 0 un g() 0 zur Bestimmung eines Etremums benutzen? f() = 4 4 (a) Symmetrie: f() = f( ) 4 4 = ( ) 4 4( ) f() ist gerae (b) Nullstellen: 0 = 0, / = ± (c) ± f() = () Stetigkeit: g() = un h() = 4 sin stetige Funktionen, f() ist eine Summe beier Funktionen multipliziert mit konstanten Faktoren f() ist stetig (e) f = 4 8, f = 8, f = 4, 4 f = 4 4 (f) lokale Etrema: 0 = f = 4 8 E0 = 0, E/ = ± f( E0 ) = 8 < 0 lokales Maimum bei (0, 0) f( E/ ) = 6 > 0 lokale Minima bei (±, 4) (g) a ± f() = sin ie Minima bei (±, 0) auch globale Minima (h) monoton fallen: E = E0 = 0 E = monoton steigen: E = 0 E = (i) Wenepunkte: W/ = ± (±, 0 9 ) konve: W = W = konkav: W = W = (j) 8 6 4

3 g() = + (a) Symmetrie: g() = g( ) + = ( ) + g() ist gerae (b) Nullstellen: 0 = 0, / = ± (c) ± g() = () Stetigkeit: Die Wurzelfunktion ist stetig auf R +, un jee Potenz von ist stetig auf R. Bleibt nur noch zu prüfen, ob 0 g() = 0 = 0 + g() g() ist überall stetig. sign() (e) g = +, g = 4, / g = sign() 8 5/ (f) lokale Etrema: 0 = sign() g = +. Suchen wir zuerst eine positive Lösung, un setzen = z. Die Gleichung + sign() = z + = 0, unter er Annahme, aß z > 0. z Also, z = 4 /, oer E/ = ± 4/, unter Berücksichtigung er Symmetrieeigenschaft von g(). g( E/ ) = < 0 lokale Maima bei (± 4/, 8/ + / ) (±0.40, 0.47). Zwischen zwei lokalen Maima muß bei einer stetigen Funktion ein Minimum liegen. Man bemerke, aß 0 + g () = +, währen 0 + g () =, also finet bei E0 = 0 ein Vorzeichenwechsel statt, weswegen hier as Minimum liegt. Die Ableitung ist nicht stetig! Die Lehre ist, aß man nicht blin g = 0 setzen arf. (g) a ± g() = sin ie Maima bei (± 4/, 8/ + / ) auch globale Maima (h) monoton steigen: E = 4/ E0 = 0 E = 4/ monoton fallen: E = 4/ 0 E = 4/ (i) Keine Wenepunkte! (j) g() = < 0 für alle! Also konkav, laut Definition. 4 / (Raioaktiver Zerfall) Zur Zeit t = 0 sei ie Masse einer raioaktiven Substanz gleich 0. Sie zerfalle eponentiell, [ P] (t) = 0 e αt α: Zerfallskonstante. (a) Zur Zeit t / ist noch ie Hälfte er Anfangssubstanz vorhanen (Halbwertszeit). Wie hängen t / un α zusammen? (b) Zeichne (t) als Funktion von t in einer halb-logarithmischen Darstellung. Wie hängt er Graph von α un 0 ab? (a) Aus (t / ) = (0)/ folgt 0 e α t / = 0 e α 0 un somit e α t / =

4 α t / = ln ( ) = ln t / = ln α (b) Halb-logarithmische Darstellung: Auf er y-achse wir y(t) = log (t) = ln (t) ln(0) = ln ( 0 e αt ) = ln( 0) ln(0) ln(0) αt ln(0) aufgetragen. Dies ist eine Gerae mit Steigung α/ ln(0) un Versatz ln( 0 )/ ln(0). 4. (Skalengesetze) [ P] Die Oberfläche O eines Körpers skaliere wie as Quarat seiner Länge l, O = k l, as Volumen V wie ie ritte Potenz er Länge, V = c l, mit c, k R +. Zeichnen Sie iese Zusammenhänge in ein Koorinatensystem mit oppelt-logarithmischer Darstellung. Wie änern sich ie Graphen, wenn sich k un c änern? Welche Linie ergibt sich für ein Fraktal, essen Oberfläche O F sich wie γ l a mit γ R + verhält? Welche Werte von a erscheinen Ihnen plausibel? Doppelt-logarithmische Darstellung: Auf er -Achse wir (l) = log(l) aufgetragen. Auf er y-achse wir y(l) = log O F (l) = log (γ l a ) = log(γ) + a log(l) = log(γ) + a (l) aufgetragen. Dies ist eine Gerae mit Steigung a un Versatz log(γ). Für O un V entsprechen jeweils k un c em Versatz er Geraen. Für Werte a > 0 wächst O F mit l.

5 5. (Ableitungsregeln) Berechnen Sie ie erste Ableitung f er Funktionen (a) f() = + (b) f() = 4 (c) f() = /6 + / () f() = ( + ) e (e) f() = + (f) f() = e (g) f() = log (h) f() = ln (i) f() = e / (j) f() = ln(4 k) (k) f() = (l) f() = log + t 4 (4 e ) ( ) a + (m) f() = (ln ) ln(ln ) ln (n) f() = log a (o) f() = + a [ P] (a) f () = (b) f () = 4 (c) f () = / / () f () = e (e) f () = (/ ) (f) f () = ( + )e (g) f () = (h) f () = (i) f () = ln e (j) f () = 0 (k) f () = (l) f () = e ( + t ) (m) f () = (ln(ln ))/ (n) f a () = (a (o) f () = ) ln a 4 ( + ) 6. (Taylor-Entwicklung) [ P] Entwickeln Sie folgene Funktionen bis zur. Ornung am angegebenen Punkt 0. (a) f() = ln(), 0 = (b) f() = sin(), 0 = 0 (c) f() = e, 0 = 0 () Berechnen Sie ie erste Ableitung er Taylor-Entwicklung aus c). Was stellen Sie fest? (a) f () =, f () =, f () =, allgemein f (n) () = (n )!( )n+ n=0 f (n) ( 0) n! ( 0 ) n = ln() + (n )!( ) n+ n= n n! ( ) n = n= n un ( ) n+ n ( ) n = ( ) ( ) + ( )... (b) f () = cos(), f () = sin(), f () = cos(), allgemein f (n) () = sin( + nπ/) un n=0 f (n) ( 0) n! ( 0 ) n = sin(0) + sin(nπ/) n= n! n = ( ) n n=0 (n+)! n+ = (c) f () = e, f () = e, f () = e, allgemein f (n) () = e un f (n) ( 0) n=0 n! ( 0 ) n = e 0 + n= e0 n! n = n=0 n! n = ( +... () n=0 n! n) = n=0 n! n. Die Ableitung er Taylor-Entwicklung ist gleich er Taylor-Entwicklung. 7. (e l Hospital) Bestimmen Sie folgene Grenzwerte mit er Regel von e l Hospital. (a) 4 (b) sin() 0 (c) 0 ( a ln ), a R + () ( a ln ), a R + [ P]

6 4 (a) = = 4 sin() cos() (b) = = 0 0 (c) = 0 a a = 0 a a () ln a = = aa 0 a a a = 0 a = 0

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Übungsblatt

Übungsblatt Übungsblatt 13.11.018 1) Zerlegen Sie folgene gebrochen rationale Funktionen in rein reelle Partialbrüche: a) f() = + 13 + 5 6 c) h() = + 3 + 1 3 + b) g() = 3 + + 5 + 5 + 3 3 + 5 + 5 + ) Untersuchen Sie

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml

Aufgabe 1.1. Aufgabe 1.2. Aufgabe 1.3. FernUNI Hagen WS 2002/03. Mathematik II für WiWi s (Kurs 0054) Mentorin: Stephanie Schraml FernUNI Hagen WS 00/0 Aufgabe 1.1 Berechnen Sie jeweils die 1. Ableitung der Funktion f: 1- a) f() = e 1+ e + b) f() = (+) Aufgabe 1. Von einer Funktion f ist bekannt: (1) f ist ein Polynom. Grades ()

Mehr

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0.

hat. Dann hat zumindest die dritte Ableitung ebenfalls die Nullstelle x 0. Differentialrechnung Graphen mit Flachpunkt un Wenepunkt Quelle: Akaemiebericht Theorie Es gibt Funktionen, eren zweite Ableitung eine mehrfache Nullstelle x 0 hat. Dann hat zuminest ie ritte Ableitung

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1 D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 3. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 76. Ableitungen

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 9 Mathemati Nichttechni - A II - Lösung Teilaufgabe. Gegeben sin ie reellen Funtionen f ( x) = x x mit IR un ID = IR. fa Der Graph einer solchen Funtion wir mit G

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

AP 2008 Analysis A1 Nichttechnik

AP 2008 Analysis A1 Nichttechnik . Gegeben ist ie reelle Funktion f k Der Graph wir mit G fk bezeichnet. (, ) x fss( k, x) 6 k +, esto steiler ie Tangente. BE. Weisen Sie nach, ass ie Tangente an G fk im Schnittpunkt mit er y-achse eine

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollstänige Inuktion Folgen Reihen Grenzwerte Funktionseigenschaften Differentialrechnung Integralrechnung Mathe-Party Fula Wintersemester

Mehr

f x durch die Funktionsgleichung

f x durch die Funktionsgleichung 1. Aufgabe In einem ebenen Geläne soll für eine neue Bahntrasse auf einer Strecke von km er zugehörige Bahnamm neu errichtet weren. Dabei sollen ie folgenen, in er Abbilung angeeuteten Beingungen eingehalten

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 15 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 15 Peter Hartmann Verständnisfragen 1. Ist f : D und 0 D, so ist der Differenzenquotient eine Abbildung von D\ 0. Warum muss hier 0 aus dem Definitionsbereich herausgenommen werden? Weil sonst der Nenner 0 werden kann..

Mehr

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung

Mathematik LK 11 M2, 3. KA Differentialrechnung Lösung Mathematik LK M,. KA Differentialrechnung Lösung 9.05.07 Aufgae : Gegeen ist ie Funktion f (x)=ax +x+c, a,, c R,a 0 Führe eine vollstänige Funktionsuntersuchung gemäß er Liste aus em Unterricht urch. Keine

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Abschlussaufgabe Nichttechnik - A II - Lösung

Abschlussaufgabe Nichttechnik - A II - Lösung GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er

Mehr

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES ARBEITSUNTERLAGEN zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES Vorbemerkung Ziel des Propädeutikums ist es, die Schulmathematik wieder ins Gedächtnis zu rufen und eine gemeinsame Grundlage für die

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Lokale Extremwerte von Funktionen

Lokale Extremwerte von Funktionen Lokale tremwerte von Funktionen Die Taylorformel Verstehen durch Beispiele Funktionen in einer Veränderlichen Wie behandele ich tremwertaufgaben in der Sekundarstufe I? Diese oder ähnliche Beispiele können

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2

fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt 1 für beliebiges k N und x 0. a 2 x 1 x 3 y 2 ) 2 fakultät für physik bernhard emmer mathematik vorkurs für physiker Übungsblatt Aufgabe Induktion). a) Beweisen Sie, dass + 3 + 5 +... + n )) ein perfektes Quadrat genauer n ) ist. b) Zeigen Sie: + + +...

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4 Aufgabe : Probe Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,9 0, = 0, 0, =, 0,0 =,, = : 0,7 = 8 0, : 0, = 7 0, 0, = 0, = 0,7 0,8 0 =,

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Als bekannt setzen wir die folgenden 5 Ableitungen und 3 Regeln voraus: cos) = sin) n ) = n n für alle n 0 e ) =e sin) = cos) ln) = f) g))

Mehr

Mathematik Lösung KA Nr Seite 1

Mathematik Lösung KA Nr Seite 1 9.11.17 Seite 1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der TR und die Formalsammlung verwendet werden dürfen.) Es ist

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die

Mehr

Grundlagen Algebra. Bruchgleichungen

Grundlagen Algebra. Bruchgleichungen Bruchgleichungen EL / GS -.0.05 - _Bruchgl.mc Definition: Eine Gleichung, bei er eine Variable x auch im Nenner vorkommt, ohne ass man sie kürzen kann, heißt Bruchgleichung. Bezeichnung: Gleichungen, ie

Mehr

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3.

Übung (9) . Geben Sie auch eine geometrische Deutung des Resultats an. 2 3j, e jπ7/4, 2e 4jπ/3. Übung (9). Drücken Sie 3 ³ b (4 a ( 5) c) aus urch a b c. Geben Sie auch eine geometrische Deutung es Resultats an.. Vereinfachen Sie: ( x 4 y) (3 y 5 x). ³ ³³ ³ 3. Vereinfachen Sie en Ausruck a 3 b 3

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur 11. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 06. Dezember 06 Höhere Mathematik I für Ingenieurinnen und Ingenieure Beispiele zur. Übung In

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Moul 0 Einführung Lernumgebung Teil 2 Hans Walser: Moul 0, Einführung. Lernumgebung Teil 2 ii Inhalt Where is the flaw?... 2 Intervalle... 3 Frage er Grenzen...2

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P]

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P] Mathematik Name: Lösungen Nr. K Punkte: /3 Note: Schnitt: 7..3 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 9.. 08, 3.00-6.00 Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

2. Schulaufgabe aus der Mathematik 12WC

2. Schulaufgabe aus der Mathematik 12WC M. Knobel. Schulaufgabe aus er Mathematik WC 3..07 S_A7_WC_A703.mc.0 Gegeben ist ie Funktionenschar f : x--> f k k ( x) mit f k ( x) = x 4 k + k mit k R. Berechnen Sie f k ( x) f k ( x) un folgern Sie

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

Lösungen zu Aufgabenblatt 10P

Lösungen zu Aufgabenblatt 10P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 05 9. Juni 05 Lösungen zu Aufgabenblatt 0P Aufgabe (Funktionsgrenzwerte) Berechnen Sie die folgenden Grenzwerte: cos(x) x cos( x )

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr